
Internet of Things Laboratory 2015

P.Gjanci, G.Koutsandria, D. Spenza

Internet of Things Laboratory
November 13, 2015

1

Internet of Things Laboratory 2015

● Gjanci: gjanci@di.uniroma1.it
● Koutsandria: koutsandria@di.uniroma1.it
● Spenza: spenza@di.uniroma1.it

○ Tel: 06-49918430
○ Room: 333
○ Slides: www.dsi.uniroma1.it/~spenza/

● SENSES lab
○ http://senseslab.di.uniroma1.it

Contacts

2

mailto:gjanci@di.uniroma1.it
mailto:koutsandria@di.uniroma1.it
mailto:spenza@di.uniroma1.it
http://www.dsi.uniroma1.it/~spenza/
http://senseslab.di.uniroma1.it
http://senseslab.di.uniroma1.it

Internet of Things Laboratory 2015

Lessons Schedule

3

09.11.2015
8:30-12:00

Lesson 1

10.11.2015
17:15-19:30

Tutoring session

13.11.2015
14:00-17:30

Lesson 2

23.11.2015
08:30-12:00

Lesson 3

24.11.2015
17:15-19:30

Tutoring/project?

27.11.2015
14:00-17:30

Final project

Internet of Things Laboratory 2015 4

Outline

● Tasks and split-phase operation
● TinyOS Printf library
● The BlinkToRadio Application
● Mote-PC serial communication
● BaseStation
● SerialForwarder
● Oscilloscope

Internet of Things Laboratory 2015

• NesC: C dialect
• TinyOS: event driven OS
• split-phase: call callback (event)
• kernel with two hierachical levels: tasks
and events
• single stack system: local variable in the
stack, binary code are stored contiguously in
memory

In the last episode..

5

Internet of Things Laboratory 2015

1. Application consists of components
wired

2. Two scopes:
• Specification (interfaces’ name)
• Implementation

3. App provides and uses interfaces
4. Interfaces functionalities
5. Interfaces are bidirectional

• Commands implemented by
interface’s provider

• Events implemented by the
interface’s user

6

In the last episode

Internet of Things Laboratory 2015

Two computational
abstractions

asynchronous events tasks

• can run
preemptively (async)

• interrupt handlers
• race conditions!

• schedule a function to
be called later

• run in a single execution
context

• no preemption!
• FIFO

TinyOS Execution Model

7

Internet of Things Laboratory 2015

Let’s introduce some latency..

event void Timer0.fired() {
uint32_t i;

for (i = 0; i < BIG_NUMBER;
i++) { }

call Leds.led0Toggle();
}

Blink application: event
handler for Timer0.fired()

event void Timer0.fired() {
 uint32_t i;
 call Leds.led0Toggle();
}

The Timer interface is synchronous Long computations
interfere with timers operations

Sync code should be kept short

8

Internet of Things Laboratory 2015

Usage:

task void computeTask() {
uint32_t i;
for (i = 0; i < 10001; i++) {}

}

event void Timer0.fired() {
post computeTask();
call Leds.led0Toggle();

}

Tasks

9

● Dispatches a task for later
execution

● Internal task queue
processed in FIFO order

● Task cannot be poster more
than once

Internet of Things Laboratory 2015

task void computeTask() {
uint32_t i;
for (i = 0; i < 10001; i++) {}

}

event void Timer0.fired() {
post computeTask();
call Leds.led0Toggle();

}

computeTask executed here

no return value

no parameter

10

Tasks Usage

Internet of Things Laboratory 2015

No blocking operations allowed.

Blocking Split-Phase

if (send() == SUCCESS) {
 sendCount++;
}

// start phase
send();

//completion phase
void sendDone(error_t err) {
 if (err == SUCCESS) {
 sendCount++;
 }
}

Split-Phase

11

Returns immediately

Internet of Things Laboratory 2015

● Commands by default are sync: no preemption, blocks.
● Also tasks are non preemptive.
● But interrupts block the execution of a code and starts running
preemptively.
● Functions that can run preemptively are declare async (e.g.,

component LedsC).
● Commands and events of async functions are async as well.
 The only way for an async command to call a sync function is via
tasks.
● Posting a task is an async event, while executing it is sync.
● How to manage preemption? -> using the atomic keywords

○ TinyOs guarantee that atomic code is not modified during its
execution

12

Recap: Concurrency

Internet of Things Laboratory 2015

TinyOS Printf Library

13

● Located in tos/lib/printf
● Used to debug TinyOS applications by printing messages

over the serial port
● Reference: http://tinyos.stanford.edu/tinyos-wiki/index.

php/The_TinyOS_printf_Library
● How to use it:

○ include component PrintfC in the top-level configuration
file

○ include “printf.h” header file in any component that calls it

● Start the PrintfClient by running the following command:
 java net.tinyos.tools.PrintfClient -comm serial@/dev/ttyUSBXXX:telosb

http://tinyos.stanford.edu/tinyos-wiki/index.php/The_TinyOS_printf_Library
http://tinyos.stanford.edu/tinyos-wiki/index.php/The_TinyOS_printf_Library
http://tinyos.stanford.edu/tinyos-wiki/index.php/The_TinyOS_printf_Library

Internet of Things Laboratory 2015

Tinyos Printf Library

14

● Include the #include "printf.h" header file in every component in
which you would like to call the printf() command
○ In the implementation file

■ #include "printf.h"
● In the Makefile add:

○ The tos/lib/printf/2_0_2 directory must be in your include path
■ CFLAGS += -I$(TINYOS_OS_DIR)/tos/lib/printf/2_0_2

○ Define the size of the printf buffer
■ CFLAGS+=-DPRINTF_BUFFER=6042

○ Configuration file:
■ #define NEW_PRINTF_SEMANTICS
■ components PrintfC;

Internet of Things Laboratory 2015

Exercise

15

Modify the blink application to print every time that
a timer fires

Internet of Things Laboratory 2015

Today Application: BlinkToRadio
A one-timer version of Blink application that sends
the counter value over the radio channel.

First Step:
Implement a version of Blink using a single timer
and the set function (look at Leds component
implementation).

BlinkToRadio

16

Internet of Things Laboratory 2015

BlinkToRadio Application

● A counter is incremented every second

● Whenever the timer fires, the value of the
counter is sent over a radio message

● Whenever a radio message is received, the three
least significant bits of the counter in the
message payload are displayed on the LEDs

17

Internet of Things Laboratory 2015

Sending the counter value

18

• Define a message format to send data over the
radio

typedef nx_struct BlinkToRadioMsg {
 nx_uint16_t nodeid;
 nx_uint16_t counter;
} BlinkToRadioMsg;

• Why a struct?
uint16_t x = data[0] << 8 + data[1])

Internet of Things Laboratory 2015

nesC external types

19

• nx_ data types
• Have the same representation on all platforms
• No need to manually address alignment and

endianness

Internet of Things Laboratory 2015

Communication Interfaces
• TinyOS provides high-level communication interfaces

– Similar for radio and serial communication

• Basic interfaces:

– Packet: Set/get payload of TinyOS message_t pckts

– Send: Send packet by calling send() command

– Receive: Reception of pckts signaled by receive() event

• Active Message interfaces allow for multiplexing:

– AMPacket: Provides source/destination address to
pckt

– AMSend: Send packet to destination address

20

Internet of Things Laboratory 2015

TinyOS provides:
i. Communication services by means of interfaces

ii. Components implementing such interfaces
iii. Abstract data type message_t

typedef nx_struct message_t {
nx_uint8_t header[sizeof

(message_header_t)];
nx_uint8_t data

[TOSH_DATA_LENGTH];
nx_uint8_t footer[sizeof

(message_footer_t)];
nx_uint8_t metadata[sizeof

(message_metadata_t)];
} message_t;

Read and
Write through
accessors and

mutuator
functions

Communication Interface

21

Internet of Things Laboratory 2015

Basic Communication Interfaces in /tos/interfaces:
● Packet, Send, Receive, PacketAcknowledgments,

RadioTimeStamping

● Active Message Interfaces: AMPacket, AMSend

● Basic components In /tos/system:
1. AMReceiverC
2. AMSenderC
3. AMSnooperC
4. AMSnoopingReceiverC
5. ActiveMessageAddressC

ActiveMessageC for the telosb
are all implemented by:

CC2420ActiveMessageC

22

Communication Interface

Internet of Things Laboratory 2015

docs.tinyos.net/tinywiki/index.
php/Mote-
mote_radio_communication

Tutorial Link

23

Internet of Things Laboratory 2015

Exercise 1

● Assign an unique ID to your nodes

● Filter radio messages that are not sent to you

24

Internet of Things Laboratory 2015

●Node A sends the value of its counter to node B

●Node B displays the three least significant bits of
the counter on the LEDs, updates the value of the
counter and sends it back to node A

●Node A displays the three least significant bits of
the counter on the LEDs, updates the value of the
counter and sends it back to node B

●….

Excercise 2

25

