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● Gjanci: gjanci@di.uniroma1.it
● Koutsandria: koutsandria@di.uniroma1.it
● Spenza: spenza@di.uniroma1.it

○ Tel: 06-49918430 
○ Room: 333
○ Slides: www.dsi.uniroma1.it/~spenza/

● SENSES lab
○ http://senseslab.di.uniroma1.it

Contacts
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Lessons Schedule
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09.11.2015
8:30-12:00

Lesson 1

10.11.2015
17:15-19:30

Tutoring session

13.11.2015
14:00-17:30

Lesson 2

23.11.2015
08:30-12:00

Lesson 3

24.11.2015
17:15-19:30

Tutoring/project?

27.11.2015
14:00-17:30

Final project
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Outline

● Tasks and split-phase operation
● TinyOS Printf library
● The BlinkToRadio Application
● Mote-PC serial communication
● BaseStation
● SerialForwarder
● Oscilloscope
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• NesC: C dialect
• TinyOS: event driven OS
• split-phase: call       callback (event)
• kernel with two hierachical levels: tasks 
and events
• single stack system: local variable in the 
stack, binary code are stored contiguously in 
memory

In the last episode..
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1. Application consists of components 
wired

2. Two scopes:
• Specification (interfaces’ name)
• Implementation

3. App provides and uses interfaces
4. Interfaces          functionalities
5. Interfaces are bidirectional

• Commands implemented by 
interface’s provider

• Events implemented by the 
interface’s user
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In the last episode
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Two computational 
abstractions

asynchronous events tasks

• can run 
preemptively (async)

• interrupt handlers
• race conditions!

• schedule a function to 
be called later

• run in a single execution 
context 

• no preemption!
• FIFO

TinyOS Execution Model
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Let’s introduce some latency..

event void Timer0.fired() { 
uint32_t i; 

for (i = 0; i < BIG_NUMBER;
i++) { } 

call Leds.led0Toggle(); 
}

Blink application: event 
handler for Timer0.fired()

event void Timer0.fired() { 
 uint32_t i; 
 call Leds.led0Toggle(); 
}

The Timer interface is synchronous                   Long computations 
interfere with timers operations

Sync code should be kept short
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Usage: 

task void computeTask() { 
uint32_t i; 
for (i = 0; i < 10001; i++) {} 

} 

event void Timer0.fired() { 
post computeTask(); 
call Leds.led0Toggle(); 

}

Tasks
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● Dispatches a task for later 
execution

● Internal task queue 
processed in FIFO order

● Task cannot be poster more 
than once
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task void computeTask() { 
uint32_t i; 
for (i = 0; i < 10001; i++) {} 

} 

event void Timer0.fired() { 
post computeTask(); 
call Leds.led0Toggle(); 

}

computeTask executed here

no return value

no parameter
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Tasks Usage
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No blocking operations allowed. 

Blocking Split-Phase

if (send() == SUCCESS) {
   sendCount++; 
}

// start phase
send();

//completion phase
void sendDone(error_t err) {
  if (err == SUCCESS) {
    sendCount++;
  }
}

Split-Phase
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Returns immediately
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● Commands by default are sync: no preemption, blocks.
● Also tasks are non preemptive.
● But interrupts block the execution of a code and starts running
preemptively.
● Functions that can run preemptively are declare async (e.g., 

component LedsC).
●  Commands and events of async functions are async as well.
 The only way for an async command to call a sync function is via 
tasks.
●  Posting a task is an async event, while executing it is sync.
●  How to manage preemption? -> using the atomic keywords

○ TinyOs guarantee that atomic code is not modified during its 
execution

12

Recap: Concurrency
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TinyOS Printf Library
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● Located in tos/lib/printf 
● Used to debug TinyOS applications by printing messages 

over the serial port
● Reference: http://tinyos.stanford.edu/tinyos-wiki/index.

php/The_TinyOS_printf_Library
● How to use it:

○ include component PrintfC in the top-level configuration 
file

○ include “printf.h” header file in any component that calls it

● Start the PrintfClient by running the following command:
      java net.tinyos.tools.PrintfClient -comm serial@/dev/ttyUSBXXX:telosb

http://tinyos.stanford.edu/tinyos-wiki/index.php/The_TinyOS_printf_Library
http://tinyos.stanford.edu/tinyos-wiki/index.php/The_TinyOS_printf_Library
http://tinyos.stanford.edu/tinyos-wiki/index.php/The_TinyOS_printf_Library


Internet of Things Laboratory 2015

Tinyos Printf Library
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● Include the #include "printf.h" header file in every component in 
which you would like to call the printf() command
○ In the implementation file

■ #include "printf.h"
● In the Makefile add: 

○ The tos/lib/printf/2_0_2 directory must be in your include path
■ CFLAGS += -I$(TINYOS_OS_DIR)/tos/lib/printf/2_0_2

○ Define the size of the printf buffer
■ CFLAGS+=-DPRINTF_BUFFER=6042

○ Configuration file:
■ #define NEW_PRINTF_SEMANTICS
■ components  PrintfC;
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Exercise
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Modify the blink application to print every time that 
a timer fires
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Today Application: BlinkToRadio
A one-timer version of Blink application that sends 
the counter value over the radio channel.

First Step: 
Implement a version of Blink using a single timer 
and the set function (look at Leds component 
implementation).

BlinkToRadio
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BlinkToRadio Application

● A counter is incremented every second

● Whenever the timer fires, the value of  the 
counter is sent over a radio message 

● Whenever a radio message is  received, the three 
least significant bits of the counter in the  
message payload are displayed on the LEDs
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Sending the counter value 
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• Define a message format to send data over the 
radio

typedef nx_struct BlinkToRadioMsg {
  nx_uint16_t nodeid;
  nx_uint16_t counter;
} BlinkToRadioMsg;

• Why a struct?
uint16_t x = data[0] << 8 + data[1])
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nesC external types
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• nx_ data types
• Have the same representation on all platforms
• No need to manually address alignment and 

endianness 
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Communication Interfaces
• TinyOS provides high-level communication interfaces

– Similar for radio and serial communication

• Basic interfaces:

– Packet: Set/get payload of TinyOS message_t pckts

– Send: Send packet by calling send() command

– Receive: Reception of pckts signaled by receive() event

• Active Message interfaces allow for multiplexing:

– AMPacket: Provides source/destination address to 
pckt

– AMSend: Send packet to destination address
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TinyOS provides:
i. Communication services by means of interfaces

ii. Components implementing such interfaces
iii. Abstract data type message_t

typedef nx_struct message_t {
nx_uint8_t header[sizeof

(message_header_t)];
nx_uint8_t data

[TOSH_DATA_LENGTH]; 
nx_uint8_t footer[sizeof

(message_footer_t)]; 
nx_uint8_t metadata[sizeof

(message_metadata_t)]; 
} message_t;

Read and 
Write through 
accessors and 

mutuator 
functions

Communication Interface
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Basic Communication Interfaces in /tos/interfaces:
● Packet, Send, Receive,  PacketAcknowledgments, 

RadioTimeStamping

● Active Message Interfaces: AMPacket, AMSend

● Basic components In /tos/system:
1. AMReceiverC
2. AMSenderC
3. AMSnooperC
4. AMSnoopingReceiverC
5. ActiveMessageAddressC

ActiveMessageC for the telosb 
are all implemented by: 

CC2420ActiveMessageC
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Communication Interface
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docs.tinyos.net/tinywiki/index.
php/Mote-
mote_radio_communication

Tutorial Link
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Exercise 1

● Assign an unique ID to your nodes

● Filter radio messages that are not sent to you
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●Node A sends the value of its counter to node B

●Node B displays the three least significant bits of 
the counter on the LEDs, updates the value of the 
counter and sends it back to node A

●Node A displays the three least significant bits of 
the counter on the LEDs, updates the value of the 
counter and sends it back to node B

●….

Excercise 2
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