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•  SENSES lab
•  WSN: introduction, examples
•  NesC
•  TinyOS
•  A simple application: Blink
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Wireless sensor networks (WSN) are 
nowadays being deployed in a
large number of application domains

 military environments and perimeter sensing 
weather and ambient control

 industrial applications
 power grids
 health care
 Security – Harvesting – Cognitive 
Network
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Correlation between patient's 
condition and environment

•  Light
•  Temperature 
•  Humidity
•  Co2
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GENESI

Green Wireless Sensor Networks
Energy Harvesting to extend 

WSN's life-time.
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Underwater sensor networks

•  Monitoring: oil, gas, 
CO2;

•  Natural disaster 
prevention;

•  Chemical composition 
of ocean floor;

• …

Acoustic 
communication
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WSN architecture

Through the sensory component of a node, 
physical qualities of the areas where the network 
is deployed can be measured.
WSNs data are generated at the sensor nodes and 
are forwarded to a Base Station (Sink)

 Sensor node (node, mote) and Base Station 
 Wireless communication (multi-hop)

 

Base Station 
(Nodo Sink + Gateway) 

Nodi sensore 

Wireless System Lab - TinyOS



WSN
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● sensor 
● A transducer
● converts physical phenomenon e.g. heat, light, motion, 

vibration, and sound into electrical signals
● sensor node 

● basic unit in sensor network
● contains on-board sensors, processor, memory, 

transceiver, and power supply
● sensor network 

● consists of a large number of sensor nodes 
● nodes deployed either inside or very close to the 

sensed phenomenon



WSN
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● Fault tolerance 
● Scalability
● Production costs
● Hardware constraints
● Sensor network topology
● Environment
● Transmission media
● Power Consumption 

● Sensing
● Communication
● Data processing

Factors Influencing WSN Design



Applications

Applications:
● Military
● Environmental
● Health-care
● Home-automation
● Industrial
● Civil
● …
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More applications

Great Duck Island
Study on Petrel (birds)

Bridge monitoring

 Patient monitoring
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Precision farming



More applications
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Other Commercial Applications
● Environmental control in office buildings 
(estimated energy savings $55 billion 
per year!)

● Interactive museums
● Detecting and monitoring car thefts
● Managing inventory control
● Vehicle tracking and detection



Hardware
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Mica2

● CPU: microcontrollor Atmel 
ATmega128L
● MPU: 8-bit RISC (0-8 MHz)
● Memory

● ROM: 128K Bytes Flash
● RAM: 4K Bytes SRAM

● ADC, UART, GPIO, I2C, SPI, Timer
● Communication: Transceiver Chipcon 
CC1000
● 868/915 MHz, 38.4 kbps, range 30-100 

m)
● Local storage: Flash 512 KB
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TelosB

● CPU: microcontrollor TI MSP430
● MPU: 16-bit RISC (0-8 MHz)
● Memory

● ROM: 48K Bytes Flash
● RAM: 10K Bytes SRAM

● ADC, UART, GPIO, I2C, SPI, Timer
● Communication: Transceiver Chipcon 
CC2420
● IEEE 802.15.4 (2,4 GHz, 250 kbps, range 

20-100 m)
● Local Storage: Flash 1024 KB
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Sensor Board

● Several kinds of “sensor”
● Light, temperature, pressure, humidity
● Accelerometer, magnetometer, distance
● Microphones, videocameras, GPS
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Base Station

Base Station
● Wired link PC-node (wireless with 
other nodes)
● Parallel, serial (MIB 510/520), ethernet
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TinyOS
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● TinyOS began as a collaboration between 
University of California, Berkeley and Intel 
Research.

● It is a free open source operating system 
designed for wireless sensor networks.

● It is an embedded operating system written 
in NesC (network embedded system C).

● It features a component based 
architecture.



TinyOS - nesC
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● Separation construction/composition
● Construction of Modules
●  Modules implementation similar to C coding

●  Programs are built out of components
●  Each component specifies an interface
●  Interfaces are “hooks” for wiring 

components
●  Composition of Configurations

●  Components are statically wired together
●  Increases programming efficiency (code 

reuse) and runtime efficiency (static defs.)



TinyOS - nesC
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● Components should use and provide bidirectional 
interfaces.

●

● Components  should call and implement 
commands and signal and handle events.

●

● Components must handle events of used 
interfaces and also provide interfaces that must 
implement commands.

Component Model



TinyOS - nesC
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Component Model: Hierarchy
● Commands

● Flow downwards
● Non Blocking requests
● Control returns to caller

● Events
● Flow upwards
● Post task, signal higher level events, 

call lower level cmds
● Control returns to signaler

● To avoid cycles
● Events can call commands
● Commands can NOT signal events



TinyOS - nesC

Example – Component: module

module XYZ1
{
  provides interface Interface1 as I1;
  provides interface Interface2;
  …
  uses interface Interface3 as I3;
  uses interface Interface2;
  …
}
implementation
{
 command void I1.cmd1() {
    …
  }

  event void Interface2.ev1() {
    …
  }
}
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TinyOS - nesC

Example – Component: configuration

configuration XYZ
{
 …
}
implementation
{
  components XYZ1, XYZ2;

  …
  XYZ1.Interface1 -> XYZ2.Interface1;
  XYZ1.Interface2 -> XYZ2;
  …
}
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TinyOS - nesC

● Tasks enable components to perform 
general-purpose "background" 
processing in an application
● Event

● High priority
● Task

● Low priority

Wireless System Lab - TinyOS

TinyOS guarantees that task 
will eventually run.



TinyOS - nesC

When you are developing an application 
for TinyOS, keep in mind:

Hurry Up and Sleep!!!

● In order to save battery life a node should be in the 
sleep state as much as possible

● When an event wakes up a node, the node should do 
something and then return in the sleep state.

● Interrupt-driven & Split-phase
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Example - Blink

The application displays a 
counter on the three mote LEDs
● Leds turn on and off at 1Hz, 2Hz, 
and 4Hz

● Application components:
● BlinkAppC (Configuration)
● BlinkC (Module)

● System components:
● MainC, LedsC, TimerMilliC
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Example - Blink

BlinkAppC components graph:

Singleton Generic 

Module 

Configuration 
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Example - Blink

BlinkAppC.nc
configuration BlinkAppC
{
}
implementation
{
  components MainC, BlinkC, LedsC;
  components new TimerMilliC() as Timer0;
  components new TimerMilliC() as Timer1;
  components new TimerMilliC() as Timer2;

  BlinkC -> MainC.Boot;

  BlinkC.Timer0 -> Timer0;
  BlinkC.Timer1 -> Timer1;
  BlinkC.Timer2 -> Timer2;
  BlinkC.Leds -> LedsC;
}
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Example - Blink

BlinkC.nc

#include "Timer.h"

module BlinkC
{
  uses interface Timer<TMilli> as Timer0;
  uses interface Timer<TMilli> as Timer1;
  uses interface Timer<TMilli> as Timer2;
  uses interface Leds;
  uses interface Boot;
}
implementation
{
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Example - Blink

BlinkC.nc

  event void Boot.booted()
  {
    call Timer0.startPeriodic( 250 );
    call Timer1.startPeriodic( 500 );
    call Timer2.startPeriodic( 1000 );
  }
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Example - Blink

BlinkC.nc
event void Timer0.fired()
  {
    dbg("BlinkC", "Timer 0 fired @ %s.\n", sim_time_string());
    call Leds.led0Toggle();
  }
  
  event void Timer1.fired()
  {
    dbg("BlinkC", "Timer 1 fired @ %s \n", sim_time_string());
    call Leds.led1Toggle();
  }
  
  event void Timer2.fired()
  {
    dbg("BlinkC", "Timer 2 fired @ %s.\n", sim_time_string());
    call Leds.led2Toggle();
  }
}
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Example – Blink counter

BlinkC.nc
  uint8_t counter = 0;

  event void Boot.booted()
  {
    call Timer0.startPeriodic( 1024 );
  }
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Example – Blink counter

BlinkC.nc
event void Timer0.fired()
{  
    counter++;
    if (counter & 0x1) {
      call Leds.led0On();
    }
    else {
      call Leds.led0Off();
    }
    if (counter & 0x2) {
      call Leds.led1On();
    }
    else {
      call Leds.led1Off();
    }
    if (counter & 0x4) {
      call Leds.led2On();
    }
    else {
      call Leds.led2Off();
    }
}
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