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ABSTRACT
An access control framework is responsible for efficiently and ef-
fectively managing an organization’s resources on which its users
can perform actions. Depending upon their requirements, different
organizations deploy different kinds of access control frameworks.
For a common goal, organizations often collaborate by contribut-
ing their resources and users. To integrate each other’s resources
and users, their access control frameworks should be interopera-
ble. To help a collaboration realize, several models [14, 41, 42]
exist. These models facilitate the collaboration among homoge-
neous access control frameworks. In practice, collaborators may
have heterogeneous frameworks that may not share any similarity
in their security orderings [10] which may prove to be a serious
hitch for integrating each others’ resources and users at anappro-
priate order. Here, we present a utility that allows one to form an
overlay of definitions specific to the collaboration. Such defini-
tions map new names for the existing definitions available within
the framework. Thus, the new security order formed through over-
lay definitions can be presented as an interoperation interface to the
collaborators. The use of overlays hides the internal security order-
ing of an organization from its collaborators and we shall see how
collaboration specific context information can be capturedand used
in our approach. The post-collaboration setup should provide an ef-
ficient mechanism for authentication-cum-authorization of partici-
pants consistent with the local policies and ensure non-repudiation
of any inter-organization communication. We have come across a
cryptographic primitive, called chameleon hash, that has allowed us
to efficiently realize the above mentioned requirements andprop-
erties. A preliminary analysis of our approach shows an advan-
tage over existing certificate based practices [11, 15, 20, 24, 43]
in terms of manageability, privacy and communication overheads.
Our scheme should be the best implementation choice for dynamic
and ephemeral collaborations where preserving pre-collaboration
functional setup during the span of collaboration and also after the
collaboration is important . Actually, this is a pressing need for
organizations coping with globalization.

In this paper, our goal is to devise an enforcement mechanismto fa-
cilitate concurrent collaborations in a distributed environment with
a focus on the manageability, interoperability and privacyof col-
laborators. Privacy to the collaborators is a new unique feature
provided under our approach.

Keywords: access control, interoperability, name spaces, chameleon
cryptography.

1. INTRODUCTION
Owing to the advent of digital revolution it has become possible to
integrate almost any kind of electronic device that has computing
and communication capability into the day to day life of individuals
and organizations. This extends the reach of such devices beyond
the physical boundaries and demands protection against misuse. In
other words, availability of such resources to their ownersbecomes
a security issue. Computers, printers, card-readers, sensors, dig-
ital photocopiers, etc., are typical examples of digital resources.
Furthermore, even the services provided by such resources (e.g.,
databases) and applications developed on top of them (e.g.,web-
services) can be collectively referred to resources. Therefore, to en-
sure the availability of resources to the intended users of an organi-
zation, the organization needs a comprehensive mechanism called
access control framework. Depending upon the size and functional
requirements, different organizations deploy different types of ac-
cess control frameworks. For instance, a small organization might
be content with an access control framework of type access ma-
trix [19] or mandatory access control (MAC) [6] or discretionary
access control (DAC) [26]. Military organizations are/have been
traditional practitioners of MAC and DAC. In commercial envi-
ronments with large number of users and resources (e.g., banks),
role-based access control (RBAC) [18] has emerged as a de facto
standard. An organization may also have a tailored flavor of these
frameworks suitable to its requirements or may have a proprietary
framework in place. Such a heterogeneity in models for access
control brings forward the challenge in their interoperability when
used to form a collaborative environment.

The primitive goal of an access control model is to efficiently man-
age users and resources (entities) under its control. Different AC
models achieve this goal differently. A typical deploymentof an
access control system is a combination of the following three log-
ical components: anaccess control model, policies, andenforce-
ment mechanisms. The access control model provides means to
arrange, efficiently manage entities and define relations amongst
them. For example, in MAC, entities are arranged in a matrix where
cells of the matrix define the relation between users listed in rows
with resources placed in columns. In RBAC, entities are assigned
to abstract names inherent in the model (e.g.,ROLE, OBS, etc.) and
the model provides means to express relationships amongst such
pre-defined abstract names. Policy languages are employed to pro-
vide properties that are difficult to achieve under AC model alone,
e.g., context-sensitive access requests. Enforcement mechanisms
are employed to enforce the outcome of an access request to a re-
source and also in situations where certain requirements are con-
trary to the inherent properties of the underlying AC model;for ex-
ample, private or external role hierarchies [31, 34] in RBAC. The



interfluve of functional scope of these three logical components is
not strict and may vary in actual deployment, according to the re-
quirements and nature of the setup.

Collaboration amongst organizations is a pressing need in the cur-
rent trend of globalization and outsourcing. Organizations col-
laborate for a common goal by contributing their resources and
users. For example, workflow systems spanning across several au-
tonomous organizations (administrative domains), computational
grids where computational resources and service users belong to
different administrative domains, military and intelligence coali-
tions, collaboration through outsourcing, etc., face interoperability
issues amongst their autonomous administrative domains that con-
stitute the collaboration environment. Some of the prominent mod-
els that help in realizing collaboration are [14, 41, 42]. However,
these models facilitate collaboration among homogeneous access
control frameworks. In practice, collaborators may have hetero-
geneous frameworks and may not share any similarity in theirse-
curity orderings [10], the orderings help collaborators injudging
appropriate levels for accommodating each others’ resources and
users. Several other models that address certain issues while het-
erogeneous autonomous domains collaborate have been proposed.
These approaches have varying reliance on the three components
of access control system described above. In [14, 41, 42], RBAC
model has been extended to facilitate collaboration among homo-
geneous domains. The additional requirement for collaboration
in distributed environment is that the communication across par-
ticipating domains should have authenticity and non-repudiability
properties. These properties can be provided by enhancing the
enforcement mechanism component (i.e., by integrating crypto-
graphic functions or a PKI) of access control systems. In [11,
15, 20, 39, 43, 29], PKI (X.509) assisted AC models have been
proposed to facilitate a secure collaboration. The choice of PKI,
X.509 in the above mentioned proposals, plays a pivotal rolein de-
ciding the autonomous and dynamic nature of the resulting collab-
orative environment. The use of X.509 PKI (which is a top-down
architecture and centralized in nature) in the above proposals does
not allow them to remain truly decentralized. In [1, 2, 8, 9, 10,
13, 21, 22, 24, 33, 28], formal models based on the policy lan-
guages are proposed for collaboration in a distributed environment.
These models and their policy engines rely on security assertions
provided by the underlying enforcement mechanisms to evaluate
resource access requests. Briefly speaking, several combinations
of the above mentioned components are possible to facilitate col-
laboration in distributed environment with a varying dependence
on the three components to achieve security and manageability in
the resulting domain.

In a collaborative domain, theenforcement mechanismscomponent
has a greater role to play than its role in the stand-alone access con-
trol system. Authentication, non-repudiation, security assertions
that can be verified off-line, etc., are the additional properties ex-
pected from theenforcement mechanismscomponent. To achieve
these additional properties in actual implementation of any of the
above listed proposals facilitating collaboration in a distributed en-
vironment, they shall rely on cryptographic primitives, plausibly
asymmetric keys. Thus, having a pair of asymmetric keys with
the entities involved in collaboration, we provide a name and au-
thorization binding utility that greatly simplifies forging dynamic
collaborations and post-collaboration management of not only the
resulting setup but also of individual participating domains. The
utility derives its strength from the collision property ofchameleon
cryptography [25] and the naming philosophy of SPKI/SDSI [13].

Given a public key, corresponding unique chameleon hash function
can be efficiently derived. This function possess all the properties
of universal one-way hash functions except that the owner ofthe
private key (trap-door) can produce collisions for any hashvalue
with a different pre-image. We use the chameleon hash function
to introduce local names and exploit the collision propertyto bind
entities or externally defined local names to trap-door owner’s lo-
cal names. The utility of introducing names and their binding al-
lows potential collaborators to form an overlay over their shared
resources, thus maintaining their post-collaboration autonomy and
shielding their actual access control framework from collaboration
specific modifications. This is very essential while collaborations
are ephemeral. Though our utility is based on keys, the key man-
agement issues are out of the scope of this paper and we assume
that the same practice should be followed as in other proposals that
make use of cryptographic primitives to achieve the properties re-
quired in a distributed environment.

Taming heterogeneity: as the collaborators can be dissimilar in
terms of their underlying access control models, governingpoli-
cies/policy engines and enforcement mechanisms, we identify a
common denominator across them – asymmetric keys. Our overlay
formation utility based on asymmetric keys allows collaborators to
generate a common agreeable interface between themselves,with-
out making modifications in their respective autonomous functional
setups. In [28], this requirement is acknowledged and addressed
through means of “common vocabularies.” Identifying asymmetric
key pairs as a common denominator also nullifies the heterogene-
ity collaborators may have in their use of a PKI (PGP or X.509,for
example).

Organization of the paper: In next section we introduce our mech-
anism to define names and binding entities to them. The naming
mechanism is central to formation of overlays as an interoperation
interface to the collaborators. In Section 3, we explain usage of
overlays for a typical collaboration scenario. Section 4, briefly pro-
vides our experimental results and lists advantages of our mecha-
nism. We provide the related work in Section 5 and conclude the
paper with Section 6.

2. FORMING OVERLAYS – BRIDGES FOR
COLLABORATORS

We introduce overlays as an interoperation interface to thecollab-
orators. Central to this utility is a flexible inter-linkable naming
mechanism based on chameleon hash functions. We begin this sec-
tion with a sub-section on highlighting the importance of names
as a mnemonic handle in access control, its usage in current prac-
tice and make case for local name spaces. Then we present the
cryptographic primitive – chameleon hash function – on which our
naming mechanism is based. A brief scenario showing usage of
overlays is also presented at the end of this section.

2.1 Importance of names as a mnemonic han-
dle in access control

The most important function of a name is to serve as a mnemonic
handle for some human user, it is important that users be ableto
create names rather freely using well-chosen identifiers [13]. Es-
pecially, names have been proved very useful when they referto a
group of entities (plausibly of same type) since one can use such a
handle to specify and enforce a policy over members of the group
just by referring the name [18]. Time-line of access controlsystems
shows that, for potentially large setups, we had to move fromflat



subject-object capability list (AC-matrix) to RBAC family[18, 14,
41, 42] for the sake of efficient management of the setup. Manage-
ability is an important aspect of an access control framework. Effi-
cient management of resources ensures their availability which is,
in fact, an important requirement for secure systems. RBAC [18],
the usual contender for access control in large setups, introduces
special names (introduced as RBAC abstract elements) likeUSERS,
ROLES, OBS, PRMS, etc., to group together its users, their roles,
objects, and permissions over objects. Then it specifies relations
among such abstract elements to achieve efficient management of
the setup. For example, the many-to-many set relation between
abstract elementsROLESandPRMS; where members of the group
ROLES are mapped to the members of setPRMS and vice versa.
Thus assigning an user a role fromROLES group essentially em-
powers the user with permissions assigned to that role. Thisindi-
rect binding of users (throughROLES) to the possible permissions
over a resource (OBS) in RBAC framework provides the follow-
ing advantages. These advantages, due to theaccess control model
component of access control system, come at the cost of granular-
ity. The granularity requirements of the system should be achieved
through theenforcement mechanismscomponent, so that the for-
mer retains its simplicity and manageability.

• It helps in writing manageable policies using the abstract ele-
ments like;USERS, ROLES, PRMS, etc., and enforcing actual
authorizations by resolving entity’s membership to appropri-
ate sets.

• The resource need not maintain the actual list of users and
their respective set of permissions. Thus reducing the sizeof
ACL (Access Control List), and the ACL look-up time.

• Therefore, addition or deletion of users from the setup need
not be reflected in the ACL.

• Similarly, temporary suspension of set of permissions or in-
troduction of new permissions need not be reflected in the
ACL.

However, the utility of these special handles (names or abstract el-
ements) under RBAC is limited to the administrative domain in
which they are defined. In other words, the abstract nameROLES

in one RBAC domain is different from the abstract nameROLESin
another RBAC domain, i.e., the name definitions are local to the
domains. It would be very useful in collaborative environments to
have an ability to refer to the names defined in other administrative
domains [27]. The challenge lies in devising a mechanism with
minimum inter-domain communication costs. Since, in a stand
alone RBAC implementation the access control decisions essen-
tially boil down to set-membership queries. In other words,a user
requesting some permission over certain object must have its mem-
bership in a role that has been mapped to the requested permission.
In a dynamic stand alone RBAC setup, the members of abstract
elements (e.g.,ROLES, PRMS, etc.) are continuously updated by
the domain administrator and this state change is readily available
within the domain while making access control decisions.

Frameworks like CBAC [14], exploit above listed advantagesfor
collaborative environment by modeling abstraction over the ab-
stract elements from collaborating RBAC domains (introducing a
set of abstract elements, for example, COALITION , PARTNEROR-
GANIZATION , ORGANIZATIONASSETS, etc.) The resulting entity
after integrating the domains is a virtual organization andRBAC

specifications will be used to manage the new virtual abstract en-
tities. The model loses its manageability if one goes on integrat-
ing the virtual organizations in further collaborations. The state
changes in any of the participating domain create cascadingeffect.
Also, in such frameworks (e.g., [14, 41, 42]), it is not possible to
accommodate a domain with non-RBAC framework since it does
not have the abstract elements defined. In the following we intro-
duce the chameleon hash function and its properties.

2.2 Chameleon hash function and its proper-
ties

DEFINITION 1. A chameleon hash function [25, 12]is a one-
way hash function like any other universal hash function like SHA-1
[32], except that the function is public-key dependent and the corre-
sponding private-key gives an ability to efficiently find a pre-image
[36] colliding to a pre-computed hash generated with another pre-
image.

A chameleon hash functionis associated with a pair of public and
private keys (the latter called atrapdoor or collision key) and has
the following properties [25].

1. Anyone who knows the public key can compute the associ-
ated hash function.

2. For those who don’t know the trapdoor the function is colli-
sion resistant [36] in the usual sense, namely, it is infeasible
to find two inputs which are mapped to the same output.

3. However, the holder of the trapdoor information can easily
find collisions for every given input.

Let, K andSK denote an asymmetric key pair, whereK is a pub-
lic key (or hash key) while SK represents the corresponding pri-
vate key. CHK(., .) denotes the associated chameleon hash func-
tion, which can be computed efficiently given the value ofK. On
input (pre-image) a messagem and a random stringr, this func-
tion generates a hash valueCHK(m, r) which satisfies the following
properties [25].

Collision resistance There is no efficient algorithm that on in-
put the public-keyK can find pairsm1, r1 andm2, r2 where
m1 6= m2, such thatCHK(m1, r1) = CHK(m2, r2), except with
negligible probability.

Trapdoor Collision There is an efficient algorithm that on input
the trap-doorSK, any pairm1, r1, and any additional message
m2, finds a valuer2 such thatCHK(m1, r1) = CHK(m2, r2).

Uniformity All messagesm induce the same probability distribu-
tion onCHK(m, r) for a givenr chosen uniformly at random.

Henceforth, we shall use a principal’s name as subscript to his pub-
lic key, i.e., KA denotes public-key of principalA and the use of
corresponding private keySKA is implied when reference is made
to find chameleon hash collisions by the principal. Therefore,CHKA

denotes the chameleon hash function associated with principal KA.
We alternatively refer a principal by his public key.



DEFINITION 2. Commitment hash:A principal “A”, denoted
by its public-key KA, constructs a message MA and randomly
chooses a number RA to obtain chameleon hash value XA by
applying CHKA(., .) over MA and RA, i.e., CHKA(MA,RA) = XA.
The message MA used to produce the commitment hash is called
commitment-hash-message.

A commitment hashXA produced over pre-image (MA,RA) by prin-
cipal KA is denoted by a four-tuple:< KA,MA,RA,XA >.

DEFINITION 3. Commitment:Principal “A” issues a commit-
ment for a message mi over commitment hash< KA,MA,RA,XA >

by finding ri , such that CHKA(mi , r i) = CHKA(MA,RA) = XA. The
message mi used to produce the commitment is calledcommitment-
message.

A commitmentr i , issued by principalKA (using its trapdoor), over
a commitment hash< KA,MA,RA,XA > for a given commitment-
message mi is denoted by a six-tuple:
< KA,mi , r i ,MA,RA,XA >. Commitments for a given commitment
hash can only be found with the knowledge of trapdoor.

Having provided the definitions and properties of chameleonhash
functions, we would like to proceed to our name definition fa-
cility in next sub-section. We would like to note that, the input
messages (commitment-hash-messageand commitment-message)
to chameleon hash functions are text strings. We are free to decide
the contents of these strings. One can use this fact to conveydesired
semantics. A principal can utilize thecommitment-hash-message
M to convey certain semantics, by choosing anR and generating
the hashX. Thus, the commitment hash< K,M,R,X > is an as-
sertion made by the principalK aboutM. To enforce the semantics
in M, the principalK issues commitments to intended principals by
embedding their identities (e.g., public-key) into thecommitment-
messages. For example,< K,m1, r1,M,R,X > is a commitment
issued by principalK to principalKV , if m1 = KV . In the follow-
ing sub-section, we exploit this setting to define names and binding
entities to them.

2.3 Defining names and binding entities to
names

The concept of empowering a domain administrator to aggregate
collaboration specific entities under local and extended names is
motivated by SPKI/SDSI [13] philosophy. However, our approach
differs from SPKI/SDSI in the technique used to define and bind
names. SPKI/SDSI uses certificates to define and bind names while
we use chameleon hash functions. The discussion of relativemer-
its of our mechanism are deferred until Section 5. We borrow the
following definitions from SPKI/SDSI and give our constructions
to define and bind names using chameleon hash functions.

All principals are represented by their public keys. A principal is
an individual, process, or active entity whose messages aredistinc-
tively recognizable because of the cryptographic operations (com-
mitment hash and commitments) they perform on them using the
public key that represents them. It is convenient to say thatthe
principal is its public key.

DEFINITION 4. [13] An identifier is a word over some given
standard alphabet.

EXAMPLE 1. “Collaborators”, “Employees”, “TeamDBA”
are examples of valid identifiers.

A local name is a pair consisting of a public key and an arbitrary
identifier. Each public key has its own associated local namespace.

DEFINITION 5. [13] A local nameis a sequence of length two
consisting of a key followed by a single identifier.

EXAMPLE 2. “K A Collaborators”, “KB Collaborators”,
“K A Users”, “KB TeamDBA” are valid local names.

Local names in different name spaces are unrelated to each other,
even if they use the same identifier. There are many reasons touse
local names:

• To provide a convenient user-friendly handle for referringto
another principal.

• To provide a level of abstraction that separates name one uses
to refer to the principal from the keys the principal uses, since
the later may change.

• To allow another party to provide the desired definition, by
having one name defined in terms of a name defined by an-
other party.

• To have a name that refers to a collection (orgroup) of prin-
cipals.

• To have a name that can be used as an binary attribute–by
defining the group of principals that possess that attributes.

DEFINITION 6. [13] An extended nameis a sequence consist-
ing of a key followed bytwo or moreidentifiers.

EXAMPLE 3. “K A CID411Users TeamDBA” is a validex-
tended namewhich is bound to local name “KA CID499Users”
in the following way.

In the following we provide our constructions for defining local
names, extended names, authorizations and binding subjects to
them.

Defining a Local Name:A principal chooses an arbitraryidentifier
and constructs thecommitment-hash-messagein a manner shown in
Figure 1, to generate acommitment hashby applying its chameleon
hash function. For example, principalKA defines a local name
“KA CID411Users” by constructingMA as shown below and pro-
ducing commitment hashXA such thatCHKA(MA,RA) = XA. By
identifier string “CID411Users” we try to convey principalKA’s
intention to club together users taking part in a collaboration iden-
tified by number “411”. To distinguish other potential name defini-
tions by principalKA, we put an additional (small-letter) subscript
to the commitment-hash-message, the corresponding randomseed,
and the commitment hash. And, the same subscript will followfor
respective commitment messages used for name bindings. Thus,



we would like to denote the name definition mentioned above, as:
CHKA(MAa,RAa) = XAa and the corresponding four-tuple notation
by: < KA,MAa,RAa,XAa >.

Binding Subjects to Local Names:To bind a subject to a local
name, owner of the local name constructs acommitment-message
in a manner shown in Figure 2, to generate acommitmentfor a
given commitment hash (i.e., local name). For example, princi-
pal KA binds a subjectKU1 to its local name “KA CID411Users”
by constructingmAa1 as shown below and findingrAa1 such
that CHKA(MAa,RAa) = CHKA(mAa1, rAa1) = XAa, holds. Unlike
SPKI/SDSI, where both name definition and binding are done just
by issuing a name certificate, one must issue a commitment hash
pertaining to a local name definition in order to bind subjects to it.
For the sake of brevity, we use the following notation to showname
binding:

KA CID411Users −→ KU1 (1)

Similarly, to bind principals KU2, KU3 to local name
“KA CID411Users”, principalKA constructs commitment-messages
mAa2 andmAa3 in similar fashion shown above and findsrAa2 and
rAa3, respectively. Therefore,

KA CID411Users −→ KU2 (2)

and,

KA CID411Users −→ KU3 (3)

For the sake of convenience and simplicity, we collectivelydenote
Equations 1, 2, and 3 by the following:

KA CID411Users −→ {KU1,KU2,KU3} (4)

A subject can be a local name. Therefore, following assignment is
valid.

KA CID411Users −→ KU3 TeamDBA (5)

whereKU3’s name definition for “TeamDBA” is given in Figure 3,
and its members are bound by Equation 6 below.

KU3 TeamDBA−→ {KU3,KU4} (6)

Therefore,

KA CID411Users −→ {KU1,KU2,KU3,KU3 TeamDBA} (7)

We have seen that a subject can be a key or a local name. Following
is an example where subject is an extended name which is bound
to local name “KA CID499Users”.

KA CID499Users −→ KA CID411Users TeamDBA (8)

The meaning of extended names is defined in terms of the mean-
ing of related local names. Informally, in above binding, mem-
bers of local name “KA CID499Users” are members of name
“TeamDBA” defined in name space of principals belonging to local
name “KA CID411Users”. Therefore, intuitively;

KA CID499Users −→ {KU3,KU4} (9)

A name is thus either a local name or an extended name.

Name Membership Proofs: Local names and extended names
can be used as rules in ACLs of protected resources. Consider
a scenario in which principalKB puts “KA CID499Users” and
“KA CID411Users” into positive ACLs of resources under its con-

trol. That is, any requester that can prove its membership toone
of the listed names in ACLs is allowed to access the resource.The
same algorithm for name rewriting and certificate chain discovery
[13] can be used for our cryptographic constructions. On input
a set of commitments (name bindings), the algorithm efficiently
finds name membership proofs, if any. Due to space limitations we
exclude elaborating the algorithm for proof construction and show
it only intuitively. PrincipalsKU1,KU2,KU3,KU4 can successfully
access resources under the control of principalKB. Proofs for prin-
cipalsKU1,KU2, andKU3 are straight forward since their respective
commitments(cf. Equations (1), (2), and (3)) prove their member-
ship to name “KA CID411Users”. Whereas, proofs of principals
KU3,KU4 consists of chaining of twocommitments– one from prin-
cipal KU3 and other fromKU1. PrincipalKU3 can access resources
underKB’s control in two different capacities (roles), since it pos-
sesses two proofs satisfying the ACLs.KU4 ’s proof is sketched
below.

Since,KA CID411Users −→ KU3 TeamDBA(cf. Equation (7))
and,KU3 TeamDBA−→ KU4 (cf. Equation (6))

∴ KA CID411Users −→ KU4

ExtendingDefinition 2, we say that;

DEFINITION 7. A commitment hash produced in order to de-
fine a local name is calledname commitment hash. The respective
commitments issued to bind subjects to the name are calledname
commitments.

EXAMPLE 4. All constructions shown above are examples of
name commitment hash and name commitments.

DEFINITION 8. An authorization commitment hashis sim-
ilar to name commitment hash by construction except that
the commitment-hash-message contains an additional construct
“ PERMS” to indicate what all permissions members of the
“ Name” construct (i.e., name) shall inherit. The respective com-
mitments issued to bind subjects to the name are calledauthoriza-
tion commitments

EXAMPLE 5. Figure 4 shows a typical construction of name
commitment-hash-message MBa by principal KB to define name
“K B CID244” with authorizations specified under “PERMS” con-
struct.

Note the composition of “PERMS” construct. PrincipalKB, owner
of the name “KB CID244” has used the set of permissions at its dis-
posal by the underlying access control model; RBAC in this case.
The above authorization commitment hash is intended to regulate
access requests (by placing thisauthorization commitment hashin
ACL of protected resource, say a database, underKB’s administra-
tion) from members ofKB’s “CID244” group, which is binded to
its collaboratorKA by the following binding (authorization com-
mitment).

KB CID244 −→ KA CID411Users (10)

Thus, principals KU1, KU2, KU3, KU4 – all members of
“KA CID411Users” group, can exercise all permissions overKB’s



protected resource that are allowed to the “Manager”ROLE in KB’s
administrative domain; except the “Update” operation.

Name commitments are distinguished from authorization commit-
ments by the presence or absence of the “PERMS” construct. Sim-
ilarly, commitment-hash-messages.

Enriching the commitment-hash-message:As mentioned be-
fore, the commitment-hash-messagepart of the pre-image to a
chameleon hash function is a text string and its compositioncan
be done as per the requirements. Here we provide one more useful
construct that is typically required in collaborations – accommo-
dating collaborator until the life time of a task. In our previous ex-
amples of commitment-hash-message compositions we have seen
the construct “Validity” used to specify literal time intervals. We
show another example of using this construct to hold a temporal
variable “TASK”. Figure 5 shows one such composition validating
the authorizations for group “KB CID244” only for the life time of
TASK “T”. In Appendix A we show how the facility of delegation
can be incorporated by introducing a construct “Also-honor”.

2.4 Overlays as Bridges for Collaborators
In the previous sub-section, we have seen the ability of principals to
define and bind names and authorizations. Here we shall see how
principals can utilize these abilities to form overlays forthe pur-
pose of collaboration. Anoverlayis an interface provided to a peer
collaborator in order to accommodate each others’ resources and
users. An overlay in its simplest form consists of a pair of name and
authorization definitions. Name definitions for aggregating users of
host domain, and authorization definitions for specifying what au-
thorizations on host domain’s shared resources are permissible for
users from visiting domain. Therefore, for a collaboration, the col-
laborators design their respective overlays taking into consideration
each others’ requirements. In other words, a collaborator (say,KB)
can demand a certain group-wise structure (cf. Equation 4) or hi-
erarchy (cf. Equation 5, and 6) over the collaborating usersfrom
visiting domain (i.e.,KA’s administrative domain). Vice versa,KA’s
requirements shall be incorporated in name definitions constituting
KB’s overlay.

For example, consider two administrative domainsA andB willing
to collaborate. Let principalsKA andKB be the administrators con-
trolling users and resources in domainsA andB, respectively. For
the sake of simplicity, let us assume that resources from domain A

and users from domainB are not participating in the collaboration
(In next Section we provide a comprehensive example where both
counterparts are contributing their users and resources).Therefore,
overlay of domainA will have only name definitions and overlay
of domainB will have only authorization definitions. Upon mutual
agreement, following are their overlays.

Overlay from domainA:

< KA,MAa,RAa,XAa > (11)

Overlay from domainB:

< KB,MBb,RBb,XBb > (12)

Enforcing Collaboration: To enforce the collaboration, principal
KB i) empowers the users ofKA by issuing an authorization com-
mitment (for the name definition provided byKA in its overlay),
and ii) signs the commitment hash of name definitions fromKA’s

MA := Name := KA CID411Users
Validity := not-before “2006-09-0100:00:00”

not-after “2007-08-3123:59:59”

Figure 1: Typical usage ofcommitment-hash-message part of
the pre-image to define local names

mAa1 := Subject := KU1

Figure 2: Typical usage ofcommitment-message part of the pre-
image to bind subjects to local names

MU3a := Name := KU3 TeamDBA
Validity := not-before “2006-09-0100:00:00”

not-after “2007-08-3123:59:59”

Figure 3: KU3 ’s name definition for “ TeamDBA”

MBa := Name := KB CID244
PERMS := PRMS(ROLE.Manager) -PRMS.Update
Validity := not-before “2006-09-0100:00:00”

not-after “2007-08-3123:59:59”

Figure 4: Typical usage ofname commitment-hash-message to
define local names with authorizations

MBb := Name := KB CID244
PERMS := PRMS(ROLE.Manager) -PRMS.Update
Validity := TRUE (TASK.T)

Figure 5: Containing validity of authorizations through T ASK

variable



overlay.

KB CID244 −→ KA CID411Users (13)

{XAa}SKB (14)

PrincipalKA need not issue any such authorization commitments
for KB, since its resources are not taking part into collaboration. In
this fashion,KB formed a bridge with the help ofKA to facilitate
users from domainA to access resources in domainB. In next sec-
tion, we will see a comprehensive scenario where both the collabo-
rators are actively participating with possible concurrent collabora-
tions with third parties. We shall also see the privacy implications
in such multi-layer collaborations.

3. A TYPICAL COLLABORATION SCE-
NARIO

In this section we shall see full potential of our mechanism in terms
of the ease it brings in forging concurrent collaborations,interlink-
ing collaborators, and privacy.

We explain these with the help of a scenario, graphically depicted
in Figure 6. Figure 6(a), shows two autonomous administrative do-
mains (collaborators)A andB negotiating for a collaboration. Let
us assume,A is a software firm that provides IT related services.
B is a big industrial organization that is willing to engageA to
cater its IT related needs.A andB are the actual sub-domains of
these respective organizations that are actively collaborating. Let
KA andKB be the public keys of administrators responsible to man-
age these sub-domains. For this probable collaboration to go for-
ward,B needs to open up its resources so that experts from domain
A can perform their jobs forB. And auditors fromB need to ac-
cess an auditing tool licenced toA. In order to accommodate these
mutual requirements,A andB propose their overlays to each other
as shown in Figure 7(a). Note that the specifics of their exactcol-
laboration related tasks are abstracted under variable “T1”. How-
ever, name definitions have explicit time interval specified. In other
words, name definitions and corresponding bindings are valid for
the specified time interval but the authorization definitions and cor-
responding bindings are valid only during the life time of “TASK”.

Figure 6(b) and 7(b) show the steps involved in enforcing thecol-
laboration amongA andB, whereA empowers the users fromB by
issuing an authorization commitment and similarlyB does it forA’s
users.A andB sign the chameleon hash values of each others’ name
definitions as an agreement for collaboration. We denote collabo-
ration by• operator and place a subscript to it that holds context
of the collaboration. Collaboration amongA andB is thus denoted
as: A •T1 B. Concurrently,A starts negotiating another collabora-
tion with C. The motivation is,B comes forward with some IT job
(say, compiling a huge data set of its customers and their spending
habits) whichA should do but has no expertise in data-mining tech-
nology. Therefore,A wants to take help from data-mining experts
fromC. A andC negotiate their respective overlays for this collabo-
ration. For this collaboration,C is participating only with its users,
whereA is offering its resources (which are actuallyB’s resources
– the data set). This is possible because of the “Pre-enforcement”
setting done inA. The pre-enforcement settings and enforcement
steps byA for C are listed in Figure 7(c). But, there is a caveat.
The context forA •T2 C is T2. The data-mining experts fromC can
work on the data set ofB iff T2 ⊆ T1. This provides a mean to ad-
dress the typical requirement of decomposing a task into sub-tasks
and satisfying sub-tasks from different concurrent collaborations.

Privacy – In collaboration enforcement phases, collaborators are
signing chameleon hash’s computed by peers as an agreement for
collaboration. These arechameleon signatures – that provide with
an undeniable commitment of the signer to the contents of a signed
document (as regular signatures do) but, at the same time, donot
allow the recipient of the signature to disclose the contents of the
signed information to any third party without the signer’s consent
[25]. Thus, collaborations formed using our mechanism enjoy pri-
vacy.

The strong arrowed lines in Figure 6(b) and 6(c) indicate the
bridges for users, from autonomous administrative domains, to ac-
cess resources.

4. EXPERIMENTAL ANALYSIS
We have implemented three different flavors of chameleon hash
functions based on i) simple factorization, ii) discrete logarithm
(both from [25]), iii) advanced factorization (from [38]);and the
results are tabulated in Table 1. Implementation of these schemes
can be categorized into two phases: Hash Computation/Generation
and Finding Collision. These schemes produce hash of length160-
bits. The values are taken over the average of 100 runs.

The implementation is carried out on a GNU/Linux (i486) platform
with gcc-3.3.5, OpenSSL 0.9.7e library for cryptographic primi-
tives (without any external cryptographic acceleration) and numer-
ical analysis. To get a fair computational estimation, we did not use
any code optimization of gcc while building our executables.

4.1 Approach to Compute Execution Time
Various approaches are possible to audit the process execution time.
We employed the method of tracking CPU cycles consumed during
execution of a function of our interest. The experiments arecarried
out on an AMD 750MHz machine, that complies to the IA32 archi-
tecture (which provides cycle counter; a 64-bit, unsigned number).
The IA32 counter is accessed with therdtsc (read time stamp
counter) instruction. This instruction takes no arguments. It sets
register%edx to the high-order 32 bits of the counter and register
%eax to the low-order 32 bits. Based on this methodology, a pair
of functions are integrated with our code that allows us to measure
the total number of cycles that elapse between any two time points:

#include "clock.h"
void start_counter(); /* Starts the counter */
double get_counter(); /* Returns: Number of cycles

since last call to
start_counter */

To verify the precision of this approach we marked the counter be-
fore and aftersleep(sleeptime); function call (where sleeptime
equals to one). We obtained 756,154,624.0 as return value (i.e.,
756.2 MHz). We run each function of our interest for 101 times
and discarded the first value of execution time in favor of cache
warming process. Furthermore, results are gathered in run-level 1;
to minimize interference from other processes.

4.2 Comparative Analysis
Chameleon scheme based on simple factorization gives the least
time required for hash computation while the scheme based onad-
vanced factorization gives the least time required for computing
a hash collision. Generally, in a collaboration setup, there will
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CHK(., .) Schemes Simple Factorization Discrete Logarithm Advanced Factorization
Hash Finding Hash Finding Hash Finding

Computation Collision Computation Collision Computation Collision

Time (in ms) 14.375 46.503 140.881 0.887 56.139 0.720

Table 1: Flavors of chameleon hash functions and their computational costs



Overlay from A: Overlay from B:

< KA,MAa,RAa,XAa >, where < KB,MBp,RBp,XBp >, where

MAa := Name := KA CID411Users
Validity := not-before “2006-09-0100:00:00”

not-after “2007-08-3123:59:59”

MBp := Name := KB CID244Users
Validity := not-before “2006-09-0100:00:00”

not-after “2007-08-3123:59:59”

and, and,
< KA,MAb,RAb,XAb >, where < KB,MBq,RBq,XBq >, where

MAb := Name := KA CID411
PERMS := PRMS(ROLE.Auditor)
Validity := TRUE (TASK.T1)

MBq := Name := KB CID244
PERMS := PRMS(ROLE.Manager) -PRMS.Update
Validity := TRUE (TASK.T1)

9(a) Internals of overlays fromA andB

Enforcement by A for B: Enforcement by B for A:

KA CID411 −→ KB CID244Users KB CID244 −→ KA CID411Users
and, and,
{XBp}SKA {XAa}SKB

Overlay from A: Overlay from C:

< KC,MCa,RCa,XCa >, where

MCc := No name definitions,
Users are not participating.

MCa := Name := KC CID110Users
Validity := not-before “2006-09-0100:00:00”

not-after “2007-08-3123:59:59”

< KA,MAc,RAc,XAc >, where

MAc := Name := KA CID499
PERMS := PRMS(ROLE.DBA) - PRMS.Update
Validity := TRUE (TASK.T2)

MCc := No authorization definitions,
Resources are not participating.

9(b) Steps involved in enforcing collaboration betweenA andB, Overlays fromA andC

Pre-enforcement setting by A:

KU3 TeamDBA−→ KA CID499

Enforcement by A for C:

KA CID499 −→ KC CID110Users
and,
{XCa}SKA

tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt tttttttt

9(c) Pre-enforcement setting done byA and steps involved in enforcing collaboration betweenA andC

Figure 7: Inter-domain collaboration scenario



be relatively small number of name and authorization definitions
(hash computations) than the number of corresponding commit-
ments (hash collisions) for these definitions. But the proofveri-
fication process involves hash computations, in order to verify the
authenticity of commitments used in proofs, and takes the overall
number of hash computations performed during the span of collab-
oration above the number of hash collisions performed by collabo-
rators together. An exception to this generalization happens while
the inter-domain interaction among collaborators is little and their
intra-domain user assignments are frequent. Therefore, loosely
speaking, collaborations can be categorized in three types– the
two mentioned above and the third in which only one peer is ac-
tively participating. Again under this third category, there can be
sub-categories similar to the two former types mentioned above.
This categorization of collaborations makes sense while choosing
the chameleon hash scheme. Collaborations in which the collec-
tive hash computations by collaborators are much higher than their
relative commitments, the scheme based on simple factorization is
suitable. On the other hand where the collective number of commit-
ments is very high than the collective number of chameleon hashes,
the scheme based on advanced factorization is suitable. It is inter-
esting to know that the choice of chameleon scheme for collabora-
tion itself is a negotiation aspect among collaborators as it decides
the overall computational cost in their individual domains. This
is very useful if one of the administrative domain is computation-
ally constrained, for example an environment consisting sensors (or
imagine futuristic personal area networks of electronic gadgets),
where computationally powerful collaborator agrees for a scheme
in which its overall computational costs are higher than itspeer
domain.

We hope that the importance, and capability of chameleon schemes
will bring forward more efficient implementations to existence.
Our implementations are available at [5].

4.3 Advantages of our mechanism
1. Our mechanism to define names, authorizations and binding

entities to them allows collaborating partners to arrange their
respective collaboration specific entities in a manageableand
understandable form. This abstraction of collaborating enti-
ties from rest of the underlying access control setup keeps
the modifications in pre-collaboration setup to the least pos-
sible – only new rules for visiting users from collaborating
domain are need to be integrated in host domain’s resource
ACLs. Upon completion of collaboration, the rules in ACLs
shall lapse and pre-collaboration functionality will be auto-
matically restored.

2. The fact that the commitment-hash-message and commitment-
message are text strings, allows us a free hand at their in-
ternal composition as per requirements. One can also utilize
this fact to incorporate the XACML/SAML structure to com-
pose these messages. The resulting definitions/assertionsus-
ing such enriched pre-image messages are very useful in re-
alizing complex policies.

3. Apart from standard signatures, sanitizable signatures[3]
and undeniable signatures with full convertibility are also
readily available, courtesy chameleon hash functions. The
use of chameleon signatures, which is an efficient type of
non-interactive undeniable signatures, as an agreement for
collaboration gives a unique privacy property to collabora-
tions formed using our mechanism.

4. Having the requirement of just an asymmetric key pair, our
mechanism addresses heterogeneity of collaborators in terms
of their underlying access control models, type of PKIs they
use, and also their computational capabilities.

5. Keeping aside the usefulness of our naming mechanism for
collaboration purpose, the mechanism is even useful in stand
alone access control setups. For example, i) to design new
security ordering on top of the existing one, ii) to handle re-
quirements that are contradictory/exceptional in underlying
access control model – to define private roles, over-riding hi-
erarchy in RBAC [31, 44].

5. RELATED WORK
RBAC [35] (Role-based access control) was introduced in 1996
as a solution to the shortcomings of MAC [6] (mandatory access
control) and DAC (discretionary access control) [26] frameworks.
RBAC [18] became a de facto standard in large organizations with
a large number of users and resources to be managed. RBAC pro-
vided a systematic way to organize users and resources. It does
so by mapping users to organizational roles and permissionsover
resources to the set of organizational roles [18]. Subsequently, the
trend of globalization and interdependence of large organizations
necessitated introduction of a family of frameworks [41, 42, 14] on
top of the RBAC framework.

The first of these three models – TMAC [41] (team based access
control) introduced the notion of “team” to refer to a group of col-
laborating users acting in various roles and provided a way to as-
sign permissions to the “team”. TBAC [42] (task based accesscon-
trol) was introduced to synchronize access permissions with on-
going tasks and workflow instances spanning across organizations.
CBAC [14] (coalition based access control) was introduced to cap-
ture the notion of “coalition” of organizations working forcommon
task. There were also similarly motivated works [4, 23] on these
lines, independent of RBAC framework.

The access control decisions in the RBAC family frameworks (i.e.,
TMAC, TBAC, CBAC) are based on set membership queries, as
discussed in Section 1. That is, when these models try to address
collaborations in a distributed environment they need to rely on a
mechanism that communicates internal state of collaborating do-
mains to all collaborators or a mediator if the collaborations are
mediator facilitated. This essentially turns the whole environment
into an on-line environment. These models facilitate collaboration
across domains that have RBAC as their underlying access control
model.

Interoperability of access control frameworks becomes a hindrance
when domains with heterogeneous access control frameworksneed
to collaborate. Bonatti, Sapino and Subrahmanian [10] points out
that even with frameworks of same type the collaborators maynot
use the same security orderings. Furthermore, collaborative en-
vironments also need a mechanism to authenticate and authorize
requests originating from collaborating domain. SAML/XACML
[37, 17] (Security Assertion Markup Language/eXtensible Access
Control Markup Language) is a methodology to perform and con-
vey inter-domain authentication and authorization. The naming
scheme is canonical and the setup is on-line in nature. Also,to
ascertain the properties like authenticity of assertions and their non-
repudiation needs integration of a PKI. In [30] other shortcom-
ings of XACML are discussed. X-RBAC [22] gives a XML-based
specification language for multi-domain environments’ policy-



specification needs. X-GTRBAC [7] is a XML-based administra-
tion model for multi-domain environment that aims at enabling ad-
ministration of RBAC policies in the presence of constraints with
support for conflict resolution.

The reliance on a PKI is compelling in a collaborative environment
formed of independent autonomous administrative domains,since
the inter-domain communications also require non-repudiation.
Acknowledging this real need for realizing multi-domain collab-
orations, several innovative approaches [29, 11, 43, 39, 21, 15,
9, 28] have been proposed. These proposals are based on X.509
type of PKI. X.509 is a centralized PKI and intended for identifi-
cation [16]. Therefore schemes based on X.509 type of PKI use
digital certificates and its extensions to securely authenticate users
in distributed environment and then take authorization decisions.
SPKI/SDSI [13] was proposed to address the shortcomings of tradi-
tional X.509 type of PKI. SPKI/SDSI uses two different certificates
– name and authorization certificates. Authorization certificates are
introduced to communicate authorizations in distributed environ-
ment securely. However, X.509 is the most widely deployed and
used PKI in real world.

SPKI/SDSI is a very flexible and expressive framework for achiev-
ing authentication and authorization in a distributed environment.
An overlay mechanism similar to ours proposed in this paper can
also be achieved using SPKI/SDSI except the feature of privacy to
collaborators. SPKI/SDSI also has atag() field in its authorization
certificates (equivalent to the freedom of composing chameleon-
hash-message and commitment-message under our mechanism)
where developers can introduce constructs as per their require-
ments.

6. CONCLUSION
We have introduced a name and an authorization definition scheme
based on chameleon hash functions. We have shown how to in-
terlink names and utilize this facility to form overlays forcollab-
oration. With a comprehensive scenario we have explained how
collaborators build bridges to accommodate each others’ users and
resources. We have also seen how the context of a collaboration
is captured and its relation to other concurrent collaborations of
collaborators. The use of chameleon signatures as a collaboration
agreement provides privacy to the collaborators. Overlaysprovide
an ease of understanding and manageability to administrators in
charge of setups. Overlays also reorganize heterogeneous collab-
orating setups into new security orderings that are acceptable to
collaborators. We also have made a case through our implementa-
tion results for computational heterogeneity among collaborators,
whereby choosing an appropriate scheme the computational load
can be shifted to a peer collaborator.

The facility of name interlinking and reliance of collaborators on
each others name bindings, like SPKI/SDSI, leads towards a flex-
ible and expressive trust management system with additional ben-
efits of privacy. Usefulness of our mechanism for realizingincom-
plete contractsis worth investigating. Incomplete contracts is a
practical way of signing contracts (most of real world contracts fall
under this category) where all the minor details of obligations are
not enlisted or cannot be explicitly specified. The propertyof hav-
ing a fixed hash value (say, of a contract document) and then finding
collisions for this hash value while keeping the signature over the
fixed hash value intact, is complementary for realizing incomplete
contracts.
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APPENDIX
A. DELEGATION
Consider Figure 6(c), where collaboration between domainA and
domainB, i.e., A •T1 B is denoted byA . A is a new virtual do-
main which can forge new collaborations further. To do so, either
A or B has to control this virtual domain in order to construct an
overlay for further collaborations arising out ofA . Let us assume
A is controlling this new virtual domain and made responsibleto
handle further collaborations ofA . To make this happen,B need
to delegate rights over its shared resources forA •T1 B to A. We
introduce a delegation construct “Also-honor” for this purpose, see
Figure 8. This a way to inform resources ofB to accept proofs that
contains authorization commitments issued byA.

MBr := Name := KB CID244
PERMS := PRMS(ROLE.Manager) -PRMS.Update
Validity := TRUE (TASK.T1)

Also-honor := KA

Figure 8: Delegating authorization

One can also think of an additional construct to specify the status
of further delegation by subjects.

Security violations arising out of this delegation facility are not ad-
dressed within the mechanism. However, the mechanism proposed
in [40] can be used to check the violations in respective collaborat-
ing domains.


	Introduction
	Forming overlays -- Bridges for collaborators
	Importance of names as a mnemonic handle in access control
	Chameleon hash function and its properties
	Defining names and binding entities to names
	Overlays as Bridges for Collaborators

	A Typical Collaboration Scenario
	Experimental Analysis
	Approach to Compute Execution Time
	Comparative Analysis
	Advantages of our mechanism

	Related Work
	Conclusion
	References
	Delegation

