
Wireless Systems Laboratory
October 14, 2013

A. Cammarano, A.Capossele, D.
Spenza

Wireless System Lab - TinyOS

Wireless System Lab - TinyOS

Contacts

Cammarano: cammarano@di.uniroma1.it
Capossele: capossele@di.uniroma1.it
Spenza: spenza@di.uniroma1.it
Google Group:

http://groups.google.com/d/forum/sistemiwireless2013-di-uniroma1

Tel: 06-49918430
Room: 333

Slides: wwwusers.di.uniroma1.it/~spenza/lab2013.html

mailto:cammarano@di.uniroma1.it
mailto:capossele@di.uniroma1.it
mailto:spenza@di.uniroma1.it

Outline

• SENSES lab
• WSN: introduction, examples
• NesC
• TinyOS
• A simple application: Blink

Wireless System Lab - TinyOS

Wireless sensor networks (WSN) are
nowadays being deployed in a
large number of application domains

 military environments and perimeter sensing
weather and ambient control

 industrial applications
 power grids
 health care
 Security – Harvesting – Cognitive
Network

Wireless System Lab - TinyOS

CHIRON

PATIENT

SENSOR

SENSOR

SENSOR

SENSOR

ENVIRONMENTAL
SENSOR

DOCTOR

Correlation between patient's
condition and environment

• Light
• Temperature
• Humidity
• Co2

Wireless System Lab - TinyOS

GENESI

Green Wireless Sensor Networks
Energy Harvesting to extend

WSN's life-time.

Wireless System Lab - TinyOS

Underwater sensor networks

• Monitoring: oil, gas,
CO2;

• Natural disaster
prevention;

• Chemical composition
of ocean floor;

• …

Acoustic
communication

Wireless System Lab - TinyOS

WSN architecture

Through the sensory component of a node,
physical qualities of the areas where the network
is deployed can be measured.
WSNs data are generated at the sensor nodes and
are forwarded to a Base Station (Sink)

 Sensor node (node, mote) and Base Station
 Wireless communication (multi-hop)

Base Station
(Nodo Sink + Gateway)

Nodi sensore

Wireless System Lab - TinyOS

WSN

Wireless System Lab - TinyOS

● sensor
● A transducer
● converts physical phenomenon e.g. heat, light, motion,

vibration, and sound into electrical signals
● sensor node

● basic unit in sensor network
● contains on-board sensors, processor, memory,

transceiver, and power supply
● sensor network

● consists of a large number of sensor nodes
● nodes deployed either inside or very close to the

sensed phenomenon

WSN

Wireless System Lab - TinyOS

● Fault tolerance
● Scalability
● Production costs
● Hardware constraints
● Sensor network topology
● Environment
● Transmission media
● Power Consumption

● Sensing
● Communication
● Data processing

Factors Influencing WSN Design

Applications

Applications:
● Military
● Environmental
● Health-care
● Home-automation
● Industrial
● Civil
● …

RESIDENTIAL
/
LIGHT
COMMERCIA
L CONTROL

CONSUMER
ELECTRONIC
S

PC &
PERIPHERAL
S

INDUSTRIAL
CONTROL

PERSONAL
HEALTH
CARE

BUILDING
AUTOMATIO
N

Wireless System Lab - TinyOS

More applications

Great Duck Island
Study on Petrel (birds)

Bridge monitoring

 Patient monitoring

Wireless System Lab - TinyOS

Precision farming

More applications

Wireless System Lab - TinyOS

Other Commercial Applications
● Environmental control in office buildings
(estimated energy savings $55 billion
per year!)

● Interactive museums
● Detecting and monitoring car thefts
● Managing inventory control
● Vehicle tracking and detection

Hardware

Wireless System Lab - TinyOS

Mica2

● CPU: microcontrollor Atmel
ATmega128L
● MPU: 8-bit RISC (0-8 MHz)
● Memory

● ROM: 128K Bytes Flash
● RAM: 4K Bytes SRAM

● ADC, UART, GPIO, I2C, SPI, Timer
● Communication: Transceiver Chipcon
CC1000
● 868/915 MHz, 38.4 kbps, range 30-100

m)
● Local storage: Flash 512 KB

Wireless System Lab - TinyOS

TelosB

● CPU: microcontrollor TI MSP430
● MPU: 16-bit RISC (0-8 MHz)
● Memory

● ROM: 48K Bytes Flash
● RAM: 10K Bytes SRAM

● ADC, UART, GPIO, I2C, SPI, Timer
● Communication: Transceiver Chipcon
CC2420
● IEEE 802.15.4 (2,4 GHz, 250 kbps, range

20-100 m)
● Local Storage: Flash 1024 KB

Wireless System Lab - TinyOS

Sensor Board

● Several kinds of “sensor”
● Light, temperature, pressure, humidity
● Accelerometer, magnetometer, distance
● Microphones, videocameras, GPS

Wireless System Lab - TinyOS

Base Station

Base Station
● Wired link PC-node (wireless with
other nodes)
● Parallel, serial (MIB 510/520), ethernet

Wireless System Lab - TinyOS

TinyOS

Wireless System Lab - TinyOS

● TinyOS began as a collaboration between
University of California, Berkeley and Intel
Research.

● It is a free open source operating system
designed for wireless sensor networks.

● It is an embedded operating system written
in NesC (network embedded system C).

● It features a component based
architecture.

TinyOS - nesC

Wireless System Lab - TinyOS

● Separation construction/composition
● Construction of Modules
● Modules implementation similar to C coding

● Programs are built out of components
● Each component specifies an interface
● Interfaces are “hooks” for wiring

components
● Composition of Configurations

● Components are statically wired together
● Increases programming efficiency (code

reuse) and runtime efficiency (static defs.)

TinyOS - nesC

Wireless System Lab - TinyOS

● Components should use and provide bidirectional
interfaces.

●

● Components should call and implement
commands and signal and handle events.

●

● Components must handle events of used
interfaces and also provide interfaces that must
implement commands.

Component Model

TinyOS - nesC

Wireless System Lab - TinyOS

Component Model: Hierarchy
● Commands

● Flow downwards
● Non Blocking requests
● Control returns to caller

● Events
● Flow upwards
● Post task, signal higher level events,

call lower level cmds
● Control returns to signaler

● To avoid cycles
● Events can call commands
● Commands can NOT signal events

TinyOS - nesC

Example – Component: module

module XYZ1
{
 provides interface Interface1 as I1;
 provides interface Interface2;
 …
 uses interface Interface3 as I3;
 uses interface Interface2;
 …
}
implementation
{
 command void I1.cmd1() {
 …
 }

 event void Interface2.ev1() {
 …
 }
}

Wireless System Lab - TinyOS

TinyOS - nesC

Example – Component: configuration

configuration XYZ
{
 …
}
implementation
{
 components XYZ1, XYZ2;

 …
 XYZ1.Interface1 -> XYZ2.Interface1;
 XYZ1.Interface2 -> XYZ2;
 …
}

Wireless System Lab - TinyOS

TinyOS - nesC

● Tasks enable components to perform
general-purpose "background"
processing in an application
● Event

● High priority
● Task

● Low priority

Wireless System Lab - TinyOS

TinyOS guarantees that task
will eventually run.

TinyOS - nesC

When you are developing an application
for TinyOS, keep in mind:

Hurry Up and Sleep!!!

● In order to save battery life a node should be in the
sleep state as much as possible

● When an event wakes up a node, the node should do
something and then return in the sleep state.

● Interrupt-driven & Split-phase

Wireless System Lab - TinyOS

Example - Blink

The application displays a
counter on the three mote LEDs
● Leds turn on and off at 1Hz, 2Hz,
and 4Hz

● Application components:
● BlinkAppC (Configuration)
● BlinkC (Module)

● System components:
● MainC, LedsC, TimerMilliC

Wireless System Lab - TinyOS

Example - Blink

BlinkAppC components graph:

Singleton Generic

Module

Configuration

Wireless System Lab - TinyOS

Example - Blink

BlinkAppC.nc
configuration BlinkAppC
{
}
implementation
{
 components MainC, BlinkC, LedsC;
 components new TimerMilliC() as Timer0;
 components new TimerMilliC() as Timer1;
 components new TimerMilliC() as Timer2;

 BlinkC -> MainC.Boot;

 BlinkC.Timer0 -> Timer0;
 BlinkC.Timer1 -> Timer1;
 BlinkC.Timer2 -> Timer2;
 BlinkC.Leds -> LedsC;
}

Wireless System Lab - TinyOS

Example - Blink

BlinkC.nc

#include "Timer.h"

module BlinkC
{
 uses interface Timer<TMilli> as Timer0;
 uses interface Timer<TMilli> as Timer1;
 uses interface Timer<TMilli> as Timer2;
 uses interface Leds;
 uses interface Boot;
}
implementation
{

Wireless System Lab - TinyOS

Example - Blink

BlinkC.nc

 event void Boot.booted()
 {
 call Timer0.startPeriodic(250);
 call Timer1.startPeriodic(500);
 call Timer2.startPeriodic(1000);
 }

Wireless System Lab - TinyOS

Example - Blink

BlinkC.nc
event void Timer0.fired()
 {
 dbg("BlinkC", "Timer 0 fired @ %s.\n", sim_time_string());
 call Leds.led0Toggle();
 }

 event void Timer1.fired()
 {
 dbg("BlinkC", "Timer 1 fired @ %s \n", sim_time_string());
 call Leds.led1Toggle();
 }

 event void Timer2.fired()
 {
 dbg("BlinkC", "Timer 2 fired @ %s.\n", sim_time_string());
 call Leds.led2Toggle();
 }
}

Wireless System Lab - TinyOS

Example – Blink counter

BlinkC.nc
 uint8_t counter = 0;

 event void Boot.booted()
 {
 call Timer0.startPeriodic(1024);
 }

Wireless System Lab - TinyOS

Example – Blink counter

BlinkC.nc
event void Timer0.fired()
{
 counter++;
 if (counter & 0x1) {
 call Leds.led0On();
 }
 else {
 call Leds.led0Off();
 }
 if (counter & 0x2) {
 call Leds.led1On();
 }
 else {
 call Leds.led1Off();
 }
 if (counter & 0x4) {
 call Leds.led2On();
 }
 else {
 call Leds.led2Off();
 }
}

Wireless System Lab - TinyOS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

