
ELERFED: Final Report

Massimo Poesio, David Day
Ron Artstein, Jason Duncan, Vladimir Eidelman,

Claudio Giuliano, Rob Hall, Janet Hitzeman,
Alan Jern, Mijail Kabadjov, Stanley Yong Wai Keong,
Gideon Mann, Alessandro Moschitti, Simone Ponzetto,

Jason Smith, Josef Steinberger, Michael Strube,
Jian Su, Yannick Versley, Xiaofeng Yang and Michael Wick

July 15, 2008

Contents

1 Introduction and General Overview 4

1.1 Introduction . 4
1.2 State of the art in Entity Disambiguation 6

1.2.1 Intra-document coreference 6
1.2.2 Using lexical and encyclopedic knowledge for large-scale

IDC . 8
1.2.3 Cross Document coreference and Web People 8

1.3 Web People and Cross-Document Coreference 9
1.3.1 Web People . 9
1.3.2 CDC . 9
1.3.3 Relation extraction (Jian Su) 10

1.4 Intra-document coreference . 11
1.4.1 The BART toolkit . 11
1.4.2 Machine learning . 12
1.4.3 Extracting Lexical and Commonsense Knowledge 14

1.5 Evaluation and Annotation . 15
1.5.1 The ACE CDC corpus 16
1.5.2 The ARRAU IDC corpus 16
1.5.3 Scoring metrics for entity disambiguation 17

1.6 Summary of Contributions and Conclusions 17

2 Web People 18

2.1 Introduction . 18
2.2 Problem Setting . 19
2.3 Discriminative Model . 19

2.3.1 Probabilistic Model . 20
2.3.2 Features and Topic Models 21
2.3.3 Clustering . 22
2.3.4 Experimental Results . 24

1

2.4 Generative Models . 24
2.4.1 Baseline Generative Model 25
2.4.2 Extended Generative Models 27
2.4.3 Results . 30

2.5 Future Work . 31

3 Description of the Elkfed/IDC platform and the BART coreference re-

solver 33

3.1 General Introduction . 33
3.1.1 Installation and Getting Started 34
3.1.2 Additional Configuration 36
3.1.3 XML system descriptions 38

3.2 Inside BART: architecture and internal APIs 40
3.2.1 Important Classes . 41

3.3 Feature Extractors . 42
3.3.1 Basic Features . 42
3.3.2 Syntax-based Features 43
3.3.3 Knowledge-based Features 44

4 Extracting Lexical and Commonsense Knowledge from Wikipedia 46

4.1 FE_Wiki_Similarity . 46
4.1.1 WikiRelate! Computing Semantic Relatedness Using Wikipedia 46
4.1.2 Deriving a Large Scale Taxonomy from Wikipedia 50
4.1.3 Bringing it All Together: Computing Semantic Similarity

Using Wikipedia for Coreference Resolution 51
4.2 FE_Wiki_Alias . 52

4.2.1 FE_Wiki_Redirect . 54
4.2.2 FE_Wiki_Lists . 54

4.3 The incompatibility feature . 55

5 Kernels for Coreference 58

5.1 Support Vector Machines and Kernels for Text 58
5.1.1 String Kernels . 59
5.1.2 Tree Kernels . 60

5.2 Kernels for Coreference Resolution 63
5.2.1 Related Work . 64
5.2.2 The Resolution Framework 65
5.2.3 Incorporating Structured Syntactic Information 66
5.2.4 Encoding Context via Word Sequence Kernel 69
5.2.5 Experiments . 70

2

5.3 Kernels for Alias Resolution . 72
5.3.1 Related Work . 73
5.3.2 Method . 74
5.3.3 Data . 77
5.3.4 Experiments . 77
5.3.5 Discussion and Conclusion 79

6 Annotation and Evaluation Metrics 80

6.1 The ACE 2005 CDC Corpus . 80
6.1.1 Callisto/EDNA Annotation Tool 80
6.1.2 Corpus Pre-Processing and Cross-Document Co-Reference

Annotation . 81
6.2 The Arrau Corpus . 82

6.2.1 Composition . 82
6.2.2 Annotation Scheme . 83
6.2.3 Using the corpus . 84

6.3 Co-Reference Resolution Scoring Metrics 85
6.3.1 Existing metrics . 85
6.3.2 A comparison between these metrics 87
6.3.3 Implementation of the scoring metrics 89

7 Acknowledgments 90

3

Chapter 1

Introduction and General

Overview

Massimo Poesio

1.1 Introduction

The goal of the ELERFED 2007 Johns Hopkins Workshop was to explore the con-
tribution of lexical and encyclopedic knowledge to three different versions of the
Entity Disambiguation task.

The term entity disambiguation refers to the task of identifying which men-

tions of entities in documents refer to the same object, and which instead refer
to different ones. The term intra-document coreference, or IDC, will be used
to indicate entity disambiguation limited to mentions occurring in the same docu-
ment only. This task is also called simply ’coreference’ or ’entity tracking’ when
only links between mentions realized with proper names are established (as in
Prime Minister Gordon Brown . . . Mr. Brown) and ’anaphora resolution’ when all
anaphoric mentions are considered (as in Prime Minister Gordon Brown . . . he).1

By contrast, the term cross-document coreference, or CDC will be used to indi-
cate the task of identifying coreference across documents. Both IDC and CDC can
be considered clustering problems (Cardie and Wagstaff 1999), in which the goal
is to cluster mentions forming so-called coreference chains. A simplified form of
CDC is the so-called web entity task, which is based on the assumption that each
document is only about one person, and where documents instead of mentions are

1There is considerable theoretical discussion concerning the proper characterization of this task:
see, e.g., (van Deemter and Kibble 2000; Poesio 2004a).

4

clustered. (Instances of this task are the web people task at SEMEVAL (Artiles et al.
2007) and the Spock Challenge.)

The motivation for this workshop was the growing evidence that large corpora
such as the Web and community-built repositories of knowledge such as Wikipedia
may help us solve the single biggest problem in entity disambiguation, the need
for large amounts of lexical and encyclopedic knowledge to track entities. For in-
stance, lexical knowledge–that proposal and plan are quasi-synonyms–is necessary
to identify the Packwood proposal as the antecedent for the Packwood plan in the
following example.

(1.1)a. The Packwood proposal would reduce the tax depending on how long an
asset was held. It also would create a new IRA that would shield from tax-
ation the appreciation on investments made for a wide variety of purposes,
including retirement, medical expenses, first-home purchases and tuition.

b. A White House spokesman said President Bush is "generally supportive" of
the Packwood plan.

Whereas in the following example, knowing that The FCC is an agency is neces-
sary to choose between that possible antecedent and the other most likely candi-
date, AT&T.

(1.2)a. The FCC took three specific actions regarding [AT&T]. By a 4-0 vote, it
allowed AT&T to continue offering special discount packages to big cus-
tomers, called Tariff 12, rejecting appeals by AT&T competitors that the
discounts were illegal.

b. The agency said that because MCI’s offer had expired AT&T couldn’t con-
tinue to offer its discount plan.

Early work in NLP suggested that hand-coding such knowledge wouldn’t scale up;
the result had been abandoning the hope to achieve high performance on the coref-
erence resolution task. However, more recently, methods for automatically extract-
ing features encoding such knowledge from corpora (Poesio et al. 2004; Markert
and Nissim 2005; Versley 2007) and Wikipedia (Ponzetto and Strube 2006) have
been shown to lead to improved results: for instance, the knowledge that the FCC is
an agency, needed to interpret (1.2) correctly, is all contained in the first paragraph
of the Wikipedia entry for the FCC. Work such as (Bunescu and Pasca 2006) sug-
gests that lexical and encyclopedic knowledge may also lead to improved results at
the cross-document coreference and web people tasks.

In the rest of this introductory chapter we first briefly summarize the state of the
art in Entity Disambiguation, then we summarize the research carried out during
the workshop and its preliminary results, in the order in which the work is then pre-
sented in more detail in the rest of the report. We first report on our work on Web

5

People and Cross-Document Coreference. We then discuss our work on Intra Doc-
ument Coreference, divided in three parts: a discussion of the BART IDC architec-
ture, followed by a discussion of our research on statistical models of coreference;
after which we discuss our work on extracting lexical and encyclopedic knowledge.
In the end, we discuss our work on evaluating entity disambiguation, in particular
our efforts towards creating the annotated corpora used for such evaluation.

1.2 State of the art in Entity Disambiguation

1.2.1 Intra-document coreference

Research in intra-document coreference, or anaphora resolution, has been carried
out since the seventies (Charniak 1972; Hobbs 1978b; Sidner 1979; Carter 1987;
Hobbs et al. 1993; Lappin and Leass 1994b) but large-scale empirical investiga-
tions and the development of systems able to process large amounts of data have
only began fairly recently, particularly after the creation of annotated resources as
part of the Message Understanding and ACE initiatives (Aone and Bennett 1995b;
Kehler 1997; Poesio and Vieira 1998a; Cardie and Wagstaff 1999; Vieira and Poe-
sio 2000; Soon et al. 2001b; Ng and Cardie 2002b; McCallum and Wellner 2004;
Yang et al. 2004b; Ponzetto and Strube 2006; Culotta et al. 2007). These initiatives
also led to the development of novel evaluation methods, the best known among
which is the model theoretical approach proposed by Vilain et al. (1995).

The model proposed by Soon et al. (2001b), a fully automatic system attempt-
ing to resolve all types of nominal anaphora, has become the standard baseline
against which work in this area is evaluated; we made this choice as well. The
Soon et al system is based on a very simple model of the anaphora resolution task
as a binary classification task in which 〈anaphor, antecedent〉 pairs are classified
as standing in a coreference relation or not, on the basis of 12 features encod-
ing string-based, agreement, and distance information; a single feature encodes
semantic class agreement. Soon et al also proposed methods for generating train-
ing instances and for choosing a candidate which have also since become fairly
standard. The system was evaluated on the MUC-6 and MUC-7 corpora, achieving
for MUC-6 a recall of 58.6%, a precision of 67.3%, and an F-measure of 62.6%,
whereas for MUC-7, it achieved a recall of 56.1%, a precision of 65.5%, and an F
measure of 60.4%.

Even more recently, the first usable tools for intra-doc coreference started to
appear, such as GUITAR (Poesio and Kabadjov 2004). Even though the perfor-
mance of such systems is limited, as one would expect given the figures reported
above, nevertheless it has already been shown that even such limited performance
may result to significant improvements in performance in tasks such as summa-

6

rization (Steinberger et al. 2007) and relation extraction. As relation extraction is
important for both cross-document coreference and web people, this suggests that
intra-document coreference may contribute indirectly to these tasks, as well.

An analysis of the errors produced by the Soon et al. method indicates three
main sources of problems.

1. Mention identification. Except when working with a very limited number
of types of easily identifiable mentions, these systems tend to miss a great
many mentions.

2. Overly simplified model of the coreference task, particularly of the process
by which antecedents are chosen.

3. Excessive reliance on head string matching.

4. Lack of lexical and commonsense knowledge.

The example in (1.3) illustrates the problems with such systems. Our reimplemen-
tation of the Soon et al algorithm does not identify any of the coreference links
relating mentions of Petrie Stores; on the other end, because head string matching
overrides every other factor, and because information about postmodification is not
used, the first six months of fiscal 1994 is identified as the antecedent of the first six

months of fiscal 1993.

(1.3)a. [Petrie Stores Corporation, Secaucus, NJ,] said an uncertain economy and
faltering sales probably will result in a second quarter loss and perhaps a
deficit for the first six months of fiscal 1994.

b. [The womenâĂŹs appareil specialty retailer] said sales at stores open more
than one year, a key barometer of a retain concern strength, declined 2.5%
in May, June and the first week of July.

c. [The company] operates 1714 stores.

d. In the first six months of fiscal 1993, [the company] had net income of $1.5
million âĂę.

Work in the last five years has aimed at improving the Soon et al model. Improved
models of mention identification viewing the task as a case of joint inference have
been proposed, e.g., by Daume and Marcu (2005). More sophisticated models of
the coreference task have been proposed by Ng and Cardie (2002b); McCallum
and Wellner (2004); Yang et al. (2004b); Daume and Marcu (2005); Culotta et al.
(2007). Using kernels, Yang et al. (2006a) were able to incorporate a more sophis-
ticated treatment of syntactic features handling some types of binding constraints.
Finally, there have been some promising attempts at using using lexical and ency-
clopedic knowledge. We discuss this work next.

7

1.2.2 Using lexical and encyclopedic knowledge for large-scale IDC

There are two main strands of research on using lexical and commonsense knowl-
edge to help coreference on unrestricted text: one devoted to the use of informa-
tion about the semantic structure of verbs and primarily concerned with improving
precision in pronoun resolution; and a second one concerned with the use of hy-
ponymy information to improve recall in the resolution of nominals. In the work-
shop we focused on the second strand of work.

information to (Harabagiu and Moldovan 1998; Poesio et al. 1997) generally
involved using WordNet (Fellbaum 1998). The problem with WordNet, especially
in those days, was poor recall, both for synonymy and for hyponymy: e.g., Poe-
sio et al. (1997) found a recall of about 30% for hyponymy. Poesio et al. (1998)
attempted to replace synonymy in WordNet with semantic similarity computed in
an unsupervised fashion from corpora, whereas Poesio et al. (2002) used patterns
(to extract information about meronymy), but the corpus used (the British National
Corpus) did not provide enough recall. The next key development was using pat-
terns over the Web (Markert and Nissim 2005; Poesio et al. 2004): this gave reason-
able recall, particularly in combination with WordNet. Finally, Ponzetto and Strube
(2006) showed that Wikipedia, again in combination with WordNet, also contained
enough information in its category structure to lead to significant improvements in
performance. Versley (2007) systematically investigated the relative strengths and
weaknesses of all sources of knowledge considered above and their combinations
(for German).

It is worth pointing out that all of these efforts were focused on increasing
recall for nominals; we are not aware of any effort to use information so extracted
to increase precision by exploiting information about modifiers.

1.2.3 Cross Document coreference and Web People

Work on cross-document coreference began more recently than work on IDC (Bagga
and Baldwin 1998a), but there has been much development in recent years (Mann
and Yarowsky 2003; Blume 2005; Bunescu and Pasca 2006; Chen and Martin
2007) because of great interest both from government and from industry (as shown,
e.g., the creation of Spock2 and the Spock challenge). In particular there has been
great interest in a simpler form of entity disambiguation, generally known as Web
entity as in the case of the Web people task of Semeval (Artiles et al. 2007).

As testified by the SEMEVAL Web People task (Artiles et al. 2007), most state
of the art systems are based on unsupervised clustering of entity descriptions con-
taining a mixture of collocational and other information, among which information

2www.spock.com

8

about entities and relations. SEMEVAL also showed that the clustering technique
and especially the termination criterion are crucial.

Just as in the case of IDC, prior to this year this area suffered from a lack of
data; no sizeable dataset existed until the creation of the SEMEVAL and then of
the Spock datasets, neither of which however is entirely satisfactory.

1.3 Web People and Cross-Document Coreference

1.3.1 Web People

Both Web People and CDC are naturally viewed as a clustering problem. Our
research in this area focused therefore on several types of clustering algorithms,
preferrably ones that would work with all types of entity disambiguation.

The first method we studied is a discriminative model, similar to that used by
Culotta et al. (2007) for intra-doc coreference–a first order model using features
over sets of mentions. In the version used for Web People, a maximum entropy
approach is used to estimate the probability p(yi|x

i), where yi = true if and
only if all documents in xi refer to the same underlying entity. The Metropolis-
Hastings method was used to modify the solutions proposed by a standard greedy
agglomerative clustering algorithm. A third novelty was the use, in addition to
the usual features (bags of words, n-grams, named entities), of an unsupervised
model of lexical knowledge, Latent Dirichlet Allocation (Blei et al. 2003), that
can find several topics for each document. In our experiments with a subset of
the Spock dataset, Metropolis-Hastings was found to outperform simple greedy
agglomerative, and using topics as features led to further improvements.

The great effectiveness of topic models with the discriminative model sug-
gested testing a generative model where the implicit variables modelled topics,
and using Gibbs sampling to perform inference. We also tested an extension of the
basic model in which certain words have more importance than others.

Our work on the Web People task is discussed in some detail in Chapter 2.

1.3.2 CDC

Although the CDC task is more complex than Web People, the ACE 2005 CDC

corpus proved highly unambiguous, resulting in a very high baseline: assuming
that all mentions with the same name corefer results in a B-Cubed value of .80.
Using the discriminative model developed for the Web People task, and all the
features, thus achieved an extremely high B-Cubed value of .96.

9

1.3.3 Relation extraction (Jian Su)

Relation extraction modules to be used for both IDC and CDC have been developed
by the I2R team (Su Jian, Stanley Yong), Claudio Giuliano from FBK-IRST and
Gideon Mann from Uni Amherst. Although we did not have enough time to run
tests using this information for Web People, CDC and IDC, we plan to do so in the
near future.

I2R

I2R trained both a supervised learning relation extractor (Dong et al. 2005) and
a hybrid relation extraction engine combining semi-supervised web based infor-
mation (Yong and Su 2008) on ACE 2005. No feature engineering was done to
adapt the systems for the dataset. The performance of the supervised extractor
with devtest data (much larger than test data) on recall, precision and F-score are
summarized in Table 1.1 under the columns marked as Coref.

On ACE 2004, the hybrid model improves performance up to 31% over the
purely supervised one, but it does not improve performance much on the ACE 2005
data, because of the relatively large amount of training data. Such a large dataset
might not be available in real applications however.

We evaluated the performance of the I2R relation extractor with and without
coreference information. The supervised extractor uses features that require the
semantic category and normalized headword information for entity mentions. The
semantic category for pronouns and the normalized headword information for dif-
ferent mentions is derived from Named entities in the coreference chains. In other
words, when we break all the coreference chains, we have no semantic tag informa-
tion for pronouns and headwords are not normalized. With reference to the results
shown in Table 1.1, removal of coreference information has a dramatic negative
impact on F-score, up to 49%.

Relation extraction result has further been incorporated for CDC task on ACE

corpus. The initial attempts have not shown much performance difference on CDC
with or without relation information, mainly due to the easy nature of CDC ACE

2005, that is quite high performance is already acheived with simple features. An-
other reason is the data sparseness problem. There’s not much repeat with the same
types of relations from different news articles with ACE 2005, thus the information
is too sparse to be useful for entity disambiguation. So different text collection
might be easier to show the performance benifit from relation extraction on CDC,
eg. a clean personal web page.

10

Recall Precision F
Coref No Coref No Coref No

ART 0.517 0.25 0.744 0.7 0.61 0.37
GEN-AFF 0.586 0.576 0.783 0.854 0.67 0.69
ORG-AFF 0.753 0.675 0.791 0.866 0.77 0.76

PART-WHOLE 0.716 0.686 0.608 0.686 0.68 0.69
PER-SOC 0.758 0.192 0.833 0.76 0.79 0.31

PHYS 0.371 0.283 0.655 0.743 0.47 0.41

Table 1.1: Performance of I2R’s supervised learning relation extraction engine on
testing data with (Coref) and without (No) coreference chain information.

1.4 Intra-document coreference

Our work on intra-document coreference can be divided in three parts. First of all,
we developed a platform for experimenting with intra-document coreference algo-
rithms, the BART toolkit, whiche greatly facilitates testing different preprocessing
models, different models of the coreference resolution process, and different types
of features. Secondly, using this platform, we tested a variety of classifiers and
models, above all examining the performance of Support Vector Machines with
different types of kernels. Third, we developed and tested several methods for ex-
tracting lexical and encyclopedic knowledge from Wikipedia, the Web, and Word-
net, and different methods for deploying this knowledge. We briefly summarize
our results in each of these areas here, referring to the specific chapters.

1.4.1 The BART toolkit

The Baltimore Anaphora Resolution Toolkit, or BART, is a highly modular and
easily customizable platform for developing and testing fully automatic anaphora
resolution models based on machine learning. Implemented in Java, it builds on
the EMLR system developed by Ponzetto and Strube (2006) and incorporates ideas
from the GUITAR system (Poesio and Kabadjov 2004) and from the work by Vers-
ley (2007) and Yang et al (Yang et al. To appear, 2006a).

BART makes it possible–in fact, relatively easy–to compare the results obtained
using

• different preprocessing modules: during the workshop we tested both the
YamCha chunker and Charniak and Johnson’s reranking parser, and two
Named Entity Recognition (NER) modules (the Stanford NER system and
MITRE’s Carafembic mention tagger;

11

• different models of IDC as a learning task: in addition to the standard model
for generating training instances and for choosing an antecedent proposed by
(Soon et al. 2001b) we tested a variety of alternative models, including ones
using separate models for each type of NP;

• different classifiers, including C4.5 and SVMs;

• different sets of features: in addition to the set of features proposed by Soon
et al, which we used as a baseline, we developed classes to extract features
encoding lexical and encyclopedic knowledge, but also a variety of addi-
tional features, such as the tree features proposed by Yang et al. (2006a).

The system configuration to be used for a particular experiment can be modified in
a declarative way

A crucial property of BART, inherited from the EMLR system, is that its input
and output are encoded in the XML standoff format used by the MMAX2 annotation
tool (Müller and Strube 2003). This makes it very easy to compare the output of
the system with the key (gold standard), facilitating error analysis.

Our experience with the toolkit was extremely positive; it will be made avail-
able in open source format via Sourceforge.

The architecture of BART and how to use it are discussed in some detail in
Chapter 3.

1.4.2 Machine learning

One of the most important lessons of the workshop was that the additional in-
formation provided by the lexical and encyclopedic knowledge could not be fully
exploited without addressing the limitations of the statistical model of IDC adopted
by Soon et al.. Our efforts during the workshop focused on two areas: moving
towards a classification scheme that would allow us to employ more complex fea-
tures, such as SVMs; and testing alternative models of the anaphoric classification
problem.

Kernel Methods for Coreference

The flexibility of kernel functions makes it possible to compute highly complex
forms of similarity. During the workshop we took advantage of this opportunity to
experiment new ways of modelling forms of similarity which have been claimed to
play a role in intra-doc coreference, including:

• binding constraints. By representing the syntactic context in which the
anaphor and potential antecedent occur, Yang et al. (2006a) were able to

12

capture some of the restrictions on anaphoric reference known as ’binding
constraints’–the fact that him cannot refer to John in John likes him.

• syntactic parallelism. Two mentions with the same syntactic position are
more likely to corefer.

• string similarities for names. A variety of methods for computing similari-
ties between names have been tried in IDC, such as minimum edit distance.
Two possible ways of replacing this type of distance: string kernels and tree
kernels between the ’parse trees’ of the proper names.

Our research on using kernel methods for coreference is discussed in greater detail
in Chapter 5

Models of the anaphora resolution process

In addition to the decoding scheme set forward by Soon et al., several others were
implemented:

• The split decoder uses the basic Soon et al. scheme, but allows to use sep-
arate classifiers for pronouns and non-pronouns. This can help for SVMs,
where training time grows superlinearly and testing time can grow linearly
with the training set size, or to use classifiers with different properties for
pronouns and non-pronouns.

• The ranking decoder uses a Maximum Entropy ranker to select candidates
and has an adjustable resolution/non-resolution bias like the system described
by (Luo et al. 2004). The use of a ranker-based model instead of a binary
classifier has been found beneficial by (Versley 2006; Denis and Baldridge
2007). The ranking decoder is currently still a work in progress, as feature
conjunctions (which exist for the MaxEnt classifier) have not been added to
the ranker yet.

• The stacked decoder makes more linguistically motivated commitments, such
as always treating indefinites as discourse-new, and combines a ranker to pre-
sort candidates with a binary classifier that selects the best candidate(s) from
the shortlist. The loss in recall that occurs through this pre-filtering is not
made up by the precision gain, however, and results have been unsatisfac-
tory so far.

13

1.4.3 Extracting Lexical and Commonsense Knowledge

Research on using lexical and encyclopedic knowledge for coreference has shown
that any of the existing sources of commonsense knowledge or methods for extract-
ing such knowledge by itself is incomplete and imprecise, but that better results can
be obtained by combining knowledge extracted from several sources using this in-
formation as features for a supervised classifier, and letting the classifier choose
which knowledge to use in the distinct cases. Thus, for instance, Poesio et al.
(2004) used both knowledge from WordNet and knowledge automatically extracted
from the Web using patterns; Ponzetto and Strube (2006) combined knowledge
extracted from WordNet, Wikipedia, and using semantic role labelling; whereas
Versley (2007) experimented combining GermaNet, information extracted using
patterns using techniques similar to those proposed by Markert and Nissim (2005),
and similarity measures.

We followed such approach as well, using features encoding knowledge ex-
tracted from WordNet, Wikipedia, and the Web. For WordNet we used the set of
features developed by Ponzetto and Strube (2006), which will not be discussed
here. Our work with web patterns was mostly concerned with adapting for En-
glish the techniques developed by Versley in earlier work, so will simply give a
brief summary in this section. Most of our work was invested in extracting features
from Wikipedia; this work will be discussed in some detail in chapter 4. All lex-
ical and encyclopedic features are listed in the discussion of the BART system in
Chapter 3.

Most work on using commonsense knowledge for coreference concentrates on
improving recall for heads by identifying nouns that stand in relations of

• instance (e.g., FCC / the agency)

• hyponymy (e.g., the retailer / the company)

• synonymy (e.g., the shop / the store)

No work we are aware of attempts however to identify incompatibility between
mentions: thus for instance we know that FCC and AT&T are certainly disjoint.
We also experimented with using Wikipedia for this purpose.

Extraction from the Web

We used Web patterns to find instance relations such as those between FCC and
the agency. Of the relations used in (Versley 2007), only the “Xs such as Y” and
“Y and other Xs” are used, both for speed reasons and since the English WWW is
usually large enough that just two patterns give enough coverage.

14

For every candidate / anaphor pair, where the anaphor is a definite noun phrase
and the candidate is a proper name in the last 4 sentences, the extractor produces
several pattern instances and calls Microsoft’s Windows Live Search Web service
to get a term count. By combining several patterns and using a Mutual Information
threshold, it is possible to increase the precision of the extracted relations.

Features extracted from Wikipedia

In previous work, Ponzetto and Strube (2006) used the techniques discussed in
Strube and Ponzetto (2006) to extract semantic similarity information from the
Wikipedia category structure. We discovered that in the meantime information
about categories in Wikipedia had grown so much and become so unwieldy as to
limit its usefulness. Instead, we experimented with two novel techniques.

One set of methods extracted similarity features not directly from the cate-
gory structure, but from a taxonomy constructed out of it and drastically filtered
to remove, e.g., intermediate levels, using the methods discussed in (Ponzetto and
Strube 2007).

A second set of methods extracted aliasing information from other sources of
information, particularly hyperlinks and redirects.

Results suggest that both of these techniques perform about equally well (see
Chapter 4).

Incompatibility models

The taxonomy extracted from Wikipedia by Ponzetto and Strube (2007) can also
be used to compute information about incompatibility. In this taxonomy, distinct
daughters of the same node –e.g., India and United States, both daughters
of the category Countries–are typically incompatible. We use this structural
information to extract incompatibility between mentions. In addition, we allow
this information to percolate so that two mentions with incompatible modifiers–
e.g., software from India and software from the United States–can also be found to
be incompatible. Modifier incompatibility information is extracted from Wikipedia
for mentions, and from WordNet for adjectives.

1.5 Evaluation and Annotation

The lack of adequate resources and of universally accepted evaluation metrics has
always been one of the main problems for research in entity disambiguation. The
availability of corpora for IDC has greatly improved in the last year, thanks in

15

particular to the release of the OntoNotes corpus (Hovy et al. 2006), and substan-
tial amounts of data for the Web People task have become available through the
SEMEVAL competition and Spock challenge3. None of these resources however
completely solves the problem, and no large annotated corpus was available for
CDC. Therefore, we devoted a considerable amount of effort in this area. Specifi-
cally, we annotated the ACE 2005 corpus for cross-document coreference, and ex-
tended the ARRAU corpus with substantial amounts of text from the Penn Treebank
in order to be able to test the systems developed in the workshop. Both resources
will be made available through LDC.

As far as evaluation is concerned, there is no widespread agreement concern-
ing the best evaluation measure either for IDC or for Web People. In addition to
the original MUC score (Vilain et al. 1995) a number of metrics for entity disam-
biguation have become available, such as B-CUBED (Bagga and Baldwin 1998b)
or the ACE scoring metric (Doddington 2001) but the community needs to agree on
which measure is best.

We briefly summarize the work on annotation and scoring metrics here; a more
detailed discussion is in Chapter 6.

1.5.1 The ACE CDC corpus

The ACE 2005 CDC corpus is an annotation of the ACE 2005 EDT corpus. The
corpus is about 257K words and includes 55K mentions, which represent 18K
distinct entities. The corpus was annotated using EDNA, an extension of the Callisto
corpus annotation tool4 implemented for the workshop.

1.5.2 The ARRAU IDC corpus

ARRAU5 is a UK-funded project to explore hard cases in anaphoric interpretation,
in particular, reference to abstract objects and ambiguous cases of reference. One
of the objectives of the project is to create a medium-scale corpus annotated with a
variety of intra-document anaphoric relations, including ’ambiguous’ cases. Men-
tions are also annotated with a variety of additional information, and in particular,
information about syntactic agreement. Most of the annotation prior to the work-
shop was of spoken dialogue data; for the workshop we added the annotation of
around 40 Penn Treebank documents.

3http://challenge.spock.com/
4http://callisto.mitre.org
5http://cswww.essex.ac.uk/Research/nle/arrau/

16

1.5.3 Scoring metrics for entity disambiguation

We carried out a theoretical analysis and comparison of several of the metrics pro-
posed in the literature, and implemented a Java program that can compute them
and is linked to BART.

1.6 Summary of Contributions and Conclusions

In summary, the main contributions of the workshop were as follows.
Concerning the Web People task, we demonstrated that non-greedy algorithms

such as Metropolis-Hastings do outperform conventional greedy algorithms. We
also found that lexical knowledge, in the format of topic models, results in further
increases in performance.

Concerning IDC, we replicated results that tree kernels contribute to improve-
ments in performance, and that automatically extracted lexical and encyclope-
dic knowledge result in such improvements as well. Furthermore, we found that
the two results are cumulative, as these improvements affect different types of
anaphoric expressions.

A more general goal of the workshop was to facilitate subsequent research in
entity disambiguation by developing improved resources–both corpora and soft-
ware. Quite a lot of effort was invested in this. We created the largest existing
corpus annotated for cross-document coreference, and completed the annotation of
the ARRAU IDC corpus, which includes texts of different genres, in which all types
of nominal reference are annotated (including discourse deixis), and agreement
information is annotated as well. On the software side we developed the EDNA

annotation tool for CDC and the BART platform for experimenting with IDC.

17

Chapter 2

Web People

Rob Hall, Michael Wick, Jason Duncan and Paul McNamee

2.1 Introduction

A very common activity among Internet users is to issue a search where the query
is a persons name. However, since names of people are often very ambiguous, it is
usually the case that the returned search results will refer to many people (hence-
forth “web people”) sharing a common name. This is presumably a frustrating
experience for internet users, since it places the burden on them to manually dis-
ambiguate the various pages. In this section, we seek to mitigate this frustration
by learning functions which automatically perform disambiguation of web docu-
ments.

We describe a discriminative model which performs clustering, making use of
first-order quantified features over clusters of documents, and learning parameters
via a maximum entropy formulation. Inference in this model is performed ap-
proximately using a greedy algorithm, which is extended to a Metropolis-Hastings
sampling scheme. Noting that labeled training data is hard to come by, we then
develop an entirely unsupervised system which is generative and uses Gibbs sam-
pling for inference.

Disambiguating web people is related to anaphora resolution insofar as it is
inherently a clustering problem, however it is in many cases much harder. For ex-
ample, the syntactic parse of a sentence often gives enough information to succeed
at anaphora resolution, whereas a web document sometimes contains no obviously
relevant information beyond a passing mention of the person’s name. In the Se-
mEval 2007 web people task Artiles et al. (2007) it was demonstrated that named
entities that appear in a locality around mentions to the web person can be very

18

useful features for performing coreference Heyl and Neumann (2007); Popescu
and Magnini (2007); del Valle-Agudo et al. (2007). In this work we extend this
basic observation by employing more advanced clustering algorithms and more
expressive feature space representations. We then explore the use of probabilistic
topic models Blei et al. (2003) to gage the topical similarity between pages, in an
attempt to gain further cues to coreference.

2.2 Problem Setting

We assume there are several sets of documents divided according to the ambigu-
ous name which they contain. For example, all documents which refer to “John
Smith” are in one set. In this work we make the assumption that each document
refers to exactly one person. This is slightly different to the SemEval 2007 task
Artiles et al. (2007) in which a document could refer to several people with the
same name, however this restriction is reasonable considering that only very few
documents (approximately 1% in the SemEval corpus) have this property (e.g.,
wikipedia disambiguation pages) which are not particularly interesting cases.

The problem of web-people coreference is to partition each set of documents
into coreferent blocks. Therefore we seek to learn a predictor function:

f(x) = arg max
y

P (x, y) = arg max
y

P (y|x) (2.1)

Where x is the set of documents, y is the coreference structure (i.e., a set of
labels corresponding to x). We will describe a variety of formulations for P (y|x)
and P (x, y), and corresponding ways to compute the maximization. In section 3
we will detail a discriminatively trained model, which requires hand-labeled data
to perform parameter optimization. We drop the requirement of a labeled train-
ing corpus in section 4, when we detail an unsupervised generative model which
performs the same task.

2.3 Discriminative Model

In this section we describe a recent model which combines first-order logic and
probability, and that has been successfully applied to the intra-document coref-
erence task. We adapt this model to disambiguating web people by aggregating
features common to many of the successful SemEval Artiles et al. (2007) systems
under the formalism of first order logic. We explore the use of unsupervised topic
models to obtain additional evidence that is not explicitly contained in the web

19

documents themselves. Finally, we explore the deployment of statistically moti-
vated clustering techniques to optimize these models. We demonstrate that topic
models as well as more sophisticated clustering techniques yield improved results,
indicating that both feature engineering and machine learning are two avenues to
explore for performance gains in the web people tasks.

2.3.1 Probabilistic Model

The discriminative model is similar to the one used by Culotta et al. (2007) to tackle
the newswire coreference task. In the newswire domain, this model factorizes
into sets of mentions rather than just pairs of mentions, enabling more expressive
features over larger sub-problems. As demonstrated below, it is straightforward to
adapt this model to the case of web people.

Given a set of documents xi, define a binary random variable yi, such that
yi = true if and only if all documents in xi refer to the same underlying en-
tity. We use a maximum entropy model for this binary classification decision:
p(yi|x

i) = 1
Zx

exp(
∑

k λkf(xi, yi)) where λk are real-valued parameters, f(xi, yi)

are features over the set of documents xi, and Zx normalizes the distribution over
the two labels. The values of Λ = λ1 · · ·λn can be learned from the labeled train-
ing data by performing gradient ascent.

y

Doc CDoc B

Doc A

12
y

23
y

13
y

123

Figure 2.1: Factor graph representation of the coreference model with black boxes
representing coreference (fc) factors and gray boxes representing transitivity (ft)
factors

We can now define a probabilistic model over entire clusterings that factorizes

20

into cluster-wise decisions as shown in Figure 2.1:

p(y|x) =
1

Zx

∏

yi∈y

fc(yi, x
i)

∏

yi∈y

ft(yi, x
j)

While the fc factors represent the compatibility among clusters of documents, ft

factors ensure transitivity for all subsets of each cluster (fc = 1 if transitivity is
satisfied, −∞ otherwise). Since there are a combinitorial number of ft factors,
this model cannot be fully instantiated. Additionally, the normalization constant
Z requires summing over all possible cluster configurations, making approximate
clustering techniques essential. The full model can be expressed as:

2.3.2 Features and Topic Models

Here we will discuss the feature functions used in our probabilistic model. We in-
corporate features used by many of the teams who competed in the 2007 SemEval
tasks as well as those used by Mann and Yarowsky (2003). Such features include:
(1) cosine distance between bags of words
(2) term selection using TFIDF weights
(3) words in context windows around names in the document body
(4) cosine distance between chunks
(5) NER overlap
(6) n-gram matches in the web document title

A flaw in these features is that they require words between two documents to
match exactly. For example, compare the following two excerpts about a fictional
jazz musician, John Smith, from two different documents:

...his rhythmic punctuation...

...John’s melodic improvisation...

Although there is no overlap between these excerpts, it is clear that both refer to
John Smith, the jazz musician. Unfortunately, none of the aforementioned features
are capable of providing evidence to allow the model draw this conclusion, since
there is no word overlap. For this reason, we incorporate topic features that indicate
whether two documents discuss common topics. More precisely, we use Latent
Dirichlet Allocation (LDA) Blei et al. (2003), an entirely unsupervised topic model
that infers mixtures of topics for each document. For each name set, we allow
LDA to find 200 topics, and infer the corresponding mixtures of topics for each
document. We then construct features that compare whether two documents have
any of their highest weighted topics in common. The results are presented in Table

21

Feature InfoGain
TOPICS-top1-topic-not-same 0.24

ClusterSizeMoreThan8 & TOPICS-top1-topic-not-same 0.24
ClusterSizeMoreThan16 & TOPICS-top1-topic-not-same 0.23

ClusterSizeMoreThan16 & TFIDF-top10-no-matches 0.23
ClusterSizeMoreThan8 & TOPICS-top2-topics-not-same 0.22

Table 2.1: Four of the top five feature conjunctions contain topical evidence.

2.2, where we were able to show a 2% absolute increase in f1 by using topics
as features. As seen in 2.1, the topic model features have some of the highest
information gain.

Until this point, all the features described in this section involve the compari-
son of two web documents. However, we extend these pairwise comparisons into
features over larger sets of documents by quanitifying and aggregating them with
first order logic. For example, given a set of documents, and the feature function
that checks if there is a 2-grams token match in the title (2-gram-title-match), the
extension to first-order-logic features (over a larger set) include:

-There exists a pair of documents with 2-gram-title-match
-There does not exists a pair of documents with 2-gram-title-match
-For all documents: 2-gram-title-match
-30% of documents have: 2-gram-title-match

2.3.3 Clustering

A commonly used clustering algorithm is a hill climbing approach known as greedy
agglomerative. The algorithm begins by placing each document into a singleton
cluster. All pairs of clusters are compared and the two clusters with the high-
est compatibility score are merged. The compatibility scores between this newly
formed cluster and the remaining clusters must be computed. The algorithm con-
tinues to greedily merge clusters until all the compatibility scores are below some
threshold τ . With the maximum entropy classifier, τ = 0.5 naturally falls at the
decision boundary.

A major short-comming of this approach is that it can only modify the clus-
tering by combining two complete clusters. If new evidence is discovered halfway
through the clustering process that reveals an error, greedy agglomerative has no
way of recovering. Additionally, the optimization surface is extremely bumpy, and
greedy algorithms in general are likely to find maxima that are not global. This
motivates the need for a less greedy clustering algorithm that has the ability to

22

’change it’s mind’.
Metropolis-Hastings Metropolis et al. (1953); Hastings (1970) provides a frame-

work for which arbitrary modifications can be made to the clustering. The algo-
rithm works in rounds, making jumps in configuration space by drawing moves
from a proposal distribution Q. The result is a sequence of clusterings C1 · · ·Cn

corresponding to the n rounds of sampling. Let Ct = y represent the configuration
at time t, Metropolis-Hastings draws a new configuration y′ conditioned on y from
Q. The acceptance probability is then computed as P (accept = true|y′, y) =

Min
(

P (y′)Q(y|y′)
P (y)Q(y′|y) , 1

)

, and an acceptance decision is drawn from this distribution.

Then Ct+1 = y′ if accepted, y otherwise. Conveniently, the normalization con-
stants cancel in this ratio, as well as the variables in the configuration space that
remained unchanged between y and y′.

To avoid a slow burn-in time, we initialize Metropolis-Hastings with the result
of greedy agglomerative clustering. Additionally, by keeping track of each agglom-
erative merge (and corresponding compatibility score) we can induce a probability
distribution over partial clusters (or blocks), which is used as part of the proposal
distribution in the Metropolis-Hastings phase. The proposal distribution Q is used
to create a new clustering by (1) drawing a block from this block distribution, (2)
removing the block from its original cluster, and (3) placing the block into another
cluster. The move has four possible outcomes: either a new cluster is formed, part
of one cluster is moved to another, a cluster is destroyed, or no change is made.
Because at most, two clusters are modified in this operation, the acceptance ratio
becomes a linear time computation. Let y′s, y′t be the source and target cluster
in the proposed clustering and similarly ys and yt be the same clusters before the
modification.

P (y′)Q(y|y′)

P (y)P (y′|y)
=

1
Zx

n
∑

i=0

exp
(

f(y′i
)T

Φ)
n

∑

j=i+1

exp
(

f(y′i, y′j
)T

Λ)Q(y|y′)

1
Zx

n
∑

i=0

exp
(

f(yi
)T

Φ)
n

∑

j=i+1

exp
(

f(yi, y′j
)T

Λ)Q(y′|y)

=

exp (f(y′s)T Φ) + exp
(

f(y′t
)T

Φ) +
n

∑

i=0

exp
(

f(y′sy′i
)T

Λ) + exp
(

f(y′ty′i
)T

Λ) + Q(y|y′)

exp (f(ys)T Φ) + exp (f(yt)T Φ) +
n

∑

i=0

exp
(

f(ysyi
)T

Λ) + exp
(

f(ytyi
)T

Λ) + Q(y′|y)

The partition function and the embedded sums cancel leaving only sums that
require linear (Θ(n)) time in the number of clusters.

23

Precision Recall F1
BCubed .32 .24 .28
+topics .23 .44 .30

PW .12 .19 .15
+topics .13 .44 .20
MUC .70 .65 .67

+topics .84 .86 .85

Table 2.2: incorporating topics as features improves f1 in all three evaluation met-
rics

Precision Recall F1
BCubed .32 .31 .32

MH .32 .44 .37
PW .27 .24 .26
MH .28 .37 .32

MUC .84 .85 .84
MH .86 .88 .87

Table 2.3: Metropolis-Hastings (MH) outperforms greedy agglomerative

2.3.4 Experimental Results

Training examples are created from the labeled dataset by randomly sampling doc-
uments with replacement. A set is labeled as a positive example if all documents
in that set refer to the same underlying entity, and a negative example otherwise.
We divided the 44 ambiguous name sets in the Spock corpus randomly into equal
sized training and testing sets. For each of the 44 name sets, we sampled 150 ran-
dom web documents. Coreference performance scores using MUC,B-Cubed, and
Pairwise evaluation metrics are reported in table 2.3.

As we expected, the Metropolis-Hastings clusterer is able to improve substan-
tially over its greedy counter-part. The clusterer is not only able to overcome local
optima by making down-hill jumps, but it has potential to overcome these optima
quickly by moving entire blocks during each round.

2.4 Generative Models

When experimenting with the discriminatively trained model, we noticed that the
topical similarity features were weighted particularly highly. This implies that the
results from the generative LDA model were quite indicative of coreference be-

24

tween documents. In this section we extend the basic LDA model to explicitly
model coreference between documents via latent variables. The produced models
are unsupervised, although training data could be used for optimization of hyper-
parameters, we chose to leave this for future research.

Since the number of clusters for a particular document set is unknown, use
of traditional (parametric) mixture models is precluded, since they require setting
the number of mixture components in advance. To allow for a variable number
of clusters we use a mixture model with an infinite number of components. We
employ a Dirichlet Process (DP) prior over the cluster assignments in each model.
This is a distribution over clusterings parameterized by γ. A lower value for γ

causes the prior to prefer singletons over fewer larger clusters.

2.4.1 Baseline Generative Model

The simplest generative model we considered does not model documents as mix-
tures of topics as in LDA. Rather it assumes each document belongs to some cluster
(the identity of which is latent) and each cluster has one topic associated with it.
This graphical model is shown in figure 2.2. The model defines a distribution of
the form:

P (w, e|α, γ) =
∏

d

P (wd|θ, ed) ·
∏

i

P (θi|α) · P (e|γ) (2.2)

Where i is the index of the cluster, and d is the index of the documents, wd are
the tokens of document d, e is the set of clusters, and θi are the parameters to the
mixture component associated with cluster ed = i. P (w|θ, e) is the probability of
the document tokens given its cluster identity and the associated parameter vector
θi, and is a multinomial distribution. P (θi|α) is the probability of the multinomial
parameter vector which is expressed as a Dirichlet prior. P (e|γ) is the DP prior
over the cluster assignments. By changing the value of γ the prior can be made to
favor different granularities of clusterings.

To perform inference in this model we use collapsed Gibbs sampling. It is col-
lapsed in the sense that we integrate out the unknown θ variables in order to reduce
the space in which we have to sample. Since the Dirichlet is the conjugate prior to
the multinomial distribution, we are able to do this integration analytically. In do-
ing so, all the words under a common entity become dependent on each other. The
result is a compound distribution sometimes called the Polya distribution Minka
(2003). The probability of the words in document d; wd = wd,1 · · ·wd,nd

given a
cluster is then:

25

Ge

w
W

D

αθ
∞

∞
γ

Figure 2.2: The baseline generative model: each of D documents has an entity e
drawn form a DP prior, with parameter γ. The W words in the document are drawn
from the multinomial distribution θ according to its entity setting.

P (wd|w−d, e) ∝
∏

i

αwd,i
+

∑

p|ep=ed
nwp,wd,i

+ nwd,1···i−1,wd,i
∑

v αv +
∑

p|ep=ed
nwp,v + nwd,1···i−1,v

(2.3)

Here nwp,wd,i
is the number of times that the word wd,i appears in wp (a set

of words representing a document in the same cluster). Likewise nwd,1···i−1,v is the
number of times word v appears in the set of words wd,1 · · ·wd,i−1. Both can easily
be calculated by maintaining a set of the necessary counts during sampling.

Gibbs sampling, updates one hidden variable at a time, by sampling from the its
distribution, conditioned on the current assignments to all other variables. During
gibbs sampling, we use the Chinese Restaurant Process Neal (1998) construction
for sampling the DP prior. The CRP gives mass to each cluster, proportional to
the number of elements in that cluster. Each e variable can be set to either one of
the currently supported clusters, or to a “new” cluster, which has the mass for the
infinitely many unsupported mixture components in the model. When there are N

documents divided into K clusters, the CRP gives the probability of document d

being in cluster i as:

P (ed = i|e−i) =







ni

N−1+γ
i ∈ 1 · · ·K

γ
N−1+γ

i = K + 1
(2.4)

We will use e−i to mean the set {ed|d 6= i}. Gibbs sampling iterates over each
document d in turn and re-samples its value of ed, from the distribution:

26

P (ed = i, wd|w−d, e−d) = P (wd|w−d, e) · P (ed = i|e−i) (2.5)

This model essentially clusters documents based on the distributions of words
within them. For example if two documents employ many of the same words, they
are likely to be placed into a cluster together.

2.4.2 Extended Generative Models

The baseline model only considers the tokens that appear in documents. Conse-
quently it has two significant weaknesses. First, there are more sources of infor-
mation regarding coreference than just the tokens of a document. For example, the
hypertext markup such as links and bolded sections might give important clues to
coreference. Second, various words in a document might not be relevant to coref-
erence resolution. Common English words such as “the”, “a”, “and” etc. are pre-
sumably poor predictors of coreference. However since the baseline only looks at
the distributions of tokens within a document, those documents with similar distri-
butions of these “stop-words” might be placed together erroneously. Motivated by
apparent weaknesses of the baseline model, we now explore a variety of extensions
that will be able to capture more of the cues to coreference that the discriminative
model employs.

LDA Coreference Model

The first extension grants the model the ability to learn that certain words are more
relevant to coreference resolution than others. Rather than each entity having a
distribution over document tokens, we assume each document is a mixture of words
from some LDA topics, and each entity has a distribution over topics. The intent
is to learn clusters of words that are related, and treat all words in the topic as the
same with regard to coreference. The graphical model is shown in figure 2.3.

To perform inference we must alternate between sampling the topic assign-
ments to the words, and sampling the entity assignments of the documents. The
former are sampled from the following distribution:

P (zd,i = t|z−d,i, w, e) ∝ βt +
∑

ep=ed

ned,t

αwd,i
+ nt,wd,i

∑

w′ αw′ + nt,w′

(2.6)

With all the topic assignments z sampled, we can condition on them while
sampling new entity assignments e from:

P (ed = i, wd|w−d, e−d, z) ∝ P (zd|z−d, e) · P (ed = i|e−i) (2.7)

27

Ge

D
W

w

∞

∞
γ

θ

z

α

φ β

T

Figure 2.3: The “LDA-coref” generative model: now the words in the document
have associated “topic assignments” z. Clustering is performed based on the topics
that appear in the documents, rather than the tokens themselves.

Note the similarity between equations 2.5 and 2.7. We are essentially treating
the topic variables in this model as we did the words in the baseline. This model
will therefore cluster documents according to the topic distributions inferred on
them. The intuition for this model is that words that indicate coreference might
not overlap between documents (for example, one document mentions jazz music
while another mentions saxophone playing), but by clustering words into LDA-like
topics these words will all be viewed as the same by the model.

Self-Stopping Model

The LDA-like model of the preceding section seems appealing for its ability to
distinguish between words of different indicative power for coreference. However
with large numbers of topics it becomes computationally expensive to perform
sampling. Therefore we propose a simplified version that aims to capture this
distinction in a more efficient fashion.

We propose to use a topic-like mechanism to capture the difference between
background English language “noise” and the entity specific language that is useful
in coreference. Therefore we use a restricted form of the previous model, where
we set the number of topics to be the number of entities plus one (note that this
number changes as clusters are created or destroyed in sampling). There is one

28

W

Ge

w

D

θ
∞

∞
γ

α

z θg
ψ

β

Figure 2.4: The “self-stopping” model: words either belong to an entity specific
“topic” (as in the baseline) or to the global topic θg. Clustering is performed based
on the words that belong to the entity specific topics.

entity-specific topic for each entity, and one “global” topic that is shared between
all entities, and is depicted in figure 2.4. Now each document is treated as a mixture
of words from the entity-specific topic for the cluster to which it is assigned, and
the global topic. This means that sampling the z variables is simpler, since there
are now binary. The effect of the model is to cluster documents which share sim-
ilar distributions of words from the entity specific topic. This model is unable to
capture some of the properties exploited by the LDA-coreference model, but may
still be able to filter out the noise in a document. We call it the self-stopping model
for its ability to ignore stop-words when making the coreference decisions.

Incorporating Further Evidence

In designing the discriminatively trained model, we noted that HTML markup el-
ements such as hyperlinks and page titles were important features for determining
coreference. We may extend any of the generative models we described so far to
use this type of evidence as well. If we assume are other forms of evidence are
expressed as tokens in the documents (e.g., hyperlink URLs, hyperlink text, doc-
ument titles) then we can extend the models to observe these as well. In essence,
each of the models we showed can be extended to handle this evidence, by dupli-

29

cating the components which involve words (and their associated topic variables
and parameters) for each other evidence class. Note that for several classes of evi-
dence, the values of the parameters used for words may not work well. For instance
coreferent documents may have no hyperlinks in common, and so a higher (more
uniform) value for the Dirichlet prior parameter may be more appropriate.

2.4.3 Results

We evaluated these models on the new Spock corpus described in chapter 6. We
present a preliminary result clustering the group of documents belonging to the
“Peggy Waterfall” web-people. This section has 1302 documents, divided into
91 unique people. For all models, we only used the tokens from the documents
which were within 50 words of a mention to the web-person name. This was due
to the intuition that relevant information appears close to the name mentions. All
models had the γ parameter set to 0.005. We tested the systems under the following
configurations:

• Baseline The generative model described in section 2.4.1. This model was
given an α parameter of 0.01 since we anticipated that the distributions of
words for the entities should be peaked around certain indicative words.

• LDA-coref The LDA-inspired model described in section 2.4.2. We used
200 “topics”, and set α to 0.25 and β to 0.01. Note that the β parameter here
corresponds to the α parameter of the other models.

• Self-stopping This is the model from section 2.4.2. The parameter for the
“global topic” was set to the unigram counts of the corresponding words in
the corpus. The intent was to capture the highly frequent words in this topic.
α and γ were set as in the baseline model.

• Baseline+URL As described in section 2.4.2, we extended the baseline model
to also observe the bags of hyperlink URLs for each document, as well as the
bags of words that make up the link text. Now the model has an α parameter
for each “class” of evidence, words, URLs and link text. We set these to
0.01, 0.9 and 0.9 respectively.

• Self-stopping+URL This is a hybrid of the above two systems. Essen-
tially we extended the self-stopping model to observe the other two evidence
classes that we described above. The setting of α was the same as for Base-
line+URL, and for each class, we learned a global topic parameter by taking
the unigram counts of the evidence tokens.

30

B3 Pairwise
Model Precision Recall F1 Precision Recall F1

Baseline 63.3 16.4 26.0 39.2 9.8 15.7
LDA-coref 37.8 7.83 13.0 48.1 14.1 21.8

Self-stopping 69.7 17.3 27.7 60.8 9.6 16.5
Baseline+URL 51.7 18.2 26.9 12.1 11.9 12.0

Self-stopping+URL 60.9 18.6 28.5 53.2 11.1 18.4

Table 2.4: Coreference performance for a selection of generative web-people dis-
ambiguation models.

All models were trained with 200 iterations of Gibbs sampling. When there
were both topic variables and entity variables, topic variables were sampled first for
the whole corpus, before entities were resampled. Results of the various systems
are shown in table 2.4. They show a trend whereby the incremental improvements
yield small increases over the baseline model. The LDA model lags behind con-
siderably, perhaps due to a bad parameter setting, or to an insufficient amount of
Gibbs sampling. However note that the documents often contain a mention to the
web-person surrounded by useless text (such as when the persons name appears in
a table of sports results). These cases might prevent the proper learning of a topic
model such as LDA. These results are preliminary in the sense that they only cover
one cluster of the Spock data, however they should be updated in the near future.
The results are generally quite low, but note that they are not a great deal lower
than those of the discriminatively trained model, and that this is evaluated on the
entirety of one of the largest sections of the spock data – rather than a sample of
150 documents from each section.

2.5 Future Work

We have demonstrated a variety of techniques for disambiguating web documents
according to the people to whom they refer. There are several directions in which
these models could be extended, for example exploring more powerful features,
more sophisticated statistical models, and more advanced inference and sampling
algorithms. Additionally we may gain benefit from combining the unsupervised
method into the discriminatively trained one. We noticed that the two models have
different strengths and weaknesses, for example the unsupervised model performs
well on large corpora, whereas the discriminative model is more accurate when
there are fewer web documents to cluster. A successful line of future research may
combine the models by using the predictions of the unsupervised model as features

31

for the discriminative one.
This problem lends itself to semi-supervised learning, in which a small amount

of labeled data is combined with a vast amount of unlabeled data in training a
predictor. Due to the sheer sizee of the Internet, such unsupervised data would be
readily available in an almost unlimited supply.

In the related problem of anaphora resolution we have successfully applied
error driven training methods Culotta et al. (2007), which tailor the parameters to
avoid the types of errors that the model produces during training. Such techniques
are directly applicable to this problem, and may increase performance over the
current models. Furthermore, the discriminative algorithm we outlined factorized
over clusters of documents. A straightforward extension would be to relax this
restriction and allow for features that consider an entire clustering.

32

Chapter 3

Description of the Elkfed/IDC

platform and the BART

coreference resolver

Yannick Versley and Simone Ponzetto

3.1 General Introduction

BART, the Baltimore Anaphora Resolution Toolkit, is a tool to perform fully au-
tomatic machine-learning based automatic coreference annotation on written text.
This section will provide a friendly introduction to the system from a user’s per-
spective.

The system stores all vital information on documents in the token-based stand-
off format of MMAX2; it uses the MMAX2 discourse API1 for this purpose.

In the standard configuration, only tokenisation is needed, and other steps are
performed automatically by suitable components (sentence splitter, part-of-speech
tagger, chunker/parser, and named entity recognizer). For learning a new classi-
fier or quantitative evaluation, it is necessary to have gold standard coreference
information on a separate markable level.

To run the basic system, you need to have the following external components
installed:

• the YamCha chunker and the YamCha model collection (for the chunker-
based pipeline)

1see http://mmax2.sourceforge.net

33

http://chasen.org/~taku/software/yamcha/

(where do the chunking models come from?)

YamCha uses an external SVM package to perform its classification; possi-
ble candidates are TinySVM and SVMLight
http://chasen.org/~taku/software/TinySVM/

SVMLight/TK, which is a downwards-compatible extension to SVMlight,
can also be used as a learner in the coreference resolution.

• Charniak and Johnson’s reranking parser
ftp://ftp.cs.brown.edu/pub/nlparser/

Other recommended external components include

• SVMlight/TK with java native interface: This allows the use of SVM for
classification tasks and the use of tree-valued features. The use of the native
Java interface is recommended for improved speed.

• The Carafembic ACE mention tagger performs general mention tagging for
ACE mentions. Its use improves the accuracy when using ACE-style corpora
in which only ACE mentions (persons, organizations, geopolitical entities,
. . .) are marked up.

The preprocessing pipeline invokes sentence splitter, part-of-speech tagger,
chunker and named-entity recognizer and uses this information to tag mention
markables (on the markable annotation layer of the MMAX2 document). Once
documents have been preprocessed, the preprocessing information in the MMAX
documents can simply be reused and preprocessing switched off. This is especially
convenient when doing repeated experiments on a single dataset.

3.1.1 Installation and Getting Started

This section will lead us through the steps necessary for running training and test-
ing phases on the MUC6 corpus.

Running without preprocessing

1. In the directory config, make a copy of the file config.properties.sample
and name it config.properties.

The config.properties file contains configuration options that usu-
ally depend on the local system configuration, such as the directories where
training/testing data, needed programs, etc. reside.

34

If you unpacked the MUC sample files into /path/to/MUC-MMAX, then
you need to set the trainData/testData options as follows:

trainData = /path/to/MUC-MMAX/muc6/train

trainDataId = MUC6

testData = /path/to/MUC-MMAX/muc6/test

testDataId = MUC6

In the run we want to do now, we don’t need to run the preprocessing, as the
MUC files are already in MMAX format and conveniently preprocessed:

runPipeline=false

MUC6 marks coreference even outside the main document body, which is
why we want to use the mention creation process that uses mentions from
the whole document:

mentionFactory=elkfed.coref.mentions.FullDocMentionFactory

2. To compile the Elkfed sources, we need to have (i) a working JDK (version
5.0 or up) and (ii) Apache Ant2; we also need to setup the classpath so that
external libraries (which are part of the Elkfed/BART package) can be found.

First, edit the setup.sh file so that JAVA_HOME points to the directory
where your Java installation is. You then need to source the file with3:

bash$ source setup.sh

We then run ant to compile the whole thing:

bash$ ant jar

We can then use XMLExperiment to perform both training and testing4:

bash$ java -Xmx1024M elkfed.main.XMLExperiment

2available at http://ant.apache.org/bindownload.cgi
3this only works with bash. Users of other shells such as tcsh will have to adapt this.
4the option -Xmx1024M is used to allocate more heap space for the Java process. If your com-

puter does not have enough memory, or Java runs into memory problems, you have to adjust this
number

35

or we can use XMLTrainer to create the training data, run XMLClassifier-
Builder to perform model learning and then use XMLAnnotator to test
separately:

bash$ java -Xmx1024M elkfed.main.XMLTrainer

(lots of output omitted)

bash$ java -Xmx1024M elkfed.main.XMLClassifierBuilder

(some output omitted)

bash$ java -Xmx1024M elkfed.main.XMLAnnotator

(lots of output omitted)

Running with the parser pipeline

To try out some preprocessing, we will first use the ACE-02 sample file that is
in sample/ACE-025. To do this, we first change the testData configuration
entry in config.properties:

testData=./sample/ACE-02

We then need to change the options so that (i) preprocessing is activated, (ii) the
Charniak parser is used and (iii) the directory where the Charniak parser is located
is known to the system:

runPipeline=true

pipeline=elkfed.mmax.pipeline.ParserPipeline

parser=elkfed.mmax.pipeline.CharniakParser

charniakDir=/path/to/the/reranking-parser

To be able to use the Charniak parser, we also need to replace the parse.sh

script in the reranking-parser directory with our modified version.
We can then run XMLAnnotator, which uses the model we trained on the

MUC data (again, this is not useful for any serious purpose, but we want to try out

the pipeline) on the corpus that will be run through the preprocessing pipeline for
us.

3.1.2 Additional Configuration

The config.properties file in the config directory contains a few more settings that
influence the behaviour of the system:

5This is nonsense from an evaluation point of view, as the ACE and MUC annotation schemes
differ considerably. But as preprocessing the whole MUC6 corpus would take longer, we’ll just have
fun with the sample file.

36

• the option mentionFactory indicates the name of the class used for cre-
ating the mention objects from MMAX markables, which can be used to
influence the set of mentions that are created and can then be linked.

Currently, the following MentionFactory subclasses exist6:

– FullDocMentionFactory creates mentions for every markable
on the markable annotation layer

– DefaultMentionFactory creates mentions for every markable
that is in the ‘main text’ part (marked by a markable on the section

annotation layer with attribute name=text).

• The value of trainDataId / testDataId selects the following corpus-specific
behaviour:

– If either trainDataId or testDataId are set to MUC6, the anaphor must be
a definite for the expression to be an apposition (in FE_Appositive).

• The value of runPipeline can be set to true if it is desired to (re-)run the
preprocessing steps on the corpus, or false, if existing annotation layers are
to be reused.

• The value of pipeline can be used to select a different version of the prepro-
cessing pipeline7:

– DefaultPipeline uses a the Stanford POS tagger, the YamCha
chunker and the Stanford named entity tagger.

– ParserPipeline uses the Charniak parser to extract POS tags, BaseNPs
as chunks, and also extracts parse trees.

– NERTestPipeline uses the Charniak parser to extract syntactic struc-
ture, but uses the Carafembic mention tagger for extracting both nom-
inal and name mentions. Because only ACE entities are extracted and
non-ACE noun phrases are ignored, this is the recommended prepro-
cessing when using ACE-style corpora which do not mark all mentions.

• The value of default_system determines the feature set and learners to be
used. To use different settings, it is possible to either give XMLExperi-
ment the name of an XML file containing such a description, or change the
value of default_system to the name (without the .xml suffix) of an exist-
ing description from the elkfed.main package. In the current distribution of
Elkfed/BART, the following XML descriptions are included:

6it is necessary to prepend the package name elkfed.coref.mentions in all cases
7it is always necessary to prepend the package name elkfed.mmax.pipeline

37

– idc0_system uses exactly the Soon et al. feature set (mention type,
gender/number agreement, alias, appositive, semantic class compati-
bility, sentence distance).

– bart_system uses an extended feature set: besides the information
used by IDC0, it also uses parse tree information (tree kernels, syn-
tactic position), as well as some semantic information (web patterns,
Wikipedia alias, semantic class values).

The BART system uses tree kernels and requires external information
(web queries and information extracted from Wikipedia in a relational
database), which means that setting it up requires some work. For more
details, please refer to the descriptions of the individual features in sec-
tion 3.3.

3.1.3 XML system descriptions

The encoding/decoding model used as well as the learners and the features used
can be influenced by means of XML description files. The two description files
that can be used out of the box are loaded from the JAR file; they can be found in
the package elkfed.main, whereas other examples can be found in the package
elkfed.main.old_xml. To use an alternative system description, just put it in
the current directory and give the filename to Xml{Trainer/Annotator/Experiment}.

Figure 3.1 shows the system description for the IDC0 system. The root ele-
ment, coref-experiment, has exactly one system node, which in turn has a
list of classifiers and a list of extractors. In the soon system type, the only we will
cover here, we only need one classifier, which is used for all anaphor-antecedent
pairs.

The following classifieres are implemented:

• The weka classifier uses the WEKA machine learning toolkit for classifi-
cation; all classifiers from WEKA can be used, and the class name of the
corresponding classifier has to be given in the “learner” attribute. Options,
as they appear on the command line shown by the WEKA Experimenter, can
be specified in the “options” attribute.

• The svmlight classifier uses SVMLight, either in its plain variant or in
the SVMLight/TK variant. Options to svm_learn can be specified in the
“options” attribute.

• The maxent classifier is a maximum entropy classifier built upon the L-
BFGS implementation of Mallet. It is able to perform feature combinations.

38

<?xml version="1.0" encoding="UTF-8"?>

<coref-experiment>

<system type="soon">

<classifiers>

<classifier type="weka" model="idc0"

learner="weka.classifiers.trees.J48"

options=""/>

</classifiers>

<extractors>

<!-- general info about antecedent -->

<extractor name="FE_MentionType_Buggy"/>

<!-- agreement features -->

<extractor name="FE_Gender"/>

<extractor name="FE_Number"/>

<!-- specialized features for aliases etc. -->

<extractor name="FE_Alias"/>

<extractor name="FE_Appositive"/>

<!-- string matching features -->

<extractor name="FE_StringMatch"/>

<!-- semantic class agreement -->

<extractor name="FE_SemanticClass"/>

<extractor name="FE_SentenceDistance"/>

</extractors>

</system>

</coref-experiment>

Figure 3.1: XML system description: IDC0

Binary feature combinations give you a similar accuracy to the SVMLight
polynomial-degree-2 classifier, with much reduced training times.

The preliminary interface for this is that the “options” attribute is interpreted
as a combination template, i.e. options="**" uses the features alone,
whereas options="** **" gives binary feature combinations. This is

subject to change. Use with care!

The extractors are listed in section 3.3; the name of a feature extractor is speci-
fied in the “name” attribute and a matching class is then searched for in the package
elkfed.coref.features.pairs and in the subpackages elkfed.coref.features.pairs.{srl/wiki/wn}

39

3.2 Inside BART: architecture and internal APIs

One goal for the Elkfed architecture has been to provide effective separation of con-
cerns for the following three groups of people who might be interested in working
on a system for coreference resolution:

• Those who aim to do feature engineering, creating new features that exploit
different sources of knowledge.

• Those who aim to explore different preprocessing methods, improving the
quality of the input to coreference resolution proper.

• Those who aim to explore different methods of representing coreference res-
olution as a learning problem.

To reach this goal, there is a clean separation between the domains of preprocess-
ing, feature extraction, and learning:

The first part of preprocessing is carried out by pipeline components, which
add MMAX markables on different annotation layers, and stores the result on the
markable annotation layer in MMAX. The second part of preprocessing, carried
out by MentionFactory instances, uses the markables on the markable an-
notation layer to create Java objects with relevant properties, instances of class
Mention.

Feature extractors are presented are presented instances of the relevant Instance
subclass — in BART, which exclusively uses binary decisions, this is always Pair-
Instance. They then use the information stored in the Instance, namely
the anaphor and antecedent properties, which hold references to mention objects.
Having each feature extractor in its own class allows for flexible mixing and match-
ing for feature extractors.

The part that is responsible for learning decision functions using a given set
of features (referred to as the encoder/decoder) uses a machine learning classifier
from the elkfed.ml package that is trained with anaphor - potential antecedent pairs
from the training set, and the decisions of this classifier regarding single pairs are
then used to derive appropriate linking decisions that group mentions into equiva-
lence sets representing entities. The encoder/decoder has to extract pairs that are
to be presented to the learner, and delegate the feature extraction to a list of feature
extractors. In the testing phase, it has to choose pairs to present to the classifier
built in the training phase and to use the classifier decisions to link mentions.

40

3.2.1 Important Classes

The most basic building blocks in the Elkfed platform are the interfaces Coref-
Resolver and CorefTrainer in the package elkfed.coref. A coreference re-
solver get handed a list of Mention objects that are to be grouped together in a
DisjointSet, whereas a CorefTrainer just gets handed the list of mentions
and is not required to return anything.

Mention objects represent single mentions: they have utility methods that
allow to access properties of mentions, and a method isCoreferent that allows
the training procedure in a ML-based coreference resolution system to see whether
a pair of mentions should be coreferent or not.

What happens around these interfaces? Let us begin by the outer side: in the
package elkfed.main, the classes Trainer and Annotator are simplified ver-
sions of BART’s XMLTrainer and XMLAnnotator classes and contain the neces-
sary code for setting up the actual process.

Objects of type SoonEncoder or SoonDecoder (to be covered later, be-
low) are handed to instances of TrainerProcessor, or AnnotationProcessor,
respectively, that iterate through documents in the corpus given and then use a
MentionFactory to create Mention objects from the information in the MMAX2
documents.

SoonEncoder instances take a list of markables; for every pair mj , mi of
mentions that are adjacent in a coreference chain, a positive training instance is
generated for the pair 〈mj , mi〉, and a negative instance with 〈mk, mi〉 is created
for every markable mk that occurs in between mi and mj . These learning in-
stances serve as learning data set for the ML classifier; an object implementing the
IntanceWriter interface takes these instances and writes them out in a format that
is understood by the ML toolkit implementing that classifier, for example in ARFF
format for Weka-based learners.

In converse, SoonDecoder instances look for an antecedent for a given mark-
able mi by getting the classification for pairs 〈mj , mi〉 built with some mj that
occurs before mi, starting with the closest ones; the first pair to be classified as
positive is merged and other (potential) antecedents are ignored. The classifica-
tion of pairs is handled by an object implementing the OfflineClassifier interface,
which gets a list of pairs and provides the list of decisions for these pairs. In the
case of the Weka machine learning toolkit, the classifier is called in-process. For
classifiers that are only available as external programs (such as SVMlight when the
native interface is not used), always classifying batches of multiple pairs attenuates
the speed loss due to the startup time of the external program.

The classification instances that are used for learning and classification are
instances of the class PairInstance, which get the anaphor and antecedent set

41

by the encoder/decoder, whereas the actual information used for classification is
set by objects implementing the PairFeatureExtractor interface.

3.3 Feature Extractors

This section describes the feature extractors that are included in the Elkfed/IDC
platform; most, but not all of them are used by BART. Tree-valued features can
only be used by the SVMlight learner, string-valued features cannot be used with
WEKA learners, and unnormalized continuous features do not work well with
polynomial SVMs or MaxEnt classifiers that use feature combinations, so not all
sets of features make sense with a given learner.

3.3.1 Basic Features

MentionType

The feature extractors FE_MentionType_Buggy and FE_MentionType ex-
tract information about the form of the anaphor (definiteness, demonstrative, pro-
noun), the antecedent (pronoun) and also includes a feature that indicates whether
the two mentions are both proper names.

FE_MentionType_Buggy checks for the prefix “the” on the mention string
to derive definiteness, whereas the isDefinite method on Mention checks that “the”
is actually a word by itself, excluding “them”, “their” and other third person plu-
ral pronouns. In the basic Soon et al reimplementation, the information found in
the ‘buggy’ version (third-person plural pronouns) is used and leads to improved
performance over the corrected version.

Gender agreement

The feature extractor FE_Gender uses gender information from the mention to
assess gender compatibility. The assigned value can either be true, false, or un-
known.

Number agreement

The feature extractor FE_Number uses number information to determine number
compatibility. This is either true or false.

42

Alias

FE_Alias uses the techniques described in (Soon et al. 2001b) to match abbrevi-
ations and name variations.

Appositive

FE_Appositive adds a feature that is true whenever two mentions are separated
exactly by a comma.

String Matching

FE_StringMatch strips the determiners off the markable string and then per-
forms a case-insensitive comparison of the rest.

Semantic Class compatibility

FE_SemanticClass uses the SemanticClass property of the mention to assess
the semantic compatibility of anaphor and antecedent (either TRUE, FALSE, or
UNKNOWN if either of the two has an unknown semantic class and the lexical
heads do not match).

Sentence distance (continuous vs. discrete version)

FE_SentenceDistance gives the distance of anaphor and antecedent candi-
date in sentences. FE_DistDiscrete is meant as a discretisation of the values,
with two binary features that indicate whether the candidate is in the same sentence
or in the previous sentence.

3.3.2 Syntax-based Features

Syntactic position

FE_SynPos yields a string that is composed of the first three unique labels of
parent nodes. This is meant to indicate the syntactic position — subjects will have
a value of ‘np.s’, whereas direct objects will have a value of ‘np.vp.s’, and a noun
phrase embedded in a noun-modifying PP would have a value of ‘np.pp.np’.

Tree features

The feature FE_TreeFeature is a tree-valued feature that carries information
about the syntactic relationship between anaphor and candidate. Its value is a sub-

43

tree of a parse tree covering both the anaphor and the antecedent candidate. It
includes the nodes occurring in the shortest path connecting the pronoun and the
candidate, via the nearest commonly dominating node. Also it includes the first-
level children of the nodes in the path.

3.3.3 Knowledge-based Features

Web patterns

The FE_WebPatterns feature extractor uses pattern search on the World Wide
Web to find instance relations as they exist between ‘China’ and ’country’, or ‘Clin-
ton’ and ‘president’. Queries are cached in a local BerkeleyDB-JE database.

The following settings in config.properties are necessary for this feature ex-
tractor to work:

• msn_app_id contains the developer key for Microsoft’s Windows Live Search
service. The process of getting a developer key for this service is described
at the following URL:
http://dev.live.com/blogs/livesearch/archive/2006/03/23/27.aspx

Results of web queries are cached in a Berkeley DB Java Edition database,
which is created in the current directory. The current implementation unfortunately
precludes concurrent access from multiple processes on the same file system, but a
cache that has been established once (by doing the queries needed) can simply be
moved to another machine by copying the *.jdb files.

Wikipedia Alias

The FE_WikiAlias feature extractor uses information extracted from Wikipedia8,
namely redirects and links to a given page, but also appearance in lists, to provide
evidence for name variations (see the extraction chapter for a more detailed de-
scription).

The Wikipedia Alias feature extractor needs to access a MySQL9 database
that contains the redirects_to, links_to and lists_dev tables with information from
Wikipedia. The following settings in config.properties are necessary for this fea-
ture extractor to work:

• wikiDB_driver contains the class name of the JDBC driver, usually com.mysql.

jdbc.Driver

8see http://www.wikipedia.org
9it is probably possible to use any other JDBC-compatible database

44

• wikiDB_user and wikiDB_password contain user name and password of
the account that is used to connect to the database

• wikiDB_dburl contains the JDBC URL to the database. This should be
somethink like
jdbc:mysql://〈hostname〉:3306/〈database〉←֓
?useOldUTF8Behavior=true&useUnicode=true&←֓
characterEncoding=UTF-8

(without the line breaks or ←֓ in between the parts).

Wiki (category graph)

The FE_Wiki feature extractor uses redirects and the category graph of Wikipedia
to assess candidate relatedness, as described in (Ponzetto and Strube 2006). See
the chapter on knowledge extraction for a more detailed description.

Wordnet distance

The FE_WNSimilarity feature extractor extracts the WordNet distance be-
tween antecedent and candidate heads, according to several distance measures.

SemClass pair

FE_SemClassValue extracts the semantic class values of anaphor and antecedent,
both alone and as a pair.

Modifier (in)compatibility

The FE_Wiki_Inc feature extractor uses information from the Wikipedia cate-
gory/graph structure as described above, as well as Wordnet (also see above) to
automatically compute the compatibility between the pronominal modifiers of the
anaphora and antecedent - if they have matching head nouns.

Attributes and relations are extracted from the markable string of each mention,
for example American tourist in Cuba would have associated with it American as
an attribute, and from Cuba as a relation, which can then be compared against
Cuban tourist to determine the incompatibility of the two mentions. The Wikipedia
and Wordnet evalutions are computed seperately and a final score of compatibiltity
is assigned based on the two.

This feature extractor needs the Wordnet library and access to the Wikipedia
category/graph structure (see the respective subsections for necessary precondi-
tions).

45

Chapter 4

Extracting Lexical and

Commonsense Knowledge from

Wikipedia

Simone Ponzetto, Jason Smith,

Vladimir Eidelman and Massimo Poesio

In this Chapter we discuss first our methods for extracting similarity information
from Wikipedia’s category structure, then for extracting such information from
hyperlinks and redirects, and finally how we compute the incompatibility feature.

4.1 FE_Wiki_Similarity

The feature modeling semantic similarity from Wikipedia builds upon and extends
previous work on using the system of categories in Wikipedia as a semantic net-
work for computing semantic relatedness (Strube and Ponzetto 2006). In addition,
it crucially makes use of a taxonomy automatically generated from that category
network (Ponzetto and Strube 2007). This allows us to provide the coreference
resolution system with scores of semantic similarity modeling the semantic com-
patibility between antecedent and anaphor.

4.1.1 WikiRelate! Computing Semantic Relatedness Using Wikipedia

Strube and Ponzetto (2006) presents a method called WikiRelate! which takes the
system of categories in Wikipedia as a semantic network to compute measures of

46

Cognitive architecture Ontology Pataphysics

Life Artificial life

Biology

Categories

Top 10Fundamental

Mathematics Philosophy

Society Science

TechnologyInformation

NatureSystems Thought

Mathematical logic

Applied mathematics Branches of philosophy

Metaphysics

Organizations Computer scienceNatural sciences

Information scienceInterdisciplinary fields

Cybernetics

Information systems

Knowledge

Abstraction Belief

Cognition

Logic

Artificial intelligence

Computational science

Natural language processing

Artificial intelligence applicationsComputational linguistics

Speech recognition

Cognitive science

Neuroscience

Linguistics

Figure 4.1: Wikipedia category network. The top nodes in the network
(CATEGORIES, FUNDAMENTAL, TOP 10) are structurally identical to the more
content bearing categories.

47

re
la

te
d

n
e

s
s
 m

e
a

s
u
re

(s
)

c
o
m

p
u
ta

ti
o
n

page query and retrieval, category extraction search for a connecting path along the category network

Musicians

Composers

Jazz composers

Musical activists

page : John Zorn

page : Fela Kuti

Figure 4.2: Wikipedia-based semantic relatedness computation. First, target pages
for the given queries are retrieved, possibly via disambiguation. Next, cate-
gories are extracted to provide an entry point to the category network. Con-
necting paths are then searched along the category network using a depth-limited
search. The paths found are scored and the ones satisfying the measure definitions
(i.e. the shortest one for path-length measures, and the most informative one for
information-content measures) are returned.

48

semantic relatedness. Wikipedia allows in fact for structured access by means of
categories: the encyclopedia articles can be assigned one or more categories, which
are further categorized to provide a so-called “category tree” (Figure 4.1). Though
not designed as a strict hierarchy, the categories form a graph which can be used as
a network to compute semantic relatedness. Their work showed (1) how to retrieve
Wikipedia articles from textual queries and resolve ambiguous queries based on the
articles’ link structure, and (2) compute semantic relatedness as a function of the
articles found and the paths between them along the categorization network (Figure
4.2). For instance, given the name entities John Zorn and Fela Kuti from Figure
4.2, their semantic relatedness can be computed by finding the connecting path
between their Wikipedia articles along the categorization network and using stan-
dard measures from the literature, e.g. computing semantic distance as the number
of edges between pages in the hierarchy and defining semantic relatedness as the
inverse score of the semantic distance (cf. Rada et al. 1989).

sim(c1, c2) = 1
nodes in path

sim(John Zorn, Fela Kuti) = 1
6 = 0.16

Ponzetto and Strube (2006) also shows that including such scores into an NLP
system dealing with coreference resolution is beneficial. A limitation of that ap-
proach is that it computes semantic relatedness, rather than semantic similarity1.
This is because approaches to measuring semantic similarity that rely on lexical
resources use paths based on isa relations only, whereas the Wikipedia categoriza-
tion network contains relations between categories which are neither semantically
typed nor show a uniform semantic. However, it seems that coreference resolu-
tion needs more fine-grained semantic similarity (e.g. ‘FCC isa an agency’) rather
that semantically unspecified semantic relatedness. Accordingly, in order to com-
pute semantic similarity, one needs a subsumption hierarchy (i.e. a fully-fledged
taxonomy) on top of the system of Wikipedia categories. This consists of trans-
forming the unlabeled graph in Figure 4.3(a) into the semantic network in Figure
4.3(b), where the links between categories are augmented with a clearly defined
semantics.

1Semantic relatedness indicates how much two concepts are semantically distant in a network or
taxonomy by using all relations between them (i.e. hyponymic/hypernymic, antonymic, meronymic
and any kind of functional relations including is-made-of, is-an-attribute-of, etc.). When limited to
hyponymy/hyperonymy (i.e. isa) relations, the measure quantifies semantic similarity instead (see
Budanitsky and Hirst (2006), for a discussion of semantic relatedness vs. semantic similarity). In
fact, two concepts can be related but are not necessarily similar (e.g. cars and gasoline, see Resnik
(1999)).

49

Cybernetics

Artificial Intelligence

Natural Language Processing

Artificial Intelligence applications Cognitive architecture

Computer Science

Computational Linguistics

Speech recognition

Cognition

Cognitive Science

Linguistics

Philosophy

Branches of philosophy

Ontology

MetaphysicsLogic

PataphysicsMathematical logic

Mathematics

Thought

Abstraction

Belief

(a) original category graph

Cybernetics

Artificial Intelligence

Natural Language Processing

 PART-OF

Artificial Intelligence applications Cognitive architecture

Computer Science

Computational Linguistics

 PART-OFSpeech recognition

 PART-OF IS-A

Cognition

Cognitive Science

Linguistics

 IS-A

Philosophy

Branches of philosophy

 IS-A

Ontology

 PART-OF

MetaphysicsLogic

 IS-A

Pataphysics

 IS-NOT

Mathematical logic

 IS-A

Mathematics

 PART-OF

Thought

Abstraction

Belief

(b) category graph augmented with se-
mantic relations

Figure 4.3: Inducing semantic relations between categories in Wikipedia

4.1.2 Deriving a Large Scale Taxonomy from Wikipedia

Ponzetto and Strube (2007) shows how to induce a large-scale taxonomy from the
Wikipedia category network. The taxonomy consists of isa and notisa relations
and it is generated using three main classes of heuristics:

syntax-based methods perform a string matching between the syntactic compo-
nents of the category labels;

connectivity-based methods exploit the structure and connectivity in the network;

lexico-syntactic based methods use is-a (Hearst 1992) and part-of (Berland and
Charniak 1999) surface pattern.

Using these methods, they start with a category network consisting of 165,744 cat-
egories and 349,263 direct links between them and generate a very large taxonomy,
i.e. containing up to 105,418 isa semantic links. In order to evaluate the taxonomy,
they perform an extrinsic evaluation by computing semantic similarity on two com-
monly used datasets, namely the list of 30 noun pairs of Miller and Charles (1991)
and the 65 word synonymity list from Rubenstein and Goodenough (1965). The
results show that Wikipedia-based measures of semantic similarity computed us-
ing the automatically generated taxonomy are competitive with the ones computed
from WordNet (Fellbaum 1998).

50

4.1.3 Bringing it All Together: Computing Semantic Similarity Using

Wikipedia for Coreference Resolution

The contribution of the FE_Wiki_Similarity feature is to capture the notion of
semantic compatibility in terms of Wikipedia-based semantic similarity scores and
to make this kind of information available to the coreference resolution system. In
order to achieve this, it uses the original WikiRelate! method (subsection 4.1.1)
on the automatically generated taxonomy (subsection 4.1.2). The taxonomy is
obtained by taking only those categories in Wikipedia which are found to be in a isa

relation and removing the top 200 categories with the highest PageRank score (Brin
and Page 1998)2, as this has been shown to yield the semantic similarity scores
which best correlate with human judgments. The degree of semantic compatibility
is obtained by computing the similarity scores for each input antecedent-anaphor
pair as follows:

Query extraction: normalize the strings by either taking the head lemma (for
common nouns, e.g. house) or the full NP (for named entities, e.g. George

W. Bush).

Page retrieval: find the two Wikipedia pages pages = {p1, p2} the queries refer
to.

Category extraction: parse the pages and extract the two sets of categories C1 =
{c1| c1 is_category_of p1} and C2 = {c2| c2 is_category_of p2} the pages are
assigned to.

Path finding: compute the set of paths between all pairs of categories3 of the two
pages, namely paths = {pathc1,c2 | c1 ∈ C1, c2 ∈ C2}.

Semantic similarity computation: compute semantic similarity using the taxon-
omy based on the paths found along the category network. For each measure
WIKI_SIMILARITY4, compute the similarity score for all category pairs,
and create the following features:

2See Ponzetto and Strube (2007) for details. In a nutshell, the idea is to filter out semantically
coarse-grained, over-connected categories using a link analysis algorithm (such as PageRank) by
assuming that these categories are the most authoritative ones in the category network.

3We factorize over all possible category pairs in order to deal with the sense disambiguation
problem. That is, we assume that each category captures a sense of the target query and we take the
cross product of each antecedent and anaphor category to form pairs of âĂŸWikipedia synsetsâĂŹ
to compute the similarity across all of them.

4We use the path length based measures from Rada et al. (1989), Wu and Palmer (1994) and
Leacock and Chodorow (1998) and the information content based measure from Seco et al. (2004).

51

1. WIKI_SIMILARITY_BEST the highest similarity score from all 〈CREi,n, CREj ,m〉
category pairs.

2. WIKI_SIMILARITY_AVG the average similarity score from all 〈CREi,n, CREj ,m〉
category pairs.

4.2 FE_Wiki_Alias

This feature takes advantage of Wikipedia’s hyperlinks. The simplest form of hy-
perlink is created by surrounding a word or group of words with square brackets.
For example, the wikitext

On Monday, [[Bill Clinton]] released a statement...

will contain a link to the article for “Bill Clinton”. It is often the case, however,
that a sentence will not contain the full name of an article that the author wants
to link to. This type of hyperlink can be accomplished through “piped links”. A
piped link contains the article the text links to followed by the visible text of the
link (also referred to as the alias), separated by the pipe character. For example,
the wikitext

...since the [[Bill Clinton|Clinton]] Administration.

will appear as

...since the Clinton Administration.

where “Clinton” links to the article for “Bill Clinton”. While this concept is very
simple, it gives us several examples of alternate names for entities, including ab-
breviations and shortened names.

Alias Pages

America United States Neotropics Americas ...
USA United States Florida USSF ...
British British England United States ...

Table 4.1: Wiki_Alias Table

The initial version of this feature takes advantage of these piped links by firing
whenever two strings link to the same article. Essentially, we are computing “bag
of articles” similarity for strings, where each string has a vector of articles that

52

it links to. This feature’s value can be computed efficiently by first building a
database that contains every article that each string links to. It is assumed that
every string links to its own article. The table containing this data has two fields,
“alias”, which is the visible text of a link, and “page ids”, which is a list of every
page that the string in “alias” links to. Some example entries are given in Table
4.1.

There are also some problematic examples of piped links, as seen in Table 4.1.
The string “British” links to “United States” somewhere in Wikipedia. (This occurs
in the article for the British children’s television show Fimbles.)

Alias Pages

America United States Neotropics America ...
Weights 0.1648 0.0016 0.1328 ...
USA United States Florida USSF ...
Weights 0.9999 2.990e-5 0.0006 ...
British British England United States ...
Weights 0.1801 0.1988 0.0010 ...

Table 4.2: Wiki_Alias Table with Weights

To account for such cases, the feature was changed from binary to real valued.
The strength of a match between two strings now takes into account how often
each string links to a given article. Viewing each string as a “bag of articles”, we
can use term frequency weighting to improve the accuracy of this feature. Table
4.2 contains the updated database table, where each article has a numeric weight
associated with it calculated simply by

number of times the string X links to article Y

number of times the string X links to any article

Since “British” only links to “United States” once, the similarity between the two
is now dramatically lowered.

Since weighting by term frequency improved performance, using inverse doc-
ument frequency was considered and tested. As it turns out, this did not help.
Weighting by inverse document frequency in this task would mean lowering simi-
larity scores between two strings when they link to a “popular” article (popular in
this case meaning frequently linked to). This is not desirable with our dataset; the
fact that Bill Clinton’s article is frequently linked to does not decrease the chance
that “President Clinton” is a possible alias for “Bill Clinton”. The use of term
frequency weighting was done as a way to filter out noise, not to give a better mea-

53

sure of similarity between two strings. Inverse document frequency, and likely any
other more complex vector-based weighting, would not help with this task.

4.2.1 FE_Wiki_Redirect

Wikipedia contains many pages which transparently redirect the user to another
article. These redirect pages serve to correct spelling errors (“Untied States” redi-
rects to “United States”), expand acronyms (“NBA” redirects to “National Basket-
ball Association”), and generally ensure that all names which unambiguously refer
to an article will lead you to that article. Redirect information is an obvious choice
for a string matching feature, due to the inherent reliability of the information. For
example, while “William J. Clinton” redirects to “Bill Clinton”, “William Clinton”
does not, since there is another William Clinton in Wikipedia. Something even
more ambiguous, such as “Bill”, would never redirect to “Bill Clinton”. There is
never the issue of ambiguity as with the FE_Wiki_Alias feature.

FE_Wiki_Redirect was implemented as a boolean feature which is true when
two strings redirect to the same page, and false when they do not. Again, a page is
considered to redirect to itself.

4.2.2 FE_Wiki_Lists

In addition to its categories, Wikipedia maintains several list pages. These lists
differ from categories in several significant ways: there is little hierarchy (aside
from a few “lists of lists”), items in the lists need not have articles associated with
them, and if an item X belongs to a list of Y’s, there is a strong indication that Y is
a hypernym of X.

Name Lists

Frederick IX dane
Franz Mesmer austrian physician astrolog
Jerry Holland violinist fiddler

Table 4.3: Wiki_Lists Table

The FE_Wiki_Lists feature is motivated by these observations. This boolean
feature fires for strings X and Y if X belongs to a list of Y’s, or vice-versa. For
example, the page “List of cities in Bosnia and Herzegovina” contains “Bijelina”,
so this feature would fire on the strings “city” and “Bijelina”. Naturally, some
preprocessing must be done to accomplish this. First, the head word is extracted
from the list’s title (“cities” in this example). Next, this head word is stemmed.

54

This data is stored in a database; each entry contains a list item followed by each
list it belongs to (Table 4.3 contains some example entries).

4.3 The incompatibility feature

Attempts at incorporating semantic relatedness information automatically extracted
from various sources have been made with various results. While computing se-
mantic relatedness may seem similar to computing compatibility, thus lending itself
to well studied approaches, the tasks are actually quite distinct. For semantic re-
latedness, graph metrics are often used that attempt to approximate the relatedness
of two concepts with their distance in a graph constructed from a given knowledge
source. A variety of path metrics have been used, however, none are fit for evalu-
ating compatibility. For relatedness, path metrics are a reasonable approximation
due to the fact that closely related concepts usually appear close to each other in
a lexical or semantic database, while distance concepts are analogously distant in
the graph. This convenient relation does not hold for compatibility.

For instance, the concepts yellow and violet are one node apart in the Wikipedia
graph, indicating close semantic relatedness, however, they are perfectly incompat-
ibility, since the yellow car would never be assumed coreferent with the violet car
by a human. Compare tiny and small, they are most likely compatible, but they
have a high relatedness, as opposed to smart and bony, whose relatedness is very
low, but compatibility reasonably unquestionable.

We developed a system for the automatically evaluation of compatibility be-
tween modifiers. To the best of our knowledge, this is one of the first recent at-
tempts to incorporate lexical and semantic knowledge, in the form of WordNet and
Wikipedia to the task of identifying the compatibility of noun modifiers.

Compatibility assessment may be performed for all pairs of mentions compared
in the course of creating coreference chains. This would allow for a greater cache
of words and thus for the identification of a wider range of modifiers. However, due
to practical constraint of computation time for each mention pair, coupled with the
number of mentions, currently compatibility assessment is only performed when
both mentions share the same head noun.

The incompatibility feature uses the fact that each mention is associated in
BART with a discourse entity (Poesio and Kabadjov 2004), associated with a se-

mantic tree containing information about the mention, such as type, location, and
name. For our purposes, we only need the relations and attributes that each entity
contains.

Attributes generally occur as premodifiers, as in fast car or crazy doctor, whereas
relations occur as postnominals, as in software from India, and snow in Vancouver.

55

WordNet and Wikipedia are used as outside knowledge sources.
Thus when the head noun of the antecedent matches the head noun of the

anaphora, this feature fires. The compatibility of the modifiers is computed both
with WordNet and Wikipedia, and the scores resulting from both sources are com-
bined into a final feature score. We treat a score of 0 compatibility from either
source as outweighing any other scores, since we deem two entities being incom-
patible as a stronger claim than either deeming them possibility compatible or com-
patible.

WordNet is a structured lexical database. Here we exploit its concept of synsets

- groups of words with considered semantically equivalent. When computing the
compatibility, we first lookup the modifiers synset and antonym set. We assign a
unique id, ID, to this set, as well as -1*ID to the antonym set. These words are
cached using a hashing function that allows for fast retrieval and evaluation using
the unique ID, since using the word as a key, we can retrieve its unique ID and thus
all the words which are both synonymous and antonymous with it.

Then we compare all the modifiers of the entities and either classify them as
being perfectly incompatible (0), perfectly compatible (1), or possibly compatible
(0.5). If there are multiple modifiers, this comparison can get tricky, as it would
be for comparing a large green obtuse melon with a tiny jade colored melon. Each
phrase contains a synonym for green, thus having a compatibility measure of 1,
but deviate with tiny and large, having compatibility 0. We use an algorithm to
combine these varying measures due to multiple modifiers. The greatest weight is
placed on 0 compatibility, followed by .5, and finally if only 1(s) were encountered,
a 1.

Wikipedia is an open encyclopedia which contains articles categorized by users.
We used a graph constructed from the Wikipedia category structure for comput-
ing compatibility of two entries in Wikipedia. As mentioned earlier, path metrics
do not work, however, another simple algorithm is used. Two mentions are con-
sidered compatible if one is in a hyponomy relation with the other, ie. there is
a straight path from one entity node to the other, where the highest point in the
path according to the Wikipedia graph structure corresponds to one of the men-
tion nodes. Otherwise, two mentions are considered incompatible if there is an
intermediary node along the path at which direction changes âĂŞ the top node ac-
cording to the category structure is inside the path. For instance, when comparing
the postmodifiers United States and India, the Wikipedia graph structure takes a
path up from United States to Former British Colonies and down
to India. Since the top node is Former British Colonies, and this is
inside the path, the two are correctly deemed incompatible. As with the WordNet
evaluation, we combine multiple modifiers with a heavier weight on 0 classifica-
tion.

56

The use of both these sources is convenient, as they provided complementary
information. WordNet is useful for adjective attributes, while relations and at-
tributes involving nouns are better served with Wikipedia. For example, Word-
Net does not contain information that India is incompatible with US, whereas in
Wikipedia, these two are easily determined incompatible through the graph algo-
rithm described above. Conversely, Wikipedia cannot appreciate the incompatibil-
ity between small and large, whereas in WordNet one appears in the antonyms of
the other.

So far no analysis of the system incorporating this feature has been done, so
nothing can be said of the results at this time.

57

Chapter 5

Kernels for Coreference

Alessandro Moschitti, Xiaofeng Yang, Alan Jern, Massimo Poesio

In this chapter, we describe the advances of the state-of-the-art in co-reference res-
olution during the workshop from a machine learning perspective. For this purpose,
we use the most advanced techniques of statistical learning theories, i.e. Support
Vector Machines and Kernel Methods. The former produces one of the most accu-
rate classification algorithm whereas the latter allow for abstract feature design in
very large feature spaces. More in detail, we used polynomial kernels to generate
combinations of manually designed features (Section 5.1), the subset tree kernel
(Section 5.1.2) to generate innovative syntactic features (Section 5.2), word se-
quence kernels (Section 5.1.1) to describe the context of the corefering mentions
(Section 5.2.4) and the Partial Tree Kernel (Section 5.1.2) to provide a novel and
effective formulation of the aliases problem (Section 5.3).

5.1 Support Vector Machines and Kernels for Text

The main idea behind machine learning is the use of labeled examples described
by means of feature vectors in a n dimensional space over the real number, i.e. ℜn.
The learning algorithm uses space metrics over vectors, e.g. the scalar product, to
learn an abstract representation of all instances belonging to the target class.

For example in case of linear classifier, like Support Vector Machines, a hyper-
plane H(~x) = ~w × ~x + b = 0, where ~x is the feature vector representation of a
classifying object o whereas ~w ∈ ℜn and b ∈ ℜ are parameters, learned from the
training examples by applying the Structural Risk Minimization principle Vapnik
(1995). The object o is mapped in ~x with a feature function φ : O → ℜn, whereO
is the set of the objects that we want to classify. o is categorized in the target class

58

only if H(~x) ≥ 0.
The kernel trick allows us to rewrite the decision hyperplane as:

H(~x) =
(

∑

i=1..l

yiαi~xi

)

· ~x + b =
∑

i=1..l

yiαi~xi · ~x + b =
∑

i=1..l

yiαiφ(oi) · φ(o) + b.

where, yi is equal to 1 for positive and -1 for negative examples, αi ∈ ℜ with
αi ≥ 0, oi ∀i ∈ {1, .., l} are the training instances and the product K(oi, o) =
〈φ(oi) · φ(o)〉 is the kernel function associated with the mapping φ.

Note that, we do not need to apply the mapping φ, we can use K(oi, o) di-
rectly. This allows us, under the Mercer’s conditions Shawe-Taylor and Cristianini
(2004), to define abstract kernel functions which generate implicit feature spaces.
An interesting example is given by the polynomial kernel:

PK(o1, o2) = (c + ~x1 · ~x2)
d, (5.1)

where c is a constant and d is the degree of the polynomial. This kernel generates
the space of all conjunctions of feature groups up to d elements.

5.1.1 String Kernels

Kernel functions can be applied also to discrete space to count the number of sub-
strings that are shared by two text fragments.

Let Σ be a finite alphabet. A string is a finite sequence of characters from Σ,
including the empty sequence. For string s and t we denote by |s| the length of the
string s = s1, .., s|s|, and by st the string obtained by concatenating the string s and
t. The string s[i : j] is the substring si, .., sj of s. We say that u is a subsequence

of s, if there exist indices ~I = (i1, ..., i|u|), with 1 ≤ i1 < ... < i|u| ≤ |s|, such

that uj = sij , for j = 1, ..., |u|, or u = s[~I] for short. The length l(~I) of the
subsequence in s is i|u| − ii + 1. We denote by Σ∗ the set of all string

Σ∗ =
∞
⋃

n=0

Σn

We now define the feature space, F = {u1, u2..} = Σ∗, i.e. the space of all
possible substrings. We map a string s in R

∞ space as follows:

φu(s) =
∑

~I:u=s[~I]

λl(~I) (5.2)

for some λ ≤ 1. These features measure the number of occurrences of subse-
quences in the string s weighting them according to their lengths. Hence, the inner

59

S

N

NP

D N

VP

V Mary

brought

a cat

NP

D N

a cat

N

 cat

D

a

V

brought

N

Mary

NP

D N

VP

V

brought

a cat

Figure 5.1: A syntactic parse tree with its
subtrees (STs).

NP

D N

a cat

NP

D N

NP

D N

a

NP

D N

NP

D N

VP

V

brought

a cat

 cat
NP

D N

VP

V

a cat

NP

D N

VP

V

N

 cat

D

a

V

brought

N

Mary
…

Figure 5.2: A tree with some of its subset
trees (SSTs).

product of the feature vectors for two strings s and t give a sum over all common
subsequences weighted according to their frequency of occurrences and lengths,
i.e.

SK(s, t) =
∑

u∈Σ∗

φu(s) · φu(t) =
∑

u∈Σ∗

∑

~I:u=s[~I]

λl(~I)
∑

~J :u=t[~J]

λl(~J) =

=
∑

u∈Σ∗

∑

~I:u=s[~I]

∑

~J :u=t[~J]

λl(~I)+l(~J) (5.3)

It is worth to note that if the set of symbol is defined over words a string cor-
responds to a word sequence and the substring space contains the set of word se-
quences, e.g. George Bush goes in Iraq contains the subsequences George Bush,
George Bush goes but also George Iraq.

5.1.2 Tree Kernels

The kernels represent trees in terms of their substructures (fragments). The kernel
function detects if a tree subpart (common to both trees) belongs to the feature
space that we intend to generate. For such purpose, the desired fragments need to
be described. We consider three important characterizations: the subtrees (STs),
the subset trees (SSTs) and a new tree class, i.e. the partial trees (PTs).

We define as a subtree (ST) any node of a tree along with all its descendants.
For example, Figure 5.1 shows the parse tree of the sentence "Mary brought a

cat" together with its 6 STs. A subset tree (SST) is a more general structure since
its leaves can be non-terminal symbols.

For example, Figure 5.2 shows 10 SSTs (out of 17) of the subtree of Figure
5.1 rooted in VP. The SSTs satisfy the constraint that grammatical rules cannot
be broken. For example, [VP [V NP]] is an SST which has two non-terminal

60

NP

D N

VP

V

brought

a cat

NP

D N

VP

V

a cat

NP

D N

VP

a cat

NP

D N

VP

a

NP

D

VP

a

NP

D

VP

NP

N

VP

NP

N

NP NP

D N D

NP

…

VP

Figure 5.3: A tree with some of its partial trees (PTs).

symbols, V and NP, as leaves whereas [VP [V]] is not an SST. If we relax the
constraint over the SSTs, we obtain a more general form of substructures that we
call partial trees (PTs). These can be generated by the application of partial pro-
duction rules of the grammar, consequently [VP [V]] and [VP [NP]] are valid
PTs. Figure 5.3 shows that the number of PTs derived from the same tree as be-
fore is still higher (i.e. 30 PTs). These different substructure numbers provide
an intuitive quantification of the different information levels among the tree-based
representations.

The main idea of tree kernels is to compute the number of common substruc-
tures between two trees T1 and T2 without explicitly considering the whole frag-
ment space. In the following the equation for the efficient evaluation of ST, SST
and PT kernels are reported.

To evaluate the above kernels between two T1 and T2, we need to define a set
F = {f1, f2, . . . , f|F|}, i.e. a tree fragment space and an indicator function Ii(n),
equal to 1 if the target fi is rooted at node n and equal to 0 otherwise. A tree-kernel
function over T1 and T2 is

TK(T1, T2) =
∑

n1∈NT1

∑

n2∈NT2

∆(n1, n2) (5.4)

where NT1 and NT2 are the sets of the T1’s and T2’s nodes, respectively and

∆(n1, n2) =
∑|F|

i=1 Ii(n1)Ii(n2). This latter is equal to the number of common
fragments rooted in the n1 and n2 nodes.

The ∆ function depends on the type fragments that we consider as basic fea-
tures. For example, to evaluate the fragments of type ST or SST, it can be defined
as:

1. if the productions at n1 and n2 are different then ∆(n1, n2) = 0;

2. if the productions at n1 and n2 are the same, and n1 and n2 have only leaf
children (i.e. they are pre-terminals symbols) then ∆(n1, n2) = 1;

61

3. if the productions at n1 and n2 are the same, and n1 and n2 are not pre-
terminals then

∆(n1, n2) =

nc(n1)
∏

j=1

(σ + ∆(cj
n1

, cj
n2

)) (5.5)

where σ ∈ {0, 1}, nc(n1) is the number of the children of n1 and cj
n is the j-th child

of the node n. Note that, since the productions are the same, nc(n1) = nc(n2).
When σ = 0, ∆(n1, n2) is equal 1 only if ∀j ∆(cj

n1
, cj

n2
) = 1, i.e. all the

productions associated with the children are identical. By recursively applying this
property, it follows that the subtrees in n1 and n2 are identical. Thus, Eq. 5.4
evaluates the subtree (ST) kernel. When σ = 1, ∆(n1, n2) evaluates the number
of SSTs common to n1 and n2 as proved in Collins and Duffy (2002).

Moreover, a decay factor λ can be added by modifying steps (2) and (3) as
follows1:

2. ∆(n1, n2) = λ,

3. ∆(n1, n2) = λ
∏nc(n1)

j=1 (σ + ∆(cj
n1

, cj
n2

)).

The computational complexity of Eq. 5.4 is O(|NT1 | × |NT2 |) but as shown in
Moschitti (2006b), the average running time is linear, i.e. O(|NT1 |+ |NT2 |).

A more general form of fragments has been given in Moschitti (2006a). In this
case any portion p of T , namely Partial Trees (PT), is considered and an efficient
evaluation is provided. To compute it, we need to define a different ∆ function:

• if the node labels of n1 and n2 are different then ∆(n1, n2) = 0;

• else

∆(n1, n2) = 1 +
∑

~J1, ~J2,l(~J1)=l(~J2)

l(~J1)
∏

i=1

∆(cn1 [
~J1i], cn2 [

~J2i]) (5.6)

where ~J1 = 〈J11, J12, J13, ..〉 and ~J2 = 〈J21, J22, J23, ..〉 are index sequences
associated with the ordered child sequences cn1 of n1 and cn2 of n2, respectively,
~J1i and ~J2i point to the i-th child in the corresponding sequence, and l(·) returns
the sequence length.

1To have a similarity score between 0 and 1, we also apply the normalization in the kernel space,
i.e. K′(T1, T2) = TK(T1,T2)

√

TK(T1,T1)×TK(T2,T2)
.

62

Furthermore, we add two decay factors: µ for the height of the tree and λ for
the length of the child sequences. It follows that

∆(n1, n2) = µ
(

λ2 +
∑

~J1, ~J2,l(~J1)=l(~J2)

λd(~J1)+d(~J2)
l(~J1)
∏

i=1

∆(cn1 [
~J1i], cn2 [

~J2i])
)

,

(5.7)
where d(~J1) = ~J1l(~J1) −

~J11 and d(~J2) = ~J2l(~J2) −
~J21. In this way, we penalize

both larger trees and subtrees built on child subsequences that contain gaps.
Equation 5.7 is a more general one, the kernel can be applied to PTs. Also

note that if we only consider the contribution of the longest child sequence from
node pairs that have the same children, we implement the SST kernel. For the ST
computation, we also need to remove the λ2 term from Eq. 5.7.

5.2 Kernels for Coreference Resolution

Syntactic knowledge plays an important role in co-reference resolution. Especially,
the resolution of pronominal anaphora heavily relies on the syntactic information
and relationships between the anaphor and of the antecedent candidates. For a
practical co-reference resolution system, the syntactic knowledge usually comes
from parse trees of the text. The issue that arises is how to effectively incorporate
the syntactic information embedded in parse trees to help resolution. One common
solution seen in previous work is to define a set of features that represent particular
syntactic knowledge, such as the grammatical role of the antecedent candidates,
the governing relations between the candidate and the pronoun, and so on. These
features are calculated by mining parse trees, and then could be used for resolution
by using manually designed rules Lappin and Leass (1994a); Kennedy and Bogu-
raev (1996), or using machine-learning methods (Aone and Bennett 1995a; Yang
et al. 2004a; Luo and Zitouni 2005).

However, such a solution has its limitation. The syntactic features have to be
selected and defined manually, usually by linguistic intuition. Unfortunately, what
kinds of syntactic information are effective for pronoun resolution still remains an
open question in this research community. The heuristically selected feature set
may be insufficient to represent all the information necessary for pronoun resolu-
tion contained in parse trees. Another problem is that the values of the syntactic
features are extracted from parse trees, and the accuracy of the decoding therefore
cannot be guaranteed especially for texts with complicated grammar structures.

In our study, we explore how to utilize the syntactic parse trees to help learning-
based coreference resolution. Specifically, we directly utilize parse trees as a struc-
tured feature, and then use a kernel-based method to automatically mine the knowl-

63

edge embedded in parse trees. The structured syntactic feature, together with other
normal features, is incorporated in a trainable model based on Support Vector Ma-
chine (SVM) (Vapnik 1995) to learn the decision classifier for resolution. Indeed,
using kernel methods to mine structural knowledge has shown success in some
NLP applications like parsing (Collins and Duffy 2002; Moschitti 2004a) and re-
lation extraction (Zelenko et al. 2003; Zhao and Grishman 2005). So far, there
is a few work that applies such a technique to reference resolution (Yang et al.
2006b; Iida et al. 2006). But most of them focus on pronoun resolution, and to our
knowledge, no work is on the coreference resolution task.

Compared with previous work, our approach has several advantages: (1) The
approach utilizes parse trees as a structured feature, which avoids the efforts of
decoding parse trees into a set of syntactic features in a heuristic manner. (2) The
approach is able to put together the structured feature and the normal flat features
in a trainable model, which allows different types of information to be considered
in combination for both learning and resolution. (3) The approach is applicable
for a practical coreference resolution system, as the syntactic information can be
automatically obtained from machine-generated parse trees. And our study shows
that the approach works well under the commonly available parsers.

We evaluate our approach in the newswire domain, on the MUC and the ACE
data set. The experimental results indicate that the structured syntactic feature in-
corporated with kernels can significantly improve the resolution performance. Es-
pecially for the resolution of pronoun, the approach brings up to 8% in F-measure.

5.2.1 Related Work

One of the early work on pronoun resolution relying on parse trees was proposed by
Hobbs (1978a). For a pronoun to be resolved, Hobbs’ algorithm works by search-
ing parse trees of the current text. Specifically, the algorithm processes one sen-
tence at a time, using a left-to-right breadth-first searching strategy. It first checks
the current sentence where the pronoun occurs. The first NP that satisfies con-
straints, like number and gender agreements, would be selected as the antecedent.
If the antecedent is not found in the current sentence, the algorithm would traverse
the trees of previous sentences in the text. As the searching processing is com-
pletely done on parse trees, the performance of the algorithm would rely heavily
on the accuracy of the parsing results.

Lappin and Leass (1994a) reported a pronoun resolution algorithm which uses
the syntactic representation output by McCord’s Slot Grammar parser. A set of
salience measures (e.g. Subject, Object or Accusative emphasis) is derived from
the syntactic structure. The candidate with the highest salience score would be
selected as the antecedent. In their algorithm, the weights of salience measures

64

have to be assigned manually.
Luo and Zitouni (2005) proposed a coreference resolution approach which also

explores the information from the syntactic parse trees. Different from Lappin and
Leass (1994a)’s algorithm, they employed a maximum entropy based model to au-
tomatically compute the importance (in terms of weights) of the features extracted
from the trees. In their work, the selection of their features is mainly inspired by the
government and binding theory, aiming to capture the c-command relationships be-
tween the pronoun and its antecedent candidate. By contrast, our approach simply
utilizes parse trees as a structured feature, and lets the learning algorithm discover
all possible embedded information that is necessary for pronoun resolution.

Our previous work (Yang et al. 2006b) systematically explored the utility of
the structured syntactic features for pronoun resolution. Iida et al. (2006) also tried
a similar strategy on Japanese zero-anaphora resolution, but using dependency tree
instead of syntactic parse tree as in (Yang et al. 2006b).

5.2.2 The Resolution Framework

Our coreference resolution system adopts the common learning-based framework
similar to those by Soon et al. (2001a) and Ng and Cardie (2002a).

In the learning framework, a training or testing instance is formed by a possible
anaphor and one of its antecedent candidate. During training, for each anaphor
encountered, a positive instance is created by paring the anaphor and its closest
antecedent. Also a set of negative instances is formed by paring the anaphor with
each of the non-coreferential candidates. Based on the training instances, a binary
classifier is generated using a particular learning algorithm. During resolution,
an encountered noun phrase to be resolved is paired in turn with each preceding
antecedent candidate to form a testing instance. This instance is presented to the
classifier which then returns a class label with a confidence value indicating the
likelihood that the candidate is the antecedent. The candidate with the highest
confidence value will be selected as the antecedent of the possible anaphor.

As with many other learning-based approaches, the knowledge for the refer-
ence determination is represented as a set of features associated with the training
or test instances. In our baseline system, the features adopted include lexical prop-
erty, morphologic type, distance, salience, parallelism, grammatical role and so on.
These features usually have a binary value. To distinguish with the feature based
on parse tree, we call them “flat“ features throughout the remaining report. Inter-
ested readers may like to refer to the other reports for the detailed description of
the resolution framework of the system as well as the flat features.

65

5.2.3 Incorporating Structured Syntactic Information

In this section we will discuss how to represent parse tree as a structured feature
and how to use the kernels to incorporate this feature to do leaning and resolution.

Main Idea

A parse tree that covers a pronoun and its antecedent candidate could provide
us much syntactic information related to the pair. The commonly used syntactic
knowledge co-reference resolution, such as grammatical roles or the governing re-
lations, can be directly described by the tree structure. Other syntactic knowledge
that may be helpful for resolution could also be implicitly represented in the tree.
Therefore, by comparing the common substructures between two trees we can find
out to what degree two trees contain similar syntactic information, which can be
done using a convolution tree kernel.

The value returned from the tree kernel reflects the similarity between two in-
stances in syntax. Such syntactic similarity can be further combined with other
knowledge to compute the overall similarity between two instances, through a
composite kernel. And thus a SVM classifier can be learned and then used for
resolution. This is just the main idea of our approach.

Normally, parsing is done on the sentence level. However, in many cases a
pronoun and an antecedent candidate do not occur in the same sentence. To present
their syntactic properties and relations in a single tree structure, we construct a
syntax tree for an entire text, by attaching the parse trees of all its sentences to an
upper node.

For each sentence in an input text, a parse tree is automatically generated by
a given parser. The trees of all different sentences are attached to a newly created
root to build a large syntax tree for the entire text, based on which the structured
syntactic feature is computed.

Structured Syntactic Feature

Having obtained the parse tree of a text, we shall consider how to select the ap-
propriate portion of the tree as the structured feature for a given instance. As each
instance is related to a possible anaphor and an antecedent candidate, the structured
feature at least should be able to cover both of these two expressions. Generally,
the more substructure of the tree is included, the more syntactic information would
be provided, but at the same time the more noisy information that comes from pars-
ing errors would likely be introduced. In our study, we consider several structured
features that contain different substructures of the parse tree.

66

Figure 5.4: Parse tree for instance “the man in the room saw him"

For illustration, we use the sentence “The man in the room saw him. ” . The
parse tree for the sentence is shown in Figure 5.4.

Consider the pronominal anaphor “him" and the antecedent candidate “The
man". An instance inst(“him", “The man") is created. The following structured
feature may be applied to the instance.

Tree_Ana_Candi: The feature includes the nodes occurring in the shortest
path connecting the pronoun and the candidate, via the nearest commonly com-
manding node. Also it includes the first-level children of the nodes in the path. To
reduce the data sparseness, the leaf nodes representing the words are not incorpo-
rated in the feature, except that the word is the word node of the “DET" type (this
is to indicate the lexical properties of an expression, e.g., whether it is a definite,
indefinite or bare NP)

If the pronoun and the candidate are not in the same sentence, we do not include
the nodes denoting the sentences (i.e., “S" nodes) before the candidate or after the
pronoun.

Figure 5.5 shows such a feature for the instance i“him”, ”the man”, which is
highlighted with dash lines. Note that to distinguish from other words, we explic-
itly mark up in the structured feature the pronoun and the antecedent candidate
under consideration, by appending a string tag “ANA" and “CANDI" in their re-
spective nodes (e.g.,“NN-CANDI” for “man” and “PRP-ANA” for “him" as shown
in Figure 5.5).

From the figure, the structured feature can disclose at least the following infor-

67

Figure 5.5: The structured feature Tree_Ana_Candi for instance inst(“the man",
“him") in the sentence ‘the man in the room saw him"

mation:

1. The candidate is post-modified by a preposition phrase. (the node “PP” for
“in the room” is included)

2. The candidate is a definite noun phrase (the article word “the" is included).

3. The candidate is in a subject position (NP-S-VP structure)

4. The anaphor is an object of a verb. (the node “VB” for “saw” is included).

5. The candidate is c-commanding the anaphor (the parent of the NP node for
“the main in the room" is dominating the anaphor (“him")

All the above information is important for reference determination in the pro-
noun resolution.

Tree_Candi: The feature includes the whole tree structure related to the NP of
the candidate. Given a candidate, we first identify the entry of the head word (e.g.,
“man"). Then we trace the ancestors of the head word in the tree from bottom to
top, until we get to first NP node whose parent is a non-NP node and whose right
siblings are all non-NP node (i.e. the NP node for “the man in the room"). The NP
node found is the most upper node covering the expression of the anaphor.

68

Figure 5.6: The structured feature Tree_Candi for instance inst(“the man", “him")
in the sentence ‘the man in the room saw him"

Figure 5.6 shows the feature for the sample sentence. Such a feature could
represent more detailed description information of the candidate.

Tree_Ana: The feature includes the whole tree structure related to the NP
of the candidate. The selection of the feature is similar to that for the feature
Tree_Candi. Given an anaphor, we first identify the entry of the head word (e.g.,
“him"). Then we trace the ancestors of the head word in the tree from bottom to
top, until we get to first NP node whose parent is a non-NP node and whose right
siblings are all non-NP node (i.e. NP node for “him").

Figure 5.7 shows the feature for the sample sentence. Such a feature could
represent more detailed description information of the anaphor.

5.2.4 Encoding Context via Word Sequence Kernel

The above structures aim at describing the interaction between one referential and
one referent; if such interaction is observed on another mention pair, an automatic
algorithm can establish if they corefer or not. This kind of information is the most
useful to characterize the target problem, however, the context in which such inter-
action takes place is also very important. Indeed, natural language proposes many
exceptions to linguistic rules and these can only be detect by looking at the context.

A typical way to encode context in NLP is regards the use of a window of k

69

Figure 5.7: The structured feature Tree_Ana for instance inst(“the man", “him") in
the sentence ‘the man in the room saw him"

words around the target concept, e.g. the mention candidate. More sophisticated
approaches use either n-grams or important co-occurrent word pairs which are not
necessarily sequential, i.e. there can be some other not important words between
them.

The extraction of all these features is expensive in term of program coding
and the dimension of feature spaces that would result from the extraction of all
possible n-grams (containing also gaps). The solution to this problem is provided
by the string kernel with gap based on words (introduced in Section 5.1.1).

For example, given the following context of Bill Gates: and so Bill Gates says

that, i.e. a window of 4 words. A string kernel would extract features likes: Bill

Gates says that, Gates says that, Bill says that, so Gates says that, and so that and
so on.

5.2.5 Experiments

In our experiments, we tested the Polynomial Kernel, Tree Kernels and Word Se-
quence Kernel and on the pronoun and Coreference resolution tasks on the MUC-6
and ACE03-BNews data set. Regarding Tree Kernels for syntax, we only show
the results of the Tree_Ana_Candi structure as it was the only one producing an
improvement.

A preliminary investigation of different kernel combinations on a validation set

70

Table 5.1: Results of the pronoun resolution
MUC-6 ACE02-BNews

R P F R P F

Base Features 64.3 63.1 63.7 58.9 68.1 63.1
Base Features+Syntactic Tree 65.2 80.1 71.9 65.6 69.7 67.6

showed that

CK = TK(T1, T2) · PK(~x1, ~x2) + PK(~x1, ~x2) (5.8)

is the best combination between the tree kernel, TK, applied to the Tree_Ana_Candi
structure and a polynomial kernel, PK, of degree 2, over the basic manual features.

Additionally, the word sequence kernel, SK, improved the above kernel by
simply summing it to the combination, i.e. by using CK + SK in the learning
algorithm.

Table 5.1 lists the results for the pronoun resolution. We used PK on the Soon
et al.’s features as the baseline. On MUC6, the system achieves a recall of 64.3%
and precision 63.1% and an overall F-measure of 63.7%. On ACE02-BNews, the
recall is lower 58.9% but the precision is higher, i.e. 68.1%, for a resulting F-
measure of 63.1%. In contrast, adding the syntactic structured feature leads to a
significant improvement in 17% precision for MUC-6 with a small gain (1%) in
recall, whereas on the ACE data set, it also helps to increase the recall by 7%.
Overall, we can see an increase in F-measure of around 8% for MUC and 4.5% for
ACE02-BNews. These results suggest that the structured feature is very effective
for pronoun resolution.

Table 5.2 lists the results on the coreference resolution. We note that adding the
structured feature to the polynomial kernel, i.e. using the model PK+TK, improves
the recall of 1.9% for MUC-6 and 1.8% for ACE-02-BNews and keeps invariate
the precision. Compared to pronoun resolution, the improvement of the overall F-
measure is smaller (less than 1%). This occurs since the resolution of non-pronouns
case does not require a massively use of syntactic knowledge as in the pronoun
resolution problem. Still, the enhancement in F1 suggests that adding structured
features can help in some cases, e.g., the identification of NP pairs in a predicative
structure.

Finally, it should be noted the positive impact of the context information pro-
vided by the string kernel, especially in the MUC dataset, i.e. +0.6%. This shows
that the classification algorithm can exploit the knowledge about different contexts
to make different decisions, e.g. it can disambiguate the sense of bank in the two

71

Table 5.2: Results of the coreference resolution
MUC-6 ACE02-BNews

R P F R P F

PK 61.5 67.2 64.2 54.8 66.1 59.9
PK+TK 63.4 67.5 65.4 56.6 66.0 60.9
PK+TK+SK 64.4 67.8 66.0 57.1 65.4 61.0

cases: the central bank will finance new construction plans, for example, the build-

ing of a river bank in the city. vs. the central bank will finance new construction

plans, for example, the bank will finance a new hospital in the city. Although, the
set of words in the two sentences are very similar the windows of 4 words around
bank are quite different.

5.3 Kernels for Alias Resolution

Most methods currently employed by coreference resolution (CR) systems for
identifying coreferent named entities, i.e. aliases, are fairly simplistic in nature,
relying on simple surface features such as the edit distance between two strings
representing names.

The fundamental problem with this approach is that it fails to take into account
the structure contained within names. For instance, we know from experience that
last names tend to be more unique than first names and therefore, the name Jane

Hauk is slightly more likely to be coreferent with the name Hauk than the name
Jane even though both names are the same edit distance away from Jane Hauk.

In light of this shortcoming of existing named entity resolution systems, we
propose an alternative method that takes advantage of the syntactic structure of
names and combines this information with the use of kernel methods, a set of more
sophisticated and flexible functions for measuring similarity between two objects.

For the purposes of this paper, we focused exclusively on proper nouns, or
named entities. Table 1 provides several examples of the cases we were concerned
with, taken from the MUC 6 corpus (Chinchor and Sundheim 2003). Our primary
goal was to determine whether improving named entity resolution using special-
ized features and a separate classifier could lead to an overall improvement in per-
formance of a general CR system. In particular, we sought to exploit syntactic
structure in proper names to help identify aliases. This paper describes our ap-
proach.

72

5.3.1 Related Work

Although several previous studies have been conducted that deal with the named
entity resolution task, they are all relatively simplistic in that they either do not
rely on any machine learning mechanism or do not make use of names’ syntactic
structures, instead treating them as simple strings.

Wee M. Soon (2001) include a basic alias feature in their CR architecture. The
binary feature, which is set to true if two mentions are determined to be likely
aliases, makes use of several specialized heuristics for different types of named
entities. For people, only the last token in each string is compared for equality.
For organizations, one mention is attempted to be made into an abbreviation of the
other. This approach has the advantage of being able to fairly reliably detect ab-
breviations, but it does not treat mentions marked as people in a very sophisticated
way.

Bontcheva et al. (2002) present a more sophisticated approach in the form of a
set of binary rules that collectively make up a named entity resolution module. In
addition to the last token match rule used by Soon et al., several more rules are
introduced, including:

• possessive matching – matches a name and its possessive form (e.g. Greg

and Greg’s).

• prepositional phrase matching – matches organization names that have
been rotated around a preposition (e.g. Department of Defense and Defense

Department).

• multi-word name matching – matches two phrases in which one name is a
substring of another (e.g. The President of the United States and The Presi-

dent).

Several other rules are used. One shortcoming of this approach as it is used in
their system is that if any single rule fires, two mentions are classified as aliases.
In other words, no machine learning is employed.

Name Alias

BJ Habibie Mr. Habibie
Federal Express Fedex
Ju Rong Zhi Ju

Table 5.3: Examples of coreferent named entities (aliases) taken from the MUC 6
corpus.

73

Uryupina (2004) presents the most in-depth study of the subject. They split the
task of matching two aliases into three stages: normalization – removing largely
irrelevant information such as capitalization, punctuation and determiners; sub-

string selection – picking the most salient token in each name for comparison; and
matching – comparing the substrings. After developing several different features
for each of these processing stages and testing a variety of feature configurations,
they report that sophisticated matching algorithms can successfully improve base-
line performance of named entity resolution. The use of effective normalization
and substring selection algorithms also leads to marginal but statistically signifi-
cant gains.

5.3.2 Method

All previous studies have treated names as simple strings. We sought to improve
upon past work by adding syntactic information to the feature set by tagging the
parts of a name (e.g. first name, last name, etc.) as illustrated in Figure 5.8.

Figure 5.8: A proper name labeled with syntactic information.

One clear advantage of this approach is that, assuming information about a
name’s internal structure is available, the substring selection task becomes straight-
forward for nearly all cases: simply compare the last names of two mentions.

However, a more promising advantage to this type of name representation is
that it may eliminate the need for explicitly performing a substring selection proce-
dure altogether, when it is used in conjunction with a machine learning algorithm.
If a classifier is trained on many such examples, it is likely to assign a high weight
to matching last names and a low weight to first names. In other words, the three
name matching stages described by Uryupina (2004) may be replaced entirely with
a learning algorithm. This is what we hoped to accomplish. This method, however,
poses two significant problems: (1) how to obtain the name structure information
and (2) how to represent training instances for a learner. We will address each of

74

these problems in turn.

Name Internal Structure

Rather than build a tool for parsing proper names, we took advantage of an existing
tool, developed by Hal Daumé III, called the High Accuracy Parsing of Name
Internal Structure (HAPNIS) script2.

HAPNIS takes a name as input and returns a tagged name like what is shown
in Figure 5.8. It uses a series of heuristics in making its classifications based on
information such as the serial positions of tokens in a name, the total number of
tokens, the presence of meaningful punctuation such as periods and dashes, as well
as a library of common first names which can be arbitrarily extended to any size.
The tag set consists of the following: surname, forename, middle, link, role, and
suffix.

Daumé reports a 99.1% accuracy rate on his test data set. We therefore con-
cluded that it was sufficient for our purposes.

Tree Kernels

Once we have a collection of tagged names, the next problem is how to measure
similarity between a pair of names for the purpose of training a classifier. Due
to the natural representation of a name in a tree structure, we chose to follow re-
cent successes using tree kernels (Moschitti 2004b, 2006a) with support vector
machines (SVMs).

The basic principle behind a tree kernel, or more specifically a partial tree
kernel, as presented in Moschitti (2006), is that two parse trees are decomposed
into all their possible partial trees3 and then the partial trees are compared to obtain
a measure of similarity. Nodes higher in a tree will appear in more partial trees and
will therefore factor more significantly into the similarity computation.

However, using partial tree kernels in this manner will only provide a similarity
measure between parse trees which may then be used as a feature in a learning
algorithm. A learning algorithm that uses a tree kernel as its only feature will
essentially only be determining an optimal threshold value for separating positive
and negative instances. Instead, we would like the learning algorithm to learn
deeper characteristic differences between the training instances themselves. That

2The script is freely available at http://www.cs.utah.edu/ hal/HAPNIS/.
3A partial tree is simply a subtree without any constraint that the subtree satisfy any rules of

grammar. In other words, a set of partial trees is obtained by ignoring the semantics of a parse tree
and extracting all its subtrees. The term subtree, however, already has a meaning in this context,
namely, one in which the grammatical constraint holds.

75

is, the learning algorithm should learn what qualities of a training instance make it
a positive (coreferent) or negative instance.

We therefore developed the following method of collapsing two names into a
single tree representation, illustrated in Figure 5.9. This representation roughly
reflects how similar two names are, but leaves the task of determining which ele-
ments of the tree are relevant for classification up to the learning algorithm. Note
that this representation is essentially identical to the tree representation of names
shown in Figure 5.8, but with numerical values at the leaf nodes instead of strings.
These numerical values constitute a similarity measure between the corresponding
parts of the two names in the training instance.

Figure 5.9: A tree representing a training instance for the names Gregor Jo-

hann Mendel and Charles Robert Darwin. The actual training instances contained
branches for all of the possible HAPNIS name tags.

We used a string kernel function to compute the similarity between parts of
names. String kernels work in essentially the same way as tree kernels, by ex-
tracting all of substrings of a string and comparing them with all the substrings of
another string (Lodhi et al. 2002). One important property of string kernels is that
the set of substrings it considers includes substrings of contiguous and noncontigu-
ous letters. For example, the set of substrings for the string bug is: {bug, bu, bg,
ug, b, u, g}. This approach is far superior to a simple string match for two reasons.
First, it offers a graded measure of similarity instead of a rigid binary measure that
a string match feature would provide. Second, it is not nearly as sensitive to alter-
native spellings or misspellings of names (e.g. Hezbollah and Hizballah). In a test
described below, the string kernel function was also found to be more reliable for
classifying aliases than the Levenshtein edit distance metric.

A tree kernel function ordinarily expects strings at the leaf nodes and, in fact,
performs a string kernel when comparing leaf nodes to obtain a similarity measure.

76

Feature Recall Precision F-measure

String kernel 49.5% 60.8% 54.6%

Edit distance 23.9% 53.1% 33.0%

Table 5.4: Comparison between string kernels and edit distance as predictors of
aliases.

Because we used numerical values for leaf nodes, we modified the tree kernel
function to take the product of these values when comparing leaf nodes to obtain
some measure of their mutual similarity.

5.3.3 Data

We used the MUC 6 coreference corpus for all experiments. For our preliminary
experiments, we extracted only those pairs in the MUC 6 testing set in which both
mentions were proper names, as determined by the named entity recognizer built
in to the general CR system we worked with. This set of proper names contained
about 37,000 pairs of which about 600 were positive instances. About 5,500 pairs
were randomly selected as test instances and the rest were used for training.

For the final experiment involving the full CR system, we used the complete
MUC 6 corpus.

5.3.4 Experiments

Preliminary Experiments

As explained earlier, we chose to use a string kernel function to obtain numerical
measures of similarity between corresponding parts of names instead of Leven-
shtein edit distance. This decision was based on an experiment in which we trained
a decision tree classifer with the smaller data set of only proper name pairs, using
either the string kernel of the two names or the edit distance of the two names as
the only feature. The results appear in Table 2. String kernels performed better by
a measure of 21.6 percentage points in the F-measure.

The second preliminary experiment we ran was to find whether using the tree-
based feature described above could improve beyond the performance of using
only a string kernel feature. First, an SVM classifier was trained using only a
string kernel feature, just as in the previous experiment. Then an SVM classifier
was trained using only the tree-based feature. The results of the comparison are
shown in Table 3. Different figures were obtained for the string kernel feature

77

Feature Recall Precision F-measure

String kernel 58.4% 67.5% 62.6%

Tree-based
feature

64.8% 70.0% 67.3%

Table 5.5: Comparison between string kernels and tree-based feature using name
internal structure information.

Features Recall Precision F-measure

Soon et al. 43.6% 74.8% 55.0%

+ Tree-based feature 43.8% 75.2% 55.4%

Table 5.6: The effect on coreference resolution performance of adding the tree-
based feature to the existing basic set of features from Soon et al. (2001)

because an SVM classifier was used instead of a decision tree. We did, however,
use the same data set. The tree-based feature that took name internal structure into
account led to notably better performance than just the string kernels, improving
both recall and precision.

Final Experiment

The goal of our final experiment was to incorporate our new feature into a full CR
system to see if the improvement transferred to a more comprehensive scenario.

We started with a basic implementation of the Wee M. Soon (2001) system.
We modified it slightly to employ two different classifiers, rather than just one.
One classifier was used only for instances involving two proper names and the
other classifier was used for all other cases. Furthermore, the former classifier was
modified to use an SVM rather than a decision tree. The reason for this is simply
that our new tree-based feature required the use of an SVM.

The system was first run with both classifiers training on the exact same basic
set of features described in Soon et al. Next, the classifier for proper names was
modified to include the tree-based feature. The results are shown in Table 4. Use
of the tree-based feature marginally improved overall CR performance.

78

5.3.5 Discussion and Conclusion

Although the inclusion of this new feature for identifying aliases on the basis of
the similarity of the internal structure of names only had a marginal positive effect
on overall performance, we consider this a promising result for the approach we
described. There are several elements of our method that could be improved and
refined that may lead to more significant performance gains.

First, as explained earlier, we chose to use the HAPNIS tool for extracting
structure information in names. This tool, though it does seem adequate for most
practical conditions, it has a few shortcomings. For instance, its behavior is based
only on a handful of fixed rules, and is not the product of extensive training with
a machine learning model. Thus, we are likely to see the greatest change in per-
formance by refining this stage of the process and developing a more sophisticated
tool for the job.

Second, we only tried representing the instances such that there is just one
branch extending from the root for each part of a name. This method does not fully
take advantage of the tree kernel function, which is most effective when there are
multiple levels in a tree. Therefore, an alternative approach might involve a more
complex tree representation. For instance, because the last name is undoubtedly
the best indicator of whether two names are coreferent, it may make sense to place
that branch higher in the tree and, perhaps, make the rest of the parts of the name
children of the last name node.

Nevertheless, we have demonstrated that internal name structure is useful for
named entity resolution and our approach is feasible and promising. Furthermore,
this study suggests that developing specialized features for particular types of noun
phrases can be an effective technique for CR. Further work is surely needed to
attempt the types of improvements just described and attempt to generalize these
findings by focusing on improving other types of noun phrases.

79

Chapter 6

Annotation and Evaluation

Metrics

Ron Artstein, David Day, Janet Hitzeman and

Massimo Poesio

6.1 The ACE 2005 CDC Corpus

Since there was no other sizable cross-document coreference data set available for
which well-motivated intra-document coreference annotations were also available,
Janet Hitzeman and David Day created and contributed to the workshop a ver-
sion of the complete English ACE2005 EDT data set annotated for cross-document
coreference.

6.1.1 Callisto/EDNA Annotation Tool

In order to create the ELERFED cross-doc coreference corpus, we made use of
the previously developed Callisto/EDNA annotation tool. This is a specialized an-
notation task plug-in for the Callisto corpus annotation tool.1. This Callisto client
plug-in requires the installation and set up of a separate Tomcat web server and
associated Lucene web services plugins created for this task. The ACE2005 source
and APF (standoff annotation) data are hosted on a server and indexed using a cus-
tomized Lucene document parser. The result of this process is that search engine
clients can search the ACE2005 repository using specialized structure-dependent
queries, such as searching for strings within entity name mentions, and/or within

1http://callisto.mitre.org/

80

entities of a particular type and sub-type. The Callisto annotation tool task pro-
vided an integrated interface where EDT-annotated documents can be examined
and individual entities can be linked to other entities in the corpus.

6.1.2 Corpus Pre-Processing and Cross-Document Co-Reference An-

notation

To make the annotation process tractable, it had been already been noted in earlier
discussions within the ACE community that entities without name mentions should
be avoided in the cross-document coreference resolution process. Therefore, we
configured the Callisto/EDNA tool to focus the annotation process on entities that
met the following criteria:

1. The entity had at least one mention of type NAME;

2. The entity was of type PER, ORG, GPE or LOC.

Our goal in providing a fully annotated ACE cross-document corpus was to proceed
as quickly as possible, since we were well aware of the limited time and staffing
available for this task. To expedite the annotation process, we decided to apply
an initial automated pre-annotation (cross-doc linking) process prior to manual an-
notation. We had observed in early efforts that much of the time invested by the
human annotator was in physically linking frequently occurring entities to each of
the numerous entities in other documents where such entities were mentioned. For
example, “the President of the United States” occurred in a significant percentage
of the ACE documents, and the annotation of this phrase would necessitate a labo-
rious process of stepping through the physical clicking (actually a whole cascade of
user mouse actions) of many highly probable co-referring entities. The automatic
pre-processing procedure was written in Java to load the complete ACE2005 corpus
EDR annotations into memory, after which it proceeded to link each pairwise entity
just in case those two entities were of exactly the same TYPE and SUB-TYPE and
the entities shared at least one mention of type NAME whose strings were identical
(using a case-sensitive string comparison test). Of course, this automatic linking
procedure produced inappropriate links. The Callisto/EDNA annotation tool pro-
vided the ability to quickly review and, if warranted, edit any links made earlier,
whether by this automatic process or by a human annotator.

After an initial joint foray into the manual cross-document annotation process
by both of us, Dr. Hitzeman pursued and completed the vast majority of annotation
before the workshop and during its first week. The resulting corpus (derived from
the ACE2005 English EDT corpus) consists of approximately 1.5 million char-
acters, 257,000 words and 18,000 distinct document-level entities (prior to cross-

81

document linking), and approximately 55,000 entity mentions. The document-
level entities are distributed across entity types in the following way: PER 9.7K,
ORG 3K, GPE 3K, FAC 1K, LOC 897, WEA 579, VEH 571. The entity men-
tions are distributed across mention type in this way: PRO 20K, NAM 18K, NOM
17K. Those entities that satisfy the constraints required for them to be included in
the cross-document annotation process number 7,129. After the combination of
automatic and manual annotation, the number of cross-document entities numbers
3,660. Of these, 2,390 are entities that are mentioned in only one document. The
main effort in annotating these data required approximately 2 staff weeks, though
review and editing continued for some time into the workshop.

6.2 The Arrau Corpus

The Arrau corpus of anaphoric relations was created at the University of Essex be-
tween 2004 and 2007 as part of the Arrau project, EPSRC grant number GR/S76434/01.2

The project introduced an annotation scheme specifically targeted at marking two
phenomena which had been difficult to annotate: ambiguous expressions which
may refer to more than one object from previous discourse, and expressions which
refer to abstract entities such as events, actions and plans. During the 2007 summer
workshop the corpus was extended, consolidated, and converted for use with the
anaphora resolution system developed at the workshop.

6.2.1 Composition

The corpus consists of a mixture of genres – dialogue, narrative and newswire.
Task-oriented dialogues from the Trains-91 and Trains-93 corpora (Gross et al.
1993; Heeman and Allen 1995) were marked for coreference in Essex in the sum-
mer of 2006. Narratives, including five texts from the Gnome corpus (Poesio
2004b) and the full English Pear Stories corpus (Chafe 1980)3 were annotated in
Essex in the summer of 2006 and in the spring of 2007, respectively. The final and
largest part of the corpus is newswire text from the Wall Street Journal portion of
the Penn Treebank (Marcus et al. 1993), annotated in stages in Essex in the sum-
mers of 2006 and 2007, and at Hopkins during the workshop. The composition of
the corpus is summarized in Table 6.1.

2http://cswww.essex.ac.uk/Research/nle/arrau/
3http://www.pearstories.org

82

Source Texts
Markables

Words
total anaphorica

Trains 91 16 2874 1679 14496
Trains 93 19 2342 1327 11287
Gnome 5 6045 2101 21599
Pear stories 20 3883 2194 14059
Wall Street Journal 50 9177 2852 32771

aAnaphoric markables are all the ones for which an explicit nominal an-
tecedent was identified.

Table 6.1: Composition of the Arrau corpus

6.2.2 Annotation Scheme

The corpus was created using the MMAX2 tool (Müller and Strube 2003), which
allows marking text units at different levels. All noun phrases are treated as mark-
ables which can be anaphoric or serve as antecedents (or both), and all clauses are
treated as potential antecedents for discourse anaphora. For those texts where NPs
and clauses were not already marked we identified them using the Charniak parser
(Charniak 2000) and then corrected the output by hand. The scheme allows for
marking a small number of attributes on each NP – gender, grammatical function,
number, person, and an attribute which combines animacy and a concrete/abstract
distinction.

Each noun phrase is marked as either anaphoric, discourse-new, or non-referential.
If an object is referential then the referent is identified – in a restricted domain
like Trains the referent is selected from a list, and otherwise it is entered as free
text. Expressions which are anaphoric are linked to previous discourse. In order
to allow the marking of expressions with ambiguous antecedents, anaphoric links
are marked by pointers from an anaphoric expression to its antecedent; ambigu-
ity is indicated by multiple pointers from a single anaphoric expression (Poesio
and Artstein 2005). Anaphora is therefore not an equivalence relation and mark-
ables form more complex structures than equivalence sets indicating identity of
reference. Reference to an event, action or plan is marked by a pointer from the
referring NP to the clause that introduces the abstract entity (Artstein and Poesio
2006). The scheme also allows the marking of certain bridging relations, namely
part-of, set membership, and a converse relation (when an expression has a differ-

ent referent than a preceding expression).

83

Source Texts
Markables

Words
totala coreferentb

Arrau development 3 756 344 2593
Arrau testing 16 3289 1619 11760
Arrau training 31 5132 1874 18418
VPC develoment 15 2471 807 9900
VPC training 20 5624 2037 21218
Moscow testing 6 213 2295
Moscow training 34 1901 20234

Total testing 22 1832 14055
Total trainingc 83 5637 57557

aThe anaphora resolution system only uses coreferent markables, so we did
not extract all the markables from the Moscow corpus.

bCoreferent markables are those which participate in an anaphoric chain as
either anaphor or antecedent.

cThe total training data is less than the sum of the individual components
because two texts are annotated in both Arrau and the VPC.

Table 6.2: Extended Arrau corpus

6.2.3 Using the corpus

The anaphora resolution system developed at the workshop treats anaphoric refer-
ence as an equivalence relation, and consequesntly requires both training and test
data which divide the markables into equivalence classes. In order to run the sys-
tem on the Arrau corpus we created a new annotation level of markable sets, which
included all the anaphors and their antecedents. The markable sets were derived
from the original markable pointers, and for ambiguous anaphors we just chose
the first marked interpretation, assuming that this would be the most salient one.
We also augmented the Wall street Journal part of the corpus with additional texts
from the Vieira and Poesio Corpus (Poesio and Vieira 1998b) and the Moscow
corpus being created by Prof. Kibrik and his group at the University of Moscow.4

The extended corpus was divided into development, training and test sets, with the
test texts all taken from section 23 of the Penn Treebank. The composition of the
extended corpus is shown in Table 6.2.

In the course of the workshop we only got to use the Arrau corpus with the

4

84

baseline system. Performance was at around 0.40 (MUC F-score), give or take a
few percentage points, regardless of which sets were used for training and testing.
We plan to run the improved systems on the corpus, and release the corpus for
general use.

6.3 Co-Reference Resolution Scoring Metrics

6.3.1 Existing metrics

A variety of metrics have been used to evaluate IDC, though the predominant met-
ric in the literature is that of the MUC-6 so-called “model theoretic” coreference
metric (Vilain et al. 1995). This metric tends to produce relatively high scores
compared to other available metrics, but continues to be used to compare systems,
so the workshop remained committed to providing performance measures in those
terms.

The MUC-6 model-theoretic metric captures the sets of mentions derived from
intersections between the system-generated sets and the reference sets. By defin-
ing the theoretical lower-limit of operations required to bring the system set into
conformance with the reference set, the metric defines a counterpart to the sys-
temâĂŹs recall score. Conversely, one can define the lower bound on operations
that would bring the reference set into conformance with the system set as the
systemâĂŹs precision score. These two scores are then combined using the F-
measure harmonic mean to derive the overall MUC-6 coreference score. Among
the criticisms applied to the MUC-6 metric is that it fails to distinguish between
the number of elements in the system/reference intersection sets, but assigns equal
weight to the operations required to bring them back into conformance. Thus, if
a system inappropriately links two very long chains and correctly separates out a
short coreference chain, this generates the same scalar value as when a system links
one of the long chains to the much shorter chain. Intuitively there are more pairs
of mentions that âĂIJin the wrong coreference relationshipâĂİ in the first situation
compared to the second, but the MUC-6 scorer treats the single âĂIJde-linkingâĂİ
operation as the âĂIJcostâĂİ of their being out of alignment. In addition, the way
in which recall and precision are computed completely separately allows the MUC-
6 scorer to implicitly perform conflicting operations in order to compute the degree
of mis-alignment (number of operations required to bring system and reference into
conformance). In this sense the metric can be viewed as overly âĂIJoptimisticâĂİ
in its assignment of the cost of an inappropriate link. Finally, another criticism
leveled against the MUC-6 metric is that it is not defined for singleton mention
sets âĂŞ if either the reference or the system coreference chains include chains of
single mentions, these are simply ignored by the computation. Clearly in the case

85

of cross-document coreference it is highly likely that entities might be mentioned
in only a single document from a set.

B-Cubed (Bagga and Baldwin 1998b) is a metric designed to the MUC-6 scor-
erâĂŹs inattention to the number of mentions within an intersection set. In addi-
tion, this metric was specifically designed by its authors to be applicable to the task
of evaluating cross-document coreference. It adopts the identical model-theoretic
view of the system and reference mention sets, but, rather than summing the num-
ber of operations needed to bring each into conformance with the other, B-Cubed
computed a weighted score for each intersection sub-set (in the recall and precision
scenarios) based on the number of mentions in/out of the same set membership.
The result is greater fidelity in distinguishing links that bring together chains of
different lengths. The metric is also defined for handling coreference chains that
consist of singleton mentions. In general the B-Cubed scores tend to be somewhat
lower than those of the MUC-6 metric.

The ACE Value metric (Doddington 2001) was introduced in the ACE com-
munity evaluations. It computes a score based on a particular mapping between
system entities and reference entities. Entities that fail to be mapped are assigned
a cost, and the quality of mapped entities is a function of the number of mentions
in common, as well as other features associated with the entities (their type, sub-
type, mention-type, etc.). The ACE scorer generates the best possible score for a
given system output by conducting a dynamic programming search of all possible
mappings. The final ACE Cost Value is reported as a percentage of the possi-
ble (optimal) value (derived by mapping reference to itself) given the systemâĂŹs
mapping value. Given the cost values assigned to false alarms, the ACE metric
can take on negative values. The ACE value makes use of a cost matrix that treats
different types of mentions and entities differently, based on what was studied as
of value to real intelligence analysts using the results of a hypothetical ACE-type
extraction system. The complexity of the scorer, including its cost matrix, has
tended to reduce the use of this metric in reviewed publications, outside those de-
veloped specifically for the ACE community evaluations. The perl script authored
by George Doddington, and distributed via the ACE web site, is the only known
complete and official implementation of this scoring metric.

Xiaoqiang Luo of IBM has developed an alternative coreference scoring met-
ric that incorporates much of the approach found in the ACE scorer. LuoâĂŹs
Constrained Entity-Alignment F-measure (Luo 2005) also conducts an optimal
mapping of system to reference mention chains that uses dynamic programming
to perform this search efficiently. Unlike the ACE metric, it does not make use
of a mention-specific cost matrix. It computes an analogue to recall and precision
by measuring the alignment scores as a function of the system to the reference
(ignoring the reference or system entities that are not mapped in these respective

86

conditions). So far as we know LuoâĂŹs implementation of his scorer is the only
one available.

Researchers at the University of Massachusetts have begun using a metric they
call simply pairwise. It generates a simple recall, precision and subsequent F-
measure score based on counting the pairs of mentions that are or are not in the
same coreference chain in both system and reference. Obviously there are a large
number of possible pairs from a given data set, many of which should not be linked.
Empirically it has been observed that this metric tends to be lower than either the
MUC-6 or B-Cubed metrics for the same data sets. As with the MUC-6 scorer, this
is only defined for coreference chains of two or more mentions.

The document clustering and speaker identification communities have used
metrics that may be of use within the intra-document and cross-document coref-
erence research community. One of these metrics is called purity (Solomonoff
et al. 1998). It is analogous to the MUC-6 and B-Cubed metrics in its adoption
of a model-theoretic view, but it differs by computing the maximum of the num-
ber of mentions at the intersection of a given system/reference coreference chain
alignment. A related metric is entropy (Dhillon et al. 2001), which measures the
entropy between the mention clusters (coreference chains) of the system and the
reference clusters. Neither of these scoring metrics have been used very frequently
within the coreference resolution communities, but as this workshop has begun to
expand the scope of coreference resolution to that of cross-document coreference
and entity/document clustering (as in SPOCK and SemEval Web People tasks), we
thought it appropriate to compare their utility.

6.3.2 A comparison between these metrics

The scoring methods fall into two broad categories, which we will call set-based

methods and entity-based methods.
Set-based methods credit a system if it identifies part of an anahoric chain

(equivalence class) and penalizes it if it missed a part. MUC scorer, B-cubed,
purity and pairwise fall in this category. By contrast, entity-based methods do not
credit or penalize the system for success and failure on parts of the data, but rather
take a global view, evaluating how well the system succeeded in discriminating
between the various entites (defined by the coreference sets). ACE score, entropy
and mutual information fall in this category.

The difference between set-based metrics and entity-based methods is best il-
lustrated with an example. Figure 6.1 shows the result of a system run: the dark
circles are mentions that refer to one entity, the light circles are mentions thay refer
to a second entity. The key provides anaphoric links between coreferent mentions,
and the response provides a somewhat different set of links which is the system

87

z z z z z j j j j j
Key

Response

Figure 6.1: Key and response links

Precision Recall F

MUC 0.750 0.750 0.750
B-cubed 0.500 0.680 0.576
Purity 0.500 0.800 0.615
Pairwise 0.414 0.600 0.490

ACE 0.125
Entropy 0.000 0.278 0.000
Mutual Information 0.000

Table 6.3: Scores given to the system in Figure 6.1

output. Looking at the correspondence between the system and the key, we notice
that the system did identify some of the links correctly – for example, it identified
the first four mentions as coreferent with one another – but also made a few wrong
connections. This is why the set-based scoring methods give it a medium score,
ranging between 0.5 and 0.75 (Table 6.3).

Entity-based measures, however, give the system a much lower score, as seen
in the bottom part of Table 6.3. The reason is that while the system identified some
anaphoric links correctly, it failed to distinguish between the two entities. Knowing
how the system classified a particular mention gives us no information about what
entity that mention refers to. This can be seen if we rearrange the mentions of
Figure 6.1, and instead of drawing links we group them into sets as in Figure 6.2.

It appears that researchers in anaphora resolution prefer set-based scoring meth-
ods over entity-based methods, which are more popular in clustering. The reason
is probably tht set-based methods are closer to evaluating the process of anaphora
resolution: most systems proceed mention by mention trying to find the closest
link, so it makes sense to use this approach in order to evaluate their performance.

88

j j j j j

z z z z z
�

�

�

�

�

�

Figure 6.2: An entity representation of Figure 6.1

MUC B-cubed Purity Pairwise ACE
d d d d
t t t t d

d
b
b�

�
�
�

�
� �

�
��

�
a. 0.933 0.846 0.889 0.765 0.583

d d d d
t t t t d

d
b
b�

�
�
�

�
�

�
� b. 0.800 0.775 0.847 0.727 0.567

d d d d
t t t t d

d
b
b�

�
�
�
�
�

�
� c. 0.933 0.750 0.750 0.619 0.542

d d d d
t t t t d

d
b
b�

�
�
�
�
�

�
�

�
�

�
�
�
�

�
�
�
�

�
� d. 0.833 0.750 0.750 0.556 0.167

Table 6.4: Ranking of system outputs

Every measure has some pathological cases where it yields some counterintu-
itive results. Table 6.4 shows the results for some specific system output which
compare to a common key.

6.3.3 Implementation of the scoring metrics

We implemented a java program in which the following metrics were implemented:
MUC-6, B-Cubed, Pairwise, Purity (Recall, Precision and F), and modified ver-
sions of Pairwise and MUC-6 in which singleton coreference chains could be in-
corporated. This scoring suite also incorporate a call-out to the ACE perl script
scorer. The input was expected to be MUC-style coreference chains, so the scorer
suite incorporated a utility to generate ACE-style APF versions of this data on the
fly, for both system and reference data. The result was a use of the ACE Value
metric in which the cost matrix was essentially completely uniform (since some of
the data we were evaluating did not make ACE-appropriate distinctions of entity
types nor entity mentions). The program can be called from BART.

89

Chapter 7

Acknowledgments

First of all, we wish to thank the US sponsors of the workshop–NSF and the De-
partment of Defense–and the CLSP team: Fred Jelinek, Sanjeev Khudanpur, Jason
Eisner, and Damianos Markatos. Without them, this would not have happened.
We also wish to thank Fred, Sanjeev, Jason and Damianos for support through the
workshop, for organizing a great social programme, and for general companion-
ship; and Monique Folk, Justin Martin, and Tomas Kasparek for much invaluable
help throughout with all sorts of issues.

We also wish to thank:

• EML Research, Germany for turning MMAX2 into open source and for al-
lowing us to reuse code developed by Simone Ponzetto and Michael Strube;
also, Christoph Müller for lots of help with MMAX2.

• MITRE corporation for supporting Janet Hitzeman’s participation in the work-
shop.

• Andrew McCallum for supporting Rob Hall’s participation.

• I2R Singapore, for partial support for Jian Sun and Xiaofeng Yang’s partici-
pation.

• The Fondazione Bruno Kessler - IRST, and in particular Bernardo Magnini,
for supporting the participation of Claudio Giuliano.

• The Department of Defense for allowing Jason Duncan to participate in our
workshop.

• The Human Language Technology Center of Excellence at Johns Hopkins
University, that supported the participation of Paul McNamee.

90

The development of the ARRAU corpus and support for Gideon Mann were pro-
vided by the EPSRC ARRAU project, UK.

Finally, we wish to thank all those people who cooperated with us through the
workshop on a voluntary basis, and particularly Veronique Hoste, Sameer Pradhan,
and Satoshi Sekine. Special thanks to prof. Kibrik from the Russian Academy of
Sciences and his group, in particular Dr. Krasavina, who agreed to divide the effort
of annotation of the RST discourse treebank.

91

Bibliography

C. Aone and S. W. Bennett. Evaluating automated and manual acquisition of
anaphora resolution strategies. In Proceedings of the 33rd Annual Meeting of

the Association for Computational Linguistics (ACL), pages 122–129, 1995a.

C. Aone and S. W. Bennett. Automatic acquisition of anaphora resolution strate-
gies. In Proc. AAAI Spring Symposium on Empirical Methods in Discourse,
Stanford, 1995b.

Javier Artiles, Julio Gonzalo, and Satoshi Sekine. The semeval-2007 weps eval-
uation: Establishing a benchmark for the web people search task. In Proceed-

ings of the Fourth International Workshop on Semantic Evaluations (SemEval-

2007), pages 64–69, Prague, Czech Republic, June 2007. Association for Com-
putational Linguistics. URL http://www.aclweb.org/anthology/W/

W07/W07-2012.

Ron Artstein and Massimo Poesio. Identifying reference to abstract objects in dia-
logue. In David Schlangen and Raquel Fernández, editors, brandial 2006: Pro-

ceedings of the 10th Workshop on the Semantics and Pragmatics of Dialogue,
pages 56–63, Potsdam, Germany, September 2006.

A. Bagga and B. Baldwin. Entity-based cross-document coreferencing using the
vector space model. In Proc. of COLING/ACL, Montreal, 1998a.

A. Bagga and B. Baldwin. Algorithms for scoring coreference chains. In Proc. of

the LREC workshop on Linguistic Coreference, pages 563–566, Granada, 1998b.

Matthew Berland and Eugene Charniak. Finding parts in very large corpora. In
Proceedings of the 37th Annual Meeting of the Association for Computational

Linguistics, College Park, Md., 20–26 June 1999, pages 57–64, 1999.

David Blei, Andrew Ng, and Michael Jordan. Latent dirichlet allocation. Journal

of Machine Learning Research, 2003.

92

M. Blume. Automatic entity disambiguation: Benefits to ner, relation extraction,
link analysis, and inference. In International Conference on Intelligence Analy-

sis, 2005.

Kalina Bontcheva, Marin Dimitrov, Diana Maynard, and Valentin Tablan. Shallow
methods for named entity coreference resolution. Proceedings of Traitement

Automatique des Langues Naturelles (TALN), 2002.

Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web
search engine. Computer Networks and ISDN Systems, 30(1–7):107–117, 1998.

Alexander Budanitsky and Graeme Hirst. Evaluating WordNet-based measures of
semantic distance. Computational Linguistics, 32(1):13–47, 2006.

R. Bunescu and M. Pasca. Using encyclopedic knowledge for named entity disam-
biguation. In Proc. EACL, 2006.

C. Cardie and K. Wagstaff. Noun phrase coreference as clustering. In Proc. SIG-

DAT Conference on Empirical Methods in NLP and Very Large Corpora, pages
82–89, 1999.

D. M. Carter. Interpreting Anaphors in Natural Language Texts. Ellis Horwood,
Chichester, UK, 1987.

Wallace L. Chafe, editor. The Pear Stories: Cognitive, Cultural and Linguistic

Aspects of Narrative Production. Ablex, Norwood, NJ, 1980.

E. Charniak. Towards a Model of Children’s Story Comprehension. PhD thesis,
MIT, 1972. Available as MIT AI Lab TR-266.

Eugene Charniak. A maximum-entropy-inspired parser. In Proceedings of the 1st

Meeting of the North American Chapter of the Association for Computational

Linguistics, pages 132–139, Seattle, April–May 2000. URL http://acl.

ldc.upenn.edu/A/A00/A00-2018.pdf.

Y. Chen and J. Martin. Towards robust unsupervised personal name disambigua-
tion. In Proc. of EMNLP, 2007.

Nancy Chinchor and Beth Sundheim. Muc 6 corpus. Message Understanding

Conference (MUC) 6, 2003.

M. Collins and N. Duffy. New ranking algorithms for parsing and tagging: kernels
over discrete structures and the voted perceptron. In Proceedings of the 40th

Annual Meeting of the Association for Computational Linguistics (ACL), pages
263–270, 2002.

93

A. Culotta, M. Wick, R. Hall, and A. McCallum. First order probabilistic models
for coreference resolution. In Proc. HLT / NAACL, Rochester, 2007.

H. Daume and D. Marcu. A large-scale exploration of effective global features for
a joint entity detection and tracking model. In Proc. HLT/EMNLP, Vancouver,
2005.

David del Valle-Agudo, César de Pablo-Sánchez, and María Teresa Vicente-Díez.
Uc3m_13: Disambiguation of person names based on the composition of sim-
ple bags of typed terms. In Proceedings of the Fourth International Workshop

on Semantic Evaluations (SemEval-2007), pages 362–365, Prague, Czech Re-
public, June 2007. Association for Computational Linguistics. URL http:

//www.aclweb.org/anthology/W/W07/W07-2079.

Pascal Denis and Jason Baldridge. A ranking approach to pronoun resolution. In
Proc. IJCAI 2007, 2007. to appear.

I. Dhillon, J. Fan, and Y. Guan. Efficient clustering of very large document col-
lections. In R. Grossman, G. Kamath, and R. Naburu, editors, Data Mining for

Scientific and Engineering Applications. Kluwer, 2001.

G. Doddington. Value-based evaluation of edt. Technical report of the ace 6-month
meeting, Department of Defense, May 2001.

Zhou Guo Dong, Su Jian, Zhang Jie, and Zhang Min. Combining various knowl-
edge in relation extraction. In Proc. 43rd ACL, pages 427–434, Ann Arbor, MI,
2005.

Christiane Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press,
Cambridge, Mass., 1998.

Derek Gross, James F. Allen, and David R. Traum. The Trains 91 dialogues.
TRAINS Technical Note 92-1, University of Rochester Computer Science
Department, July 1993. URL ftp://ftp.cs.rochester.edu/pub/

papers/ai/92.tn1.trains_91_dialogues.ps.Z.

S. Harabagiu and D. Moldovan. Knowledge processing on extended WordNet. In
C. Fellbaum, editor, WordNet: An Electronic Lexical Database, pages 379–405.
MIT Press, 1998.

W Hastings. Monte carlo sampling methods using markov chains and their appli-
cations. Biometrika, pages 97–109, 1970.

94

Marti A. Hearst. Automatic acquisition of hyponyms from large text corpora. In
Proceedings of the 15th International Conference on Computational Linguistics,

Nantes, France, 23-28 August 1992, pages 539–545, 1992.

Peter A. Heeman and James Allen. The Trains 93 dialogues. TRAINS Techni-
cal Note 94-2, University of Rochester Computer Science Department, March
1995. URL ftp://ftp.cs.rochester.edu/pub/papers/ai/94.

tn2.trains_93_dialogues.ps.gz.

Andrea Heyl and Günter Neumann. Dfki2: An information extraction based ap-
proach to people disambiguation. In Proceedings of the Fourth International

Workshop on Semantic Evaluations (SemEval-2007), pages 137–140, Prague,
Czech Republic, June 2007. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/W/W07/W07-2027.

J. Hobbs. Resolving pronoun references. Lingua, 44:339–352, 1978a.

J. R. Hobbs. Resolving pronoun references. Lingua, 44:311–338, 1978b.

J. R. Hobbs, M. Stickel, P. Martin, and D. Edwards. Interpretation as abduction.
Artificial Intelligence Journal, 63:69–142, 1993.

E. Hovy, M. Marcus, M. Palmer, L. Ramshaw, and R. Weischedel. Ontonotes: the
90% solution. In Proc. HLT-NAACL, 2006.

Ryu Iida, Kentaro Inui, and Yuji Matsumoto. Exploiting syntactic patterns as clues
in zero-anaphora resolution. In Proceedings of the 21st International Conference

on Computational Linguistics and 44th Annual Meeting of the Association for

Computational Linguistics, pages 625–632, 2006.

A. Kehler. Probabilistic coreference in information extraction. In Proc. 2nd

EMNLP, 1997.

C. Kennedy and B. Boguraev. Anaphora for everyone: pronominal anaphora reso-
lution without a parser. In Proceedings of the 16th International Conference on

Computational Linguistics (COLING), pages 113–118, Copenhagen, Denmark,
1996.

S. Lappin and H. Leass. An algorithm for pronominal anaphora resolution. Com-

putational Linguistics, 20(4):525–561, 1994a.

S. Lappin and H. J. Leass. An algorithm for pronominal anaphora resolution. Com-

putational Linguistics, 20(4):535–562, 1994b.

95

Claudia Leacock and Martin Chodorow. Combining local context and WordNet
similarity for word sense identification. In C. Fellbaum, editor, WordNet. An

Electronic Lexical Database, chapter 11, pages 265–283. Cambridge, Mass.:
MIT Press, 1998.

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and Chris
Watkins. Text classification using string kernels. Journal of Machine Learning

Research, 2:419–444, 2002.

X. Luo. On coreference resolution performance metrics. In Proc. NAACL /

EMNLP, Vancouver, 2005.

X. Luo and I. Zitouni. Multi-lingual coreference resolution with syntactic features.
In Proceedings of Human Language Technology conference and Conference on

Empirical Methods in Natural Language Processing (HLT/EMNLP), pages 660–
667, 2005.

Xiaoqiang Luo, Abe Ittycheriah, Hongyan Jing, Nanda Kambhatla, and Salim
Roukos. A mention-synchronous coreference resolution algorithm based on
the bell tree. In ACL 2004, 2004. URL http://acl.ldc.upenn.edu/

acl2004/main/pdf/243_pdf_2-col.pdf.

Gideon Mann and David Yarowsky. Unsupervised personal name disambiguation.
In CoNLL, 2003.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a
large annotated corpus of English: the Penn Treebank. Computational Linguis-

tics, 19(2):313–330, 1993.

K. Markert and M. Nissim. Comparing knowledge sources for nominal anaphora
resolution. Computational Linguistics, 31(3), 2005.

A. McCallum and B. Wellner. Conditional models of identity uncertainty with
application to noun coreference. In Proc. of NIPS, 2004.

N Metropolis, M Rosenbluth, A Teller, and E Teller. Equations of state calculations
by fast computing machines. Journal of Chemical Physics, pages 1087–1092,
1953.

George A. Miller and Walter G. Charles. Contextual correlates of semantic simi-
larity. Language and Cognitive Processes, 6(1):1–28, 1991.

Tom Minka. Estimating a dirichlet distribution. Technical report, Cambridge Uni-
versity, 2003.

96

A. Moschitti. A study on convolution kernels for shallow semantic parsing. In
Proceedings of the 42nd Annual Meeting of the Association for Computational

Linguistics (ACL), pages 335–342, 2004a.

Alessandro Moschitti. A study on convolution kernels for shallow semantic pars-
ing. Proceedings of the 42nd Conference on Association for Computational

Linguistics (ACL 2004), 2004b.

Alessandro Moschitti. Efficient convolution kernels for dependency and con-
stituent syntactic trees. Proceedings of the 17th European Conference on Ma-

chine Learning, 2006a.

Alessandro Moschitti. Making Tree Kernels Practical for Natural Language Learn-
ing. In Proceedings of 11th Conference of the European Chapter of the Associ-

ation for Computational Linguistics (EACL2006), 2006b.

C. Müller and M. Strube. Multi-level annotation in MMAX. In Proceedings

of the 4th SIGdial Workshop on Discourse and Dialogue, pages 198–207,
Sapporo, July 2003. URL http://www.sigdial.org/workshops/

workshop4/proceedings/.

Radford M. Neal. Markov chain sampling methods for dirichlet process mixture
models. Technical report, Dept. of Statistics, University of Toronto., 1998.

V. Ng and C. Cardie. Improving machine learning approaches to coreference res-
olution. In Proceedings of the 40th Annual Meeting of the Association for Com-

putational Linguistics (ACL), pages 104–111, Philadelphia, 2002a.

V. Ng and C. Cardie. Improving machine learning approaches to coreference reso-
lution. In Proceedings of the 40th Meeting of the ACL, 2002b.

M. Poesio. The MATE/GNOME scheme for anaphoric annotation, revisited. In
Proc. of SIGDIAL, Boston, May 2004a.

M. Poesio and M. A. Kabadjov. A general-purpose, off the shelf anaphoric resolver.
In Proc. of LREC, pages 653–656, Lisbon, May 2004.

M. Poesio and R. Vieira. A corpus-based investigation of definite description
use. Computational Linguistics, 24(2):183–216, June 1998a. Also available
as Research Paper CCS-RP-71, Centre for Cognitive Science, University of Ed-
inburgh.

M. Poesio, R. Vieira, and S. Teufel. Resolving bridging references in unrestricted
text. In R. Mitkov, editor, Proc. of the ACL Workshop on Operational Factors

97

in Robust Anaphora Resolution, pages 1–6, Madrid, 1997. Also available as
HCRC Research Paper HCRC/RP-87, University of Edinburgh.

M. Poesio, S. Schulte im Walde, and C. Brew. Lexical clustering and definite
description interpretation. In Proc. of the AAAI Spring Symposium on Learning

for Discourse, pages 82–89, Stanford, CA, March 1998. AAAI.

M. Poesio, T. Ishikawa, S. Schulte im Walde, and R. Vieira. Acquiring lexical
knowledge for anaphora resolution. In Proc. of the 3rd LREC, Las Palmas,
Canaria, 2002.

M. Poesio, R. Mehta, A. Maroudas, and J. Hitzeman. Learning to solve bridging
references. In Proc. of ACL, pages 143–150, Barcelona, July 2004.

Massimo Poesio. Discourse annotation and semantic annotation in the GNOME
corpus. In Bonnie Webber and Donna K. Byron, editors, Proceedings of the

2004 ACL Workshop on Discourse Annotation, pages 72–79, Barcelona, July
2004b. Association for Computational Linguistics. URL http://acl.ldc.

upenn.edu/W/W04/W04-0210.pdf.

Massimo Poesio and Ron Artstein. Annotating (anaphoric) ambiguity. In Proceed-

ings from the Corpus Linguistics Conference Series, Birmingham, England, July
2005. URL http://www.corpus.bham.ac.uk/PCLC/.

Massimo Poesio and Renata Vieira. A corpus-based investigation of definite de-
scription use. Computational Linguistics, 24(2):183–216, June 1998b.

Simone Paolo Ponzetto and Michael Strube. Exploiting semantic role labeling,
WordNet and Wikipedia for coreference resolution. In Proceedings of the Hu-

man Language Technology Conference of the North American Chapter of the As-

sociation for Computational Linguistics, pages 192–199, New York City, N.Y.,
June 2006.

Simone Paolo Ponzetto and Michael Strube. Deriving a large scale taxonomy from
Wikipedia. In Proceedings of the 22nd National Conference on Artificial Intel-

ligence (AAAI-07), pages 1440–1447, Vancouver, B.C., July 2007.

Octavian Popescu and Bernardo Magnini. Irst-bp: Web people search using name
entities. In Proceedings of the Fourth International Workshop on Semantic Eval-

uations (SemEval-2007), pages 195–198, Prague, Czech Republic, June 2007.
Association for Computational Linguistics. URL http://www.aclweb.

org/anthology/W/W07/W07-2041.

98

Roy Rada, Hafedh Mili, Ellen Bicknell, and Maria Blettner. Development and
application of a metric to semantic nets. IEEE Transactions on Systems, Man

and Cybernetics, 19(1):17–30, 1989.

Philip Resnik. Semantic similarity in a taxonomy: An information-based measure
and its application to problems of ambiguity in natural language. Journal of

Artificial Intelligence Research, 11:95–130, 1999.

Herbert Rubenstein and John Goodenough. Contextual correlates of synonymy.
Communications of the ACM, 8(10):627–633, 1965.

Nuno Seco, Tony Veale, and Jer Hayes. An intrinsic information content metric
for semantic similarity in WordNet. In Proceedings of the 16th European Con-

ference on Artificial Intelligence, Valencia, Spain, 23–27 August 2004, pages
1089–1090, 2004.

John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis.
Cambridge University Press, 2004.

C. L. Sidner. Towards a computational theory of definite anaphora comprehension

in English discourse. PhD thesis, MIT, 1979.

A. Solomonoff, A. Mielke, M. Schmidt, and H. Gish. Clustering speakers by their
voices. IEEE International Conference on Acoustics, Speech, and Signal Pro-

cessing, pages 757–760, 1998.

W. Soon, H. Ng, and D. Lim. A machine learning approach to coreference resolu-
tion of noun phrases. Computational Linguistics, 27(4):521–544, 2001a.

W. M. Soon, D. C. Y. Lim, and H. T. Ng. A machine learning approach to coref-
erence resolution of noun phrases. Computational Linguistics, 27(4), December
2001b.

J. Steinberger, M. Poesio, M. Kabadjov, and K. Jezek. Two uses of anaphora res-
olution in summarization. Information Processing and Management, 43:1663–
1680, 2007. Special issue on Summarization.

Michael Strube and Simone Paolo Ponzetto. WikiRelate! Computing semantic
relatedness using Wikipedia. In Proceedings of the 21st National Conference on

Artificial Intelligence (AAAI-06), pages 1419–1424, Boston, Mass., July 2006.

Olga Uryupina. Evaluating name-matching for coreference resolution. Proceed-

ings of LREC’04, 2004.

99

K. van Deemter and R. Kibble. On coreferring: Coreference in MUC and related
annotation schemes. Computational Linguistics, 26(4):629–637, 2000. Squib.

V. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

Y. Versley. Antecedent selection techniques for high-recall coreference resolution.
In Proc. of EMNLP-CONLL, Prague, 2007.

Yannick Versley. A constraint-based approach to noun phrase coreference reso-
lution in German newspaper text. In Konferenz zur Verarbeitung Natürlicher

Sprache (KONVENS 2006), 2006.

R. Vieira and M. Poesio. An empirically-based system for processing definite
descriptions. Computational Linguistics, 26(4):539–593, December 2000.

M. Vilain, J. Burger, J. Aberdeen, D. Connolly, and L. Hirschman. A model-
theoretic coreference scoring scheme. In Proc. of the Sixth Message Under-

standing Conference, pages 45–52, 1995.

Daniel C. Y. Lim Wee M. Soon, Hwee T. Ng. A machine learning approach to
coreference resolution of noun phrases. Computational Linguistics, 21(1):521–
544, 2001.

Zhibiao Wu and Martha Palmer. Verb semantics and lexical selection. In Proceed-

ings of the 32nd Annual Meeting of the Association for Computational Linguis-

tics, Las Cruces, N.M., 27–30 June 1994, pages 133–138, 1994.

X. Yang, J. Su, G. Zhou, and C. Tan. Improving pronoun resolution by incor-
porating coreferential information of candidates. In Proceedings of the 42nd

Annual Meeting of the Association for Computational Linguistics (ACL), pages
127–134, Barcelona, 2004a.

X. Yang, J. Su, G. Zhou, and C. L. Tan. Improving pronoun resolution by incor-
porating coreferential information of candidates. In Proc. 42nd ACL, Barcelona,
2004b.

X. Yang, J. Su, and C. L. Tan. Kernel-based pronoun resolution with structured
syntactic knowledge. In Proc. COLING-ACL, pages 41–48, Sydney, 2006a.

X. Yang, J. Su, and C. L. Tan. A twin-candidate model for learning based anaphora
resolution. Computational Lingustics, To appear.

100

Xiaofeng Yang, Jian Su, and Chewlim Tan. Kernel-based pronoun resolution with
structured syntactic knowledge. In Proceedings of the 21st International Con-

ference on Computational Linguistics and the 44th Annual Meeting of the Asso-

ciation for Computational Linguistics (COLING-ACL 06), pages 41–48, 2006b.

Stanley Wai Keong Yong and Jian Su. Effective methods of using web based in-
formation for relation extraction. In Proc. of IJCNLP, 2008.

D. Zelenko, C. Aone, and A. Richardella. Kernel methods for relation extraction.
Journal of Machine Learning Research, 3(6):1083 – 1106, 2003.

S. Zhao and R. Grishman. Extracting relations with integrated information using
kernel methods. In Proceedings of the 43rd Annual Meeting of the Association

for Computational Linguistics (ACL), pages 419–426, 2005.

101

