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Abstract

This work is motivated by a general question: can energy harvesting capabil-
ities embedded in modern sensor nodes be exploited so as to support security
mechanisms which otherwise would be too demanding and hardly viable?
More specifically, in this work we focus on the support of extremely powerful,
but complex, fine-grained data-centric access control mechanisms based on
multi-authority Ciphertext Policy Attribute Based Encryption (CP-ABE).
By integrating access control policies into the (encrypted) data, such mech-
anisms do not require any server-based access control infrastructure and are
thus highly desirable in many wireless sensor network scenarios. However,
as concretely shown by a proof-of-concept implementation first carried out
in this paper on TelosB and MicaZ motes, computational complexity and
energy toll of state-of-the-art multi-authority CP-ABE schemes are still crit-
ical. We thus show how to mitigate the relatively large energy consumption
of the CP-ABE cryptographic operations by proposing AGREE (Access
control for GREEn wireless sensor networks), a framework which exploits
energy harvesting opportunities to pre-compute and cache suitably chosen
CP-ABE-encrypted keys, so as to minimize the need to perform CP-ABE
encryptions when no energy from harvesting is available. We assess the per-
formance of AGREE by means of simulation and actual implementation,
and by validating its operation with real-world energy-harvesting traces col-
lected indoors by Telos B motes equipped with photovoltaic cells, as well as
publicly available traces of radiant light energy. Our results show that com-
plex security mechanisms may become significantly less demanding when
implemented so as to take advantage of energy harvesting opportunities.
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Data access control, Ciphertext Policy Attribute-Based Encryption
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1. Introduction

Wireless sensor nodes with energy harvesting capabilities (EH-WSN) are
motes that, in addition to traditional sensing and wireless communications
capabilities, are able to extract energy from the surrounding environment
and to convert it into usable electrical power. A EH-WSN platform gener-
ally includes one or more harvesters, which scavenge power from the envi-
ronment, and an energy storage device, typically a rechargeable battery or
a supercapacitor, which can store excess energy for later use. Energy har-
vesting is quickly emerging as a key technology to enable virtually perpetual
operation of wireless sensor networks [1, 2], supplementing or even replacing
traditional power sources, such as primary batteries, which fail to meet the
lifetime requirements of long-term deployments of WSNs. Applications of
EH-WSNs include, among others, health care and assisted living [3, 4], struc-
tural health monitoring [5, 6], terrestrial and aquatic environmental moni-
toring [7, 8], etc. In many of such scenarios, providing reliable mechanisms
to duly control access to the collected data is of paramount importance.

Health care and assisted living applications, in particular, present a num-
ber of unique challenges. Access to sensitive data must be allowed only to a
given set of privileged users, who can belong to different institutions (multi-
authority) and whose identities are not necessarily known a priori. More-
over, different types of data (e.g., health data versus patient location versus
environmental data) may be meant for different sets of users. Finally, the
recipients of a given sensed information stream may further depend on the
context, and change when the context does. For instance, consider a patient
remotely monitored through sensing devices placed over her/his body. The
gathered data (temperature, hearth rate, blood pressure, etc.) is generally
not meant for a specific doctor (i.e., as an individual), but for someone having
the role of doctor, whose identity may vary over time and may not even be
known a-priori. Moreover, critical health conditions (as attested by anoma-
lies in the gathered data) require prompt intervention. Such data should
hence become suddenly accessible by emergency personnel not originally in
charge of handling normal health parameters.

Data-centric Access Control

The problem of granting access privileges to given users is known as
‘data access control’, and it is traditionally addressed by dedicated server-
based privilege management infrastructures. However, such infrastructures
come along with several drawbacks in a scenario of pervasive deployment
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of wireless sensor networks, including the significant management burden
posed to the WSN in terms of coordination and signaling.

Such drawbacks may be overcome by using different approaches, such as
the novel category of Attribute Based Encryption (ABE) [9] schemes, which
permit to address the access control problem through a completely different
data-centric perspective. ABE permits a recipient to decrypt a given ci-
phertext only if she/he satisfies a given access control policy. ABE has been
designed in two flavors. In the original Key-Policy (KP-ABE) construc-
tions [9, 10], an encrypted data is labeled with a set of descriptive attributes
and the access control policies reside on the data recipients’ terminals. An
opposite approach is instead promoted by ABE schemes called Ciphertext-
Policy (CP-ABE), originally proposed in [11]. With CP-ABE, access control
policies (unlike attributes) are embedded in the ciphertext. Attributes are
instead issued to users, possibly from multiple independent authorities (e.g.,
when using the construction in [12]). A user may decrypt the cyphertext
only if the set of attributes she/he holds satisfies the access control policy
embedded in the data. For instance, a monitored patient may freely decide
that a given data may be accessed only by ‘doctors AND nurses’, or only by
‘doctors OR personnel from a specific hospital’.

Embedding the access control policies inside the ciphertext, rather than
having them enforced on external servers or policy enforcement points,
makes CP-ABE schemes particularly well-suited for WSN scenarios. In fact,
differently from KP-ABE, CP-ABE allows each sensor to dynamically and
independently change the access control policies attached to the data , e.g.,
to promptly respond to a change of context or environmental conditions.
This in turn gives full control to end users which can decide the access rules
to their data and how they should evolve with context.

Our contribution

Despite the appeal of CP-ABE schemes, there is considerable skepti-
cism on their viability over battery-powered and resource-constrained sen-
sors, especially when considering multi-authority schemes whose compu-
tational complexity and overhead scales at best linearly with the number
of attributes involved in a policy. Indeed, to the best of our knowledge,
our paper is the first to document an implementation of a multi-authority
CP-ABE scheme (actually, we are not even aware of previous works docu-
menting ”just” single-authority CP-ABE implementations over WSN motes
- works [13, 14] in fact report single-authority KP-ABE implementations),
and our results show that performance appear still far from being practical
for battery-powered nodes.
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Our work stems from the observation that the ever increasing emer-
gence of energy harvesting technologies for sensor nodes leads to a radi-
cal rethinking of energy efficiency strategies. In the traditional scenario
of battery-powered devices, the only and obvious strategy to prolong the
lifetime of a WSN was to reduce energy consumption as much as possible.
This translated into believing that energy demanding operations (such as
those mandated by some security schemes or cryptographic routines) were
not feasible for energy constrained embedded devices. Conversely, energy
harvesters opportunistically draw energy from the environment1. The result
is an alternation between periods in which energy must be sparely used, and
situations in which there may even be an excess of energy available, en-
ergy which would be wasted unless used in the short term. Moreover, even
if energy availability cannot be controlled, it can be predicted [15, 16, 17]
to some extent, thus allowing the development of proactive energy manage-
ment strategies. This opens up new opportunities: the question is no longer
restricted to quantify how demanding an operation (say a costly CP-ABE
encryption of a key using a given policy) is in terms of energy toll, but it
extends to further understand when such an operation has to be performed
and whether, and to what extent demanding computations can be pushed to
periods where energy is harvested and is in excess.

This new area of green wireless sensor network security, i.e., how to ex-
ploit the opportunities provided by energy harvesting for revisiting WSN
security schemes, has so far been overlooked. This paper takes a first step
in the direction of re-thinking WSN security schemes so as to exploit the
opportunities provided by energy harvesting. Specifically, we make the fol-
lowing contributions:

• We assess the feasibility of CP-ABE in WSNs via an actual imple-
mentation in TinyOS for Telos B and Mica2 platforms. Such imple-
mentation allowed us to determine its energy consumption, memory
requirements and computational complexity and guided us through
the development of specific optimizations aiming at reducing the large
overhead of CP-ABE over resource-constrained motes. To the best of
our knowledge, we are the first to fully implement a CP-ABE scheme
(actually, the more complex multi-authority case) over sensor plat-
forms.

1In health-care applications using wearable medical devices, potential sources of energy
harvesting include indoor light energy, mechanical energy produced by movements, and
heat transfer between the human body and the ambient.
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• Around such multi-authority CP-ABE core, we have designed AGREE,
an energy-harvesting-aware Access control framework for GREEn WSNs.
AGREE mitigates the energy consumption of the CP-ABE scheme by
pushing most of the costly encryption operations to energy harvest-
ing periods, pre-computing and storing the CP-ABE encryption of as
many keys as possible. Since the memory of the motes is clearly un-
able to hold all possible access control policies, AGREE implements
a caching strategy designed to store information so as to minimize the
need to invoke a CP-ABE operation before the next predicted energy
harvesting phase occurs.

• We provide a simulation-based performance evaluation framework for
EH-WSNs. In our experiments, we use traces of the availability of
indoor light energy that we obtained by interfacing TelosB nodes with
photovoltaic cells, collecting data for a week in the student office of
the CS Department building of Sapienza University of Rome. We also
validate our approach by using two additional datasets obtained from
the EnHANTs (Energy Harvesting Active Networked Tags) project of
Columbia University.

• We performed a comparative performance evaluation of AGREE and
of two other caching strategies which do not leverage information
about the harvesting process and the dynamics of the application.
Our validation clearly shows that AGREE is able to efficiently op-
erate based on the excess harvested energy and that it significantly
outperforms other harvesting-unaware caching strategies.

The remainder of this paper is organized as follows. We discuss re-
lated work in Section 2. In Section 3 we review known results by giving
an overview of the operation of CP-ABE schemes. We present our scheme,
AGREE, in Section 4. In Section 5 we evaluate our proposed approach,
discussing practical implementation challenges of CP-ABE schemes and pre-
senting a simulation-based evaluation of AGREE. Finally, we present our
conclusions in Section 6.

2. Related works

Application scenarios of EH-WSNs are ever increasing and for many of
them providing reliable security support is a critical requirement. Despite
extensive research has been devoted to devise security solutions specifically
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tailored to WSNs [18, 19], such works generally target traditional battery-
powered wireless sensor motes. Energy harvesting techniques, however, by
providing virtually unlimited energy to nodes, change the way WSNs oper-
ate and the general underlying assumption that the energy reservoir of the
network is finite and monotonically decreasing over time. This calls for new
dedicated approaches that can leverage harvesting opportunities, but so far
only a few works [20, 21] have addressed security topics in such context.
In [20], Taddeo et al. proposed an optimization mechanism that allows a
EH-WSN to change the communication security settings over time, based
on the energy state of the network. Different types of packets, each having
different priority level and security requirements, are handled, and a quality
of service mechanism is introduced to favor high-priority packets when the
harvesting energy intake is scarce. Pelissier et al. proposed in [21] a scheme
that applies to stream ciphers, which allows energy harvesting systems to
precompute and store keystream bytes, and to use them when the system
energy availability is low. However, stream ciphers, being symmetric encryp-
tion algorithms, consume impressively less time and energy with respect to
asymmetric cryptography schemes: indeed, the time and energy required to
perform a single public-key operation can be the same as encrypting tens of
megabits using symmetric encryption [22].

In this paper we show that smart caching and energy intake prediction
can be combined to make computationally involved asymmetric cryptog-
raphy schemes feasible in real wireless sensor networks with energy har-
vesting. In particular, in our paper we focus on data access control and
CP-ABE schemes. The problem of data access control in WSNs, which is
of paramount importance in health care and assisted living applications,
has received notable attention by the research community, but, to the best
of our knowledge, no solution for networks with harvesting capabilities has
been proposed so far. Recent works targeting data access control in tra-
ditional WSNs are based on Attribute Based Encryption (ABE), a crypto-
graphic primitive introduced by Sahai and Waters in [9] and later extended
by [10, 11], which proposed Key-Policy ABE (KP-ABE) and Ciphertext-
Policy ABE (CP-ABE), respectively. The technical feasibility of KP-ABE
techniques in wireless sensor networks have recently been demonstrated [13,
14]. In [13], Yu et al. presented a centralized fine-grained data access con-
trol scheme, based on KP-ABE, for distributed storage in wireless sensor
networks, which has been specifically adapted to WSNs performance and
security requirement. However, their solution only addresses single author-
ity scenarios, in which compromising the single authority jeopardizes the
security of the whole system. The framework proposed by Ruj et al. in [14]

6



partially solved this limit, but their solution can only support strict “AND”
policies and it requires a pre-determined set of authorities.

CP-ABE schemes, instead, support multi-authority [12] and provide a
framework for dynamic access control which well fits the application require-
ments of traditional WSN applications. However, since they suffer from a
significant higher overhead than KP-ABE approaches, their viability over
both traditional and energy harvesting wireless sensor networks is still to be
proven. Making CP-ABE schemes applicable in real-life is the objective of
this paper.

3. CP-ABE overview

Our work capitalizes on a decentralized CP-ABE scheme recently pro-
posed by Lewko and Waters, referred to in what follows as LW. In the next
subsections we give an overview of such scheme and of its functionalities.
The interested reader is referred to [12] for formal proofs of the security of
the scheme.

3.1. Preliminaries

The runtime operations of CP-ABE comprise two functionalities: en-
cryption, performed by the sensor nodes in charge of gathering and deliver-
ing the sensed information, and decryption, performed by the data recipient
which we non restrictively assume to be a back-end infrastructure device
or an end user’s terminal (i.e., not a sensor node). CP-ABE operation is
asymmetric. Similarly to ordinary asymmetric encryption (e.g., RSA), a
sensor node does not need to store any secret key. Rather, in the general
context of multiple authorities, the information needed by the system are:

• An access control policy, namely a boolean predicate over a set of
attributes, which specifies the set of users that are allowed to decrypt
the data.

• A set of attributes, which are ordinary strings of text arbitrarily for-
matted.

• A set of public keys, one per each attribute, potentially released by
different authorities. An encrypted data for a given attribute may
be decrypted only by a user possessing a secret key associated to the
attribute name and to the authority releasing the attribute.
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3.2. Setup and decentralized attribute issuing

In CP-ABE schemes, involved parties agree on the following public pa-
rameters:

• Two multiplicative cyclic groups, G and GT , of same prime order N ,
chosen such that the discrete logarithm problem is hard to solve on
both G and GT ;

• a generator g for the group G;

• a global hash function H : {0, 1}∗ → G that maps arbitrary strings
into elements of the group G;

• a bilinear map e : G × G → GT , satisfying the following properties:
bilinearity, non degeneracy and computability [11].

CP-ABE supports multi-authority system, in which any party can be an
independent Attribute Authority (AA) by creating and publishing a verifi-
cation key coupled with a list of attributes it will manage. For each issued
attribute i, the AA chooses two random exponents αi, yi,∈ ZN, and pub-
lishes PKi = {e(g, g)αi , gyi} as its public key. We recall that attributes are
permissions to access encrypted data, and as such are issued not to encrypt-
ing sensor nodes, but to users. To identify different users, a global identity
GIDu (a text string, e.g., the user’s social security number) is associated to
each user u.

3.3. Message encryption

Messages are encrypted along with an access control policy over a set of
attributes. Access structures are described through Linear Secret Sharing
Scheme (LSSS) matrices [23]. To encrypt a message D, the first step consists
of modeling the applicable access control policy in terms of an a × l LSSS
matrix LS, where a is the number of attributes involved in the policy and l
is a parameter depending on the considered policy2.

We define ρ(x) as a function mapping rows x of LS to the corresponding
attribute. We also also recall that, by construction, the encrypting node
knows the public key of each attribute ρ(x).

The encryption algorithm chooses a random secret s ∈ ZN and a random
vector v ∈ ZlN =< s, v2, v3, · · · , vl >, having the secret s as its first entry

2The reader can refer to Appendix G in [12] for a practical procedure to convert an
arbitrary boolean policy into an LSSS matrix.
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and random values as the subsequent entries. It calculates λx = LSx · v,
where LSx is a row of LS. Similarly, it chooses a random vector w ∈ ZlN =<
0, w2, w3, · · · , wl > with 0 as the first entry and it defines ωx = LSx ·w. For
each row LSx of LS, it chooses a random rx ∈ ZN. It finally encrypts the
message D computing the following parameters:

C0 = De(g, g)s

C1,x = e(g, g)λxe(g, g)αρ(x)rx ∀x
C2,x = grx ∀x
C3,x = gyρ(x)rxgωx ∀x

(1)

3.4. Message decryption

To decrypt a message a user u needs to possess a secret keys Kx,GIDu

for each attribute x belonging to a set of attributes which satisfy the access
control policy embedded in the ciphertext. This is verified by checking
whether there exists a subset X of attributes owned by the user, such that
a linear combination of the relevant rows in the LSSS matrix LS yields the
vector (1, 0, . . . , 0). If this condition is verified, the user may decrypt the
message D. For each x ∈ X, the user u computes:

C1,xe(H(GIDu), C3,x)

e(Kρ(x),GIDu , C2,x)
= e(g, g)λxe(H(GIDu), g)ωx (2)

Then user u chooses the constants cx ∈ ZN , such that
∑

x∈X cxLSx =
(1, 0, . . . , 0) and computes:∏

x∈X
(e(g, g)λxe(H(GID), g)ωx)cx = e(g, g)s (3)

Note that λx = LSx · v and ωx = LSx · w, where v · (1, 0, . . . , 0) = s and
w · (1, 0, . . . , 0) = 0.

Finally the user can obtain the original message D as:

D = C0/e(g, g)s. (4)

4. AGREE

In this section, we present our scheme, AGREE. In Section 4.1 we dis-
cuss the specific optimizations we devised to reduce the large overhead of
CP-ABE in WSNs. In Section 4.2 we present a technique to react to critical
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situations and changes of context. A mechanism that allows nodes to lever-
age energy harvesting opportunities to pre-compute policies is presented in
Section 4.3. Finally, we introduce in Section 4.4 a caching strategy to pre-
compute the most likely set of policies, as quantified by a Markov model of
the sensor node’s application state evolution.

4.1. WSN specific optimizations

The main source of overhead introduced by CP-ABE schemes is due to
message encryption, as several scalar multiplications must be performed to
compute the parameters C0, C1,x, C2,x and C3,x described in Section 3.3,
Equation (1). The first specific optimization we propose to adapt CP-ABE
to resource-constrained devices is to have nodes ascribing the access policy
to a session key, SSK, instead that to the data itself, as in traditional
CP-ABE schemes. More in details, a session key SSK is generated and
encrypted using CP-ABE. Each sensed data D is encrypted by means of a
symmetric-key algorithm, such as AES [24], using SSK as secret key. Upon
request for sensor data, the mote responds with both the encrypted session
key SSK and the ciphertext of the sensed data D. If the user is an intended
receiver, he will be able to decrypt the session key and to derive the data
encryption key. Such optimization does not affect the security of the CP-
ABE scheme, because, as explained in Section 3.4, to decrypt the session key
the user should be an intended receiver, i.e., she/he would need to possess a
secret key Kx,GIDu for each attribute x belonging to a set of attributes that
satisfy the access control policy embedded in SSK. The rationale behind
such optimization is that encrypting or decrypting data with a symmetric
encryption algorithm, such as AES, is much more efficient than directly
using ABE, which is several orders of magnitudes more resource demanding
than symmetric encryption. Moreover, by using this approach, sensor nodes
can pre-compute and store the parameters C0, C1,x, C2,x and C3,x when they
have high energy and use them when the access policy changes or when a
session key is refreshed.

As for further optimizations, the choice of the type of elliptic curve is
important because it directly affects the performance of operations such as
scalar multiplication and pairing. A generic pairing function is defined as
e : G1 × G2 → GT , where G1 and G2 are two distinguished subgroups
of order p in which the Elliptic Curve Decisional Diffie-Hellman problem
(ECDDH) is hard to solve [25]. CP-ABE requires a prime order group with
a symmetric pairing e : G1 ×G1 → GT , which only exists on supersingular
elliptic curves. In order to reduce ciphertext size, we choose a supersingular
curve over a binary field, having the form y2+y = x3+x with an embedding
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degree of 4. This kind of curve is well suited for WSNs environments and
it can be implemented very efficiently in terms of memory and processing
requirements, when compared with implementations on ordinary curves [26].

4.2. Access policies updates

In many WSNs scenarios, the access provided to the data is highly de-
pendent to the current context. For this reason, it is very important to
consider the occurrence of critical events in the system and to react to them
by providing fast mechanisms to change the access policies when needed.
Critical events must be timely handled and a dynamic access control system
is essential to this end. Any access provided to roles in response to an emer-
gency is temporary and is rescinded after a specific amount of time, which
depends on the specific emergency happened. For example, in a health care
application scenario, a critical event may be the patient suffering from a
heart attack while being at home. In such context, sensitive data that are
normally accessible only to her/his doctor should also be made available
to the emergency paramedical team as quickly as possible. To handle such
situations, the basic idea is to have a hierarchy of access policies. Each level
of the hierarchy corresponds to a level of criticality. Let L be the number of
levels that the system can support. If the system is using the access policy
level n, it will ignore all the access policies of level n+ 1, . . . , L. For exam-
ple, consider this set of access policies associated with an ECG sensor of a
patient:

1. p1 = Doctor AND Patient’s consent

2. p2 = (Doctor OR Nurse OR Paramedic) AND (Patient’s consent)

3. p3 = Doctor OR Nurse OR Paramedic

Figure 1 shows the description of the policy p2 as a tree representing the cor-
responding boolean function. Initially, the sensor node adopts the policy p1.
Policies p2 and p3 are not used, as their hierarchical level is higher than the
current criticality level of the system, but the sensor node may pre-compute
them for future use, if it has enough energy and cache memory available.
Whenever a critical event occurs, according to the context in which the pa-
tient is located and to the importance of the event, the sensor node will
adopt a policy of higher level, thus ensuring the timely adjustment of data
access. Changing the access policy of the data implies updating the ses-
sion key SSK by running the encryption algorithm described in Section 3.3.
More in detail, if a new policy p′ is adopted, the following operations should
be performed by the node:
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Doctor Nurse

OR Paramedic

OR

AND

Patient’s consent

Figure 1: Description of the policy p2 as a tree representing the corresponding boolean
function.

1. generate a new session key SSKp′ ;

2. convert the access policy p′ into an LSSS matrix;

3. apply CP-ABE to encrypt SSKp′ with the access policy p′, by com-
puting the new parameters C0, C1,x, C2,x and C3,x;

4. locally store the parameters of the new policy p′: ( SSKp′ , C0, C1,x,
C2,x, C3,x );

5. send the new encrypted session key to the users.

Such operations, however, are quite slow and expensive in terms of energy
consumption and pose a significant burden to resource and energy con-
strained WSNs. In the next Section 4.3, we propose a mechanism to mitigate
such energy consumption by leveraging characteristics of EH-WSNs.

4.3. Pre-computation of policies

In energy harvesting enabled WSNs, available energy varies over time
in a non monotonic yet partially predictable [15] fashion and there might
even be situations in which we have an excess of energy available, which
is wasted unless used in the short term. In fact, since the storage device
has a finite size, some energy may be lost if the energy buffer is full while
the node is harvesting energy. Figure 2 shows an example of such situation.
As described in Section 5.2, we interfaced Telos B motes with photovoltaic
cell, we deployed them indoors, and collected data about the energy that
the nodes were able to harvest from artificial light, i.e., by ceiling and table
lamps, and from solar light entering the room from the windows. Figure 2
shows the energy harvested during two different days with this setup and the
energy surplus that occurred during this time frame. On the first day, due to
low light energy coming from the windows and from artificial illumination,
the node does not harvest enough energy to fully recharge its capacitor.
The surplus energy is thus zero. During the second day, on the contrary,
the node supercapacitor is recharged up to its maximum capacity at around
12:00 PM. After then, the energy harvested should be used immediately by
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Figure 2: Traces of the light energy harvested indoors over two days. There is an energy
surplus between 12:00 PM and 7:30 PM on the second day: since the supercapacitor is full,
the energy harvested by the node during such period of time should be used immediately
or it would be wasted.

the node or it is going to be wasted. Short after 7:30 PM, the harvesting
power decreases and the supercapacitor starts discharging.

To avoid wasting energy, policies pre-computations are performed when
there is an energy surplus, i.e., when the storage device is fully charged and
the harvesting power is higher than the power consumption of the node. By
exploiting such energy surplus, the number of CP-ABE operations that must
be performed by the nodes when the harvested power is low can be mini-
mized, thus allowing to save energy and to exploit recharge opportunities
more effectively. The drawback of this approach, however, is the fact that
pre-computed policies must be stored in the typically limited RAM memory
of the nodes.

4.4. Caching strategy

Since the memory available on a sensor node is clearly unable to store
all the possible sets of access control policies, we propose in this section a
caching strategy to pre-compute and store the set of policies that are the
most likely to be useful at runtime. Table 1 summarizes the notations used
in this section. The system is characterized by a finite set of application
states, S = {S1, . . . S|S|}. To each state of the system, Si, a set of policies,
Pi = {p1i , p2i , . . . p

ni
i } is associated, which define the policies that the system

needs in such state. A stored policies is a tuple of five elements: ( SSKpki ,
C0, C1,x, C2,x, C3,x ). We denote the size of each policy pki ∈ Pi as l(pki ).

When the system is in the state Si and a given amount of excess har-
vested energy is available, such energy surplus is used to pre-compute and
cache policies that may be useful to the system in the future. The number
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Table 1: Table of notation.
Symbol Explanation

S set of system states

Pi set of policies associated to the state Si
R amount of cache memory available in each state

l(pki ) size of the kth policy of the state Si
M Markov chain modeling system states and transitions probabil-

ities

T matrix of transition probabilities

Ox set of policies stored in the cache

SOx set of system states which are incomplete when using the set of
stored policies Ox

MOx absorbing Markov chain obtained from M based on Ox
TOx matrix of the transition probability of MOx

ABOx characteristic vector of the absorbing states of MOx

NH number of timeslots before the next harvesting event will occur

Prmiss(NH) probability that a cache miss will occur within the N timeslots
before the next harvesting event

of policies that may be stored in the cache depends on the available cache
size, R, and on the size of the pre-computed policies, l(pki ). For simplicity,
we assume that in each state Si there is enough cache memory, R, to store
all the policies needed in the current state3 , i.e.,

R ≥
∑
pki ∈Pi

l(pki ), ∀Si ∈ S.

However, in general the cache memory would not be large enough to store
the full set of access control policies associated to all possible application
states, thus leading to potential cache misses when the state of the system
changes, i.e., when there is a transition from state Si to state Sj .

In fact, a cache miss occurs if a policy pkj is not available in the cache
when needed and must be computed on-the-fly. Computing a given policy
has an energy cost that depends on its size (Table 2).

The goal of our optimization is to minimize the number of cache misses,
by wisely selecting in each state the policies that should be pre-computed.

3This is indeed the case in realistic scenarios given that only a few policies are expected
per application state, each combining few different attributes.
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Our strategy is based on the knowledge of the application dynamics, which
can be obtained at design time. The optimization is performed by the sink
and then disseminated to the nodes in the network. To reduce memory and
communication overhead, caching strategies are stored in a compressed form,
by using a bitmap representation of the policies that should be precomputed
in each application state. The caching strategy is updated by the sink and
retransmitted to the node whenever a major change in either the application
or in the energy source dynamics occurs.

We formalize this problem using a discrete-time Markov chain, M , with
|S| states. The associated transition matrix is T . We recall that the set S
models the application states, as defined during the design phase, while T
indicates the probability tij to transit to a state Sj , given that the system
is currently in the state Si. To minimize the number of cache misses, we
employ the following approach:

• We explore all the possible combinations of policies stored in the cache.
Each of such combinations is a set Ox. We define a state Si as incom-
plete if there is at least a policy, pki , which is needed in state Si but is
not included in the set Ox of stored policies. Given the set of policies
Ox, we define by SOx = {Si, . . . , Sj} the set of incomplete states:

SOx = {Si s.t. ∃pki ∈ Pi and pki /∈ Ox}

• For each set of policies Ox, we define a new absorbing Markov chain,
MOx , as the Markov chain obtained from M by setting to zero the
output transition probability of each incomplete state, i.e., by making
each incomplete state in SOx an absorbing state. We name the new
transition probability matrix obtained in this way as TOx . The char-
acteristic vector AOx is also defined. It associates a value equal to 1
to each absorbing state and a value of 0 to each non-absorbing state,
i.e., ABOx(i) = 1 if Si ∈ SOx , ABOx(i) = 0 otherwise.

• Time is discretized into timeslots of equal length. We denote with
NH the number of timeslots before the next harvesting event will
occur. We then compute the state probability as pr(NH) = TNOxH ×
[0, 0, . . . , 1, 0, 0, . . . ]. The second factor in the matrix multiplication is
a unitary vector of size S that indicates that the system starts in a
given state Sk. The probability that a cache miss will occur within the
NH timeslots before the next harvesting event can thus be computed
as:

Prmiss(NH) = pr(NH)×ABOx

15



Such formalization allows to minimize the cache miss probability by se-
lecting the best set Ox of policies that must be stored in the memory. If
two or more sets of policies, O1, O2, . . . Ok, have the same, minimum cache
miss probability, we take into account the fact that, whenever a cache miss
occurs, computing the missing policy has an energetic cost proportional to
the size of the policy. Thus, in such case, we select the set Oi which mini-
mizes both the cache miss probability and the energetic cost of computing
the missing policies whenever a cache miss occurs.

It is worth noting that the number of possible Markov chains MOx is sig-
nificantly smaller than the number of possible policies combinations, since
different policies set may generate the same absorbing chain. For this rea-
son, it is feasible to explore the possible combinations of policies stored in
the cache and defining the associated chain. Additionally, some optimiza-
tions may be employed when computing each Ox sets. For instance, it is
reasonable to consider only sets of policies that are maximal, i.e., such that
no policy may be added to the set without exceeding the memory constraint
R. Moreover, if the system starts in the state Si, the Ox sets which do not
contain all the policies in Pi (i.e., those needed in state Si) can be pruned
from the exploration.

5. Performance evaluation

5.1. Experimental results: energy cost of CP-ABE encryption

In our implementation, we have specifically focused on two families
of nodes: the Telos B [27] and Mica2 [28] motes. Telos B features an
8MHz MSP430 micro-controller, a 16b RISC processor, 10 kB of RAM,
48 kB of program memory (ROM), 1024 kB of external flash, and the Chip-
con CC2420 IEEE 802.15.4 compliant transceiver. The Mica2 motes are
equipped with the 4MHz Atmel ATmega128L 8b micro-controller, 4 kB of
RAM, 128 kB of ROM, 512 kB of external flash and the Chipcon CC1000
low-power wireless transceiver. We implemented a nesC library supporting
CP-ABE in TinyOS 2.x for both Telos B and Mica2 motes. Our library is
based on Relic4, an open source cryptographic meta-toolkit with emphasis
on efficiency and flexibility. As recommended by NIST [29], we adopt a se-
curity level of 80-bit using a binary field F2271 . To encrypt data we use AES
encryption, performed in hardware on the Telos B mote, which provides
AES in Counter mode with CBC-MAC (CCM) within the CC2420 chip.

4http://code.google.com/p/relic-toolkit
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Table 2: Energy consumption for policy computation (mJ), for both Telos B and Mica2
platforms. The energy cost of an encryption operation depends on the number of attributes
of the access policy and on the number of bytes sent to transmit the encrypted key.

Attributes Policy Length
[bytes]

Tx [bytes] Scalar
Multi.

Energy
(Telos B)

Energy
(Mica2)

2 242 242 + |key| 7 80.7 451.6
3 349 349 + |key| 10 115.3 645.1
...

...
...

...
...

...
10 1154 1154 + |key| 31 357.6 1999.9
11 1277 1277 + |key| 34 392.2 2193.4

Such combined mode supports integrity, authentication and confidentiality.
For Mica2 motes, we use a software implementation of AES5 in CBC mode.

Pairing and scalar multiplication are the most expensive operations among
the ones performed, so we focus on them in our evaluation. While encrypt-
ing the data, one pairing operation is performed to calculate e(g, g). For
each attribute a, three scalar multiplications must be performed to compute
C1,x, C2,x and C3,x. Since decryption operations are not performed by sensor
nodes, but only by the final users who receive the encrypted data, we do not
account for them in our evaluation. Finally, the communication overhead of
transmitting an encrypted key is |SSK|+a2+log|GT |+a(log|GT |+2log|G|)
bytes, where |SSK| is the size of the secret session key used to encrypt the
data with a symmetric encryption algorithm. At most a2 bytes are needed
for the matrix LS, and a(|GT | + 2|G|) + |GT | bytes to transfer C0, C1,x,
C2,x and C3,x. Table 2 shows the energy cost of an encryption operation,
depending on the number of attributes of the access policy and the amount
of information to be sent to transmit the encrypted key, for both Telos B
and Mica2 platforms. Performing one pairing operation and one scalar mul-
tiplication takes 1.29s and 1.73s for the Telos B mote and 1.9s and 2.24s for
the Mica2 mote. Supposing an access policy is composed of 5 attributes, 16
scalar multiplication operations have to be performed. Assuming, for Te-
los B motes, an operating current of 1.8mA and an operating voltage of 3V,
those operations cost 184.6mJ. Mica2 motes work with the same voltage,
but their operating current is 8mA, so for the same operations the energy
cost is 1032mJ. For a key size of 128 bit, the size of the information to be

5http://byte-oriented-aes.googlecode.com
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Figure 3: Number of policies which can be pre-computed per day, as a function of the
number of attributes and the average energy surplus per day for (a) Telos B and (b) Mica2
motes.

sent is 569 + 16 byte. Figure 3 shows the number of policies that can be
pre-computed per day by using excess harvested energy, depending on their
number of attributes and on the average energy surplus experienced per day,
for both Telos B and Mica2 motes.

5.2. Energy model and real-life energy harvesting traces

In our experiments, we consider a Telos B mote powered by a hybrid
harvesting systems consisting of a photovoltaic (PV) cell, a supercapacitor
and a non rechargeable battery, which provides a backup energy source. PV
cells are common sources of energy harvesting and, being unobtrusive, have
been considered before in wearable systems. For example, in [3] Leonov et
al. demonstrated an electroencephalography system and an electrocardiog-
raphy system in a shirt, powered by photovoltaic cells and a thermoelectric
generator. The supercapacitor we used for energy storage is a 25F Pana-
sonic Gold capacitor [30], which can nominally hold around 90J of charge
and has a round-trip (charging and discharging) efficiency of 90 + % [31].
The leakage experienced by the supercapacitor is modeled as in [32], i.e.,
by using a piecewise linear approximation of the empirical leakage pattern
experienced by the supercapacitor we have experimentally validated. We fo-
cus on a remote vital signs monitoring scenario, in which the heart rate and
the blood oxygenation level of a patient are monitored through a wearable
pulse oximeter, such as [33]. Pulse and oxygenation values are measured at
60 second intervals and such measurements requires up to 8 seconds [34],
thus leading to a duty cycle of ≈ 13%. Measured data are delivered im-
mediately after reading and a low-power, state-of-the-art communication
protocol, such as [35, 36], is used for data delivery. The rest of the time the
MCU is in idle (sleep) mode, thus leading to an average power consumption
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of 2.02 mW. In such setting a node can run for almost three hours using
only the energy stored in its supercapacitor (assuming it is full).

For our first set of experiments, a dataset of real-life indoor light traces
has been used. The dataset was obtained through a testbed of ten Telos B
motes equipped with a 0.5W PV cell, deployed indoors for a week in the stu-
dent office of the CS Department building of Sapienza University of Rome.
Nodes were able to harvest energy from artificial light generated by ceiling
and table lamps and from solar light entering the room from the windows.
A dedicated TinyOS application was developed to periodically track the
amount of energy harvested by the cell.

The second type of energy traces we used is a database of indoor radiant
light measurements collected in several office buildings in New York City
within the EnHANTs (Energy Harvesting Active Networked Tags) project
of Columbia University [37]. In particular, we used data from Setup C
(departmental conference room) and Setup F (student office), obtaining from
the radiant energy measurements the corresponding power harvestable by a
photovoltaic cell of size of 7x5 cm2 with efficiency of 15%.

5.3. AGREE simulation results

In this section we describe the results of a simulation-based performance
evaluation of AGREE, conducted by using a custom-built simulator devel-
oped in C and Python.

Our setup is as follows: We consider a system with a number of appli-
cation states, |S|, ranging from 3 to 9. The transition probability between
each couple of states, denoted by tij , is randomly generated as to represents
different application scenarios. The corresponding Markov’s chain M is de-
fined based on the set of states S and the transition matrix T . To each state
of the chain, a random number of policies (between 1 and 6) is associated.
The size of such policies varies from 242 to 1277 bytes, depending on the
number of their attributes (Table 2). In our experiments, we model a sce-
nario where 7kB of the Telos B mote RAM are allocated to storing cache
policies, while the rest of the memory is reserved for the application.

To validate our proposed caching strategy, we compared three differ-
ent versions of the protocol: AGREE, which is the complete solution de-
scribed in Section 4.4, and Current and Current + Random, two variants of
AGREE that do not leverage information about the harvesting process and
the dynamics of the application. More in details, in each system state Si,
nodes using the Current strategy pre-compute and cache only the policies Pi
needed in the current state, while nodes using the Current + Random strat-
egy pre-compute and cache, in addition to the policies needed in the current

19



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

ROME enhants-C enhants-F

%
 o

f 
c
a
c
h
e
 m

is
s
e
s

Average percentage of cache misses

Current
Current + Random

AGREE

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

ROME enhants-C enhants-F

F
ra

c
ti
o
n
 o

f 
e
n
e
rg

y
 s

p
e
n
t 
in

 c
a
c
h
e
 m

is
s
e
s

Average energy spent due to cache misses
(fraction of energy spent with no caching)

Current
Current + Random

AGREE

(b)

Figure 4: Performance of caching strategies Current, Current + Random and AGREE in
term of (a) average percentage of cache misses and (b) average energy spent to compute
policies on-the-fly due to cache misses, as a fraction of the energy spent when no caching
is performed.

state, also as many other policies as possible, randomly chosen among those
needed in neighbors states, until the RAM memory of the node is full.

To perform a comparative performance evaluation of the three approaches,
we randomly choose a state Si as the initial state of the system and follow
the evolution of the chain for a week. We evaluate the performance of the
different strategies with respect to the following metrics:

1. average percentage of cache misses (Figure 4(a));

2. energy spent by the nodes due to cache misses (Figure 4(b)).

Figure 4 shows the results of such performance evaluation for the three
different light energy datasets we consider. Each data point is obtained
by averaging the results over 10 runs. The fact that our approach is able
to successfully pre-compute the most likely set of policies is confirmed by
Fig. 4(a), which shows that AGREE leads to the smallest number of cache
misses with respect to the other strategies. Specifically, the first comparison
strategy, Current, obtains a number of cache misses that, depending on the
considered energy harvesting dataset, is between 4.7 and 6.8 times higher
than that of AGREE, while the strategy Current + Random obtains a
number of cache misses that is between 2.8 and 4.2 higher than that of
AGREE.

Fig. 4(b) shows the total energy spent by nodes due to cache misses over
a week of simulation, as a fraction of the total energy spent over the same
time period when no caching is performed. Results in Fig. 4(b) confirm
that taking into account the dynamics of both the harvesting source and
the system works well, as the total energy spent by AGREE due to cache
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Figure 5: Fraction of initial energy residual over time for a system without energy capa-
bilities and performing no caching and for caching strategies Current, Current + Random
and AGREE computed over one month using: (a) enhants-C and (b) enhants-F indoor
light traces datasets.

misses is approximately one fifth of the first comparison strategy, Current,
and less than one third of Current + Random.

Figure 5 confirms that such energy saving has a significant impact on
the overall lifetime of the system. To study the long-term behavior of our
application, we used the same setup as before, but followed the evolution of
the system for a longer period (a month instead of a week) using enhants-
C and enhants-F indoor light traces datasets to simulate the harvesting
process. Fig.5(a) and Fig.5(b) show the average residual energy over time, as
a fraction of the initial battery energy of the nodes, for the caching strategies
Current, Current + Random and AGREE, and for a system without energy
capabilities and performing no caching at all.

The fraction of initial energy remaining over time is a significant metric
because, although nodes may recharge through energy harvesting, a mote
with no residual battery will suffer from fluctuations of the environmental
source. In fact, energy stored in the supercapacitor would allow the node to
run in normal operation (i.e., monitoring data but not refreshing policies)
for less than three hours. Such energy reservoir would not be enough to
continue the data collection during a whole night, thus leading to periods of
inactivity that significantly degrade the end user perceived performance.

The fact that AGREE allows to spend significant less battery energy
with respect to other caching strategies is confirmed by Fig.5(a), showing
simulation results for the enhants-C dataset. As can be seen from the figure,
after one month of operation the average residual battery energy of nodes
running AGREE is still 82% of their initial energy, while motes running
Current and Current + Random retain only 16% and 47% of their battery
energy, respectively. Results are similar for the second harvesting dataset
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we considered, enhants-F: The average residual battery after one months is
85% of the initial energy when nodes run AGREE, while only 3% (37%) of
the nodes initial energy is available when nodes run Current and Current +
Random, respectively. Finally, for both datasets, a system without energy
harvesting capabilities and performing no caching at all depletes its battery
in less than 20 days.

6. Conclusion

In this paper, we presented AGREE, a context-aware decentralized data
access control for EH-WSNs. Our scheme is based on CP-ABE, supports
multi-authority and allows to dynamically change access policies based on
context dependent user settings. AGREE is developed for WSN scenarios.
We have proposed several optimizations for dealing with resource and energy
constrained embedded systems. We have implemented the basic schema on
Telos B and Mica2 motes and experimentally evaluated our proposed so-
lution. A simulation-based performance evaluation of AGREE confirmed
that our caching mechanism is able to efficiently operate based on the excess
harvested energy and that it significantly outperforms other caching strate-
gies which do not leverage information about the harvesting process and the
dynamics of the application. Our evaluation show that, in spite of literature
trends, complex cryptographic primitives are feasible in realistic EH-WSNs
scenarios.
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