
GreenCastalia: An
Energy-Harvesting-Enabled Framework

for the Castalia Simulator

User Manual

Dora Spenza, David Benedetti

SensesLab
Computer Science Department
Sapienza University of Rome

http://senseslab.di.uniroma1.it/greencastalia

Version 0.1d
Last updated: August 2015
Initial version: December 2013

http://senseslab.di.uniroma1.it/greencastalia

2 Contents

Contents

1 Introduction 3

2 Installation 3

3 Overview 4
3.1 Integration into Castalia . 4
3.2 The EnergySubsystem module . 4

4 Modeling in GreenCastalia 5
4.1 Energy harvesters . 5
4.2 Energy storage . 6
4.3 Energy manager . 8
4.4 Support for energy predictions . 9

5 Software organization 10

6 Using GreenCastalia 10
6.1 Multi-storage architectures . 10
6.2 Energy sources and energy harvesters . 12
6.3 Energy predictions . 13

7 Frequently Asked Questions 13
7.1 Get the current energy level from the routing module . 13

1. Introduction 3

1 Introduction

GreenCastalia [1] is an extension for the popular Castalia simulator [2] that allows to model and simulate
networks of embedded devices with energy-harvesting capabilities.

The main features of GreenCastalia are:

• support for multiple energy sources and multi-source harvesters;

• support for networks of embedded devices with heterogeneous harvesting and storage capabilities;

• support for multi-storage architectures consisting of a combination of disposable batteries, superca-
pacitors and rechargeable batteries;

• support for non-ideal battery models based on empirical discharge patterns, and of supercapacitor
leakage models;

• support for energy prediction models.

2 Installation

GreenCastalia is based on OMNeT++ and is an extension of the Castalia simulator.

We assume the reader to be familiar with the OMNeT++ environment and to have a good understanding
of the basic concepts and structure of Castalia. The Castalia User Manual is available from https:

//github.com/boulis/Castalia, while documentations and tutorials about OMNeT++ can be found
at http://www.omnetpp.org/documentation.

GreenCastalia has been developed and tested using Castalia 3.3 and OMNeT++ 4.3.1. Although OM-
NeT++ is available for Windows systems, Castalia has been designed for GNU/Linux-like systems. For
this reason we strongly recommend to used a GNU/Linux-like system to use GreenCastalia. However,
installation for Windows systems is possible using the Cygwin environment.

NEW The latest release GreenCastalia v0.1d has also been tested with OMNeT++ 4.6.

The following steps assume you have a working version of Castalia 3.3 installed on your system in a
directory named Castalia. Please refer to the excellent Castalia Installation Guide https://github.com/
boulis/Castalia to install Castalia and OMNeT++.

To install GreenCastalia, copy the archive in the Castalia root directory:

$ cp GreenCastalia-v0.1c.tar.bz2 Castalia/

$ cd Castalia

If you download Castalia from github, be sure to copy the GreenCastalia archive in the inner Castalia
directory, not in the outer one:

$ cp GreenCastalia-v0.1c.tar.bz2 Castalia/Castalia

$ cd Castalia/Castalia

The correct directory is the one in which the makemake script file is located.

Untar and unzip the archive:

$ tar -xjvf GreenCastalia-v0.1c.tar.bz2

https://github.com/boulis/Castalia
https://github.com/boulis/Castalia
http://www.omnetpp.org/documentation
https://github.com/boulis/Castalia
https://github.com/boulis/Castalia

4 Contents

IMPORTANT! The following two files must be removed from the Castalia source tree before compiling
GreenCastalia:

$ rm src/node/resourceManager/ResourceManager.h

$ rm src/node/resourceManager/ResourceManager.cc

You are now ready to build Castalia with GreenCastalia:

$./makemake

$ make clean

$ make

3 Overview

In this section, we present an overview of GreenCastalia and describe its integration into Castalia. The
overall structure of a node in GreenCastalia is shown in Figure 1.

3.1 Integration into Castalia

Energy management in Castalia is carried on by the ResourceManager module, which holds energy-
specific parameters, such as the baseline power consumption of the mote and its initial energy budget.
This module keeps track of the remaining energy by performing periodic updates of the energy spent
by the node over time. Energy updates are also triggered on-demand by Castalia modules that model
hardware components whenever their power consumption changes. The amount of remaining energy is
computed by the ResourceManager by modeling an ideal primary battery that is linearly discharged.
GreenCastalia extends the energy model of Castalia by introducing a new compound module, called
EnergySubsystem, that completely replaces the ResourceManager module for what concerns energy man-
agement. To allow easy integration with Castalia, in GreenCastalia the ResourceManager is a compound
module that includes the new EnergySubsystem module (Fig. 1). The new interface for the ResourceM-
anager module includes parameters such as the baseline power consumption of the node (in mW), the
cutoff voltage (in V), and the frequency of energy updates (in msec).

3.2 The EnergySubsystem module

The EnergySubsystem implements the support for energy harvesting at node level, by defining and man-
aging submodules that represent energy harvesting and storage devices. More in details, it is composed
by three main submodules:

• EnergyHarvester, which models the energy harvesting process and handles the corresponding devices
(Section 4.1);

• EnergyStorage, which represent an energy storage device, i.e., a supercapacitor, a rechargeable
battery or a disposable battery (Section 4.2);

• EnergyManager, which implements the control logic for storage utilization and charging (Sec-
tion 4.3).

Environmental energy sources are modeled by the external EnergySource module (Fig. 2), of which mul-
tiple instances can be created to simulate multi-source harvesting systems. The current implementation

4. Modeling in GreenCastalia 5

Sensor node

Application

Routing

MAC

PHY

Communication

SensorManager

ResourceManager

 EnergySubsystem

MobilityManager

En
er

gy
So

ur
ce

(s
)

source
changed

subscribe()

Input gate

Output gate

Message flow

Signal emission
Signal subscription

Figure 1: General structure of the SensorNode module in GreenCastalia.

of GreenCastalia provides a generic TraceEnergySource module, which allows to feed the simulator with
timestamped power traces collected through real-life deployments and measurement studies [3, 4], or with
energy availability traces obtained by data repositories [5] or meteorological stations [6]. This module
can also be extended to support user-defined models of different energy sources. In GreenCastalia, each
harvester is logically connected to one and only one energy source, while multiple harvesters can scavenge
power from the same source. This allows to handle heterogeneous EH-WSNs, in which each node may
have different harvesting capabilities.

4 Modeling in GreenCastalia

4.1 Energy harvesters

The EnergyHarvester module represents a physical harvesting device connected to a node. GreenCastalia
currently provides an implementation of two simple models of energy harvesting devices (i.e., a solar cell
and a wind-micro turbine), and of a generic harvester that scavenges power with a given efficiency from
the energy source it is connected to.

The default interface for an energy harvester module allows to specify the type of the energy source is
it connected to and the maximum amount of power it is able to generate. In addition, it is possible to
optionally indicate a timestamped file that specifies how the harvesting efficiency of the device varies
over time. This allows to model time-varying effects such as moving shadows, temporarily obstructions,
changing in harvester orientation, and decreasing efficiency due to dust or aging. Finally, rather than
being connected to an energy source, an harvesting device can also read energy availability traces from a

6 Contents

EnergySubsystem

EnergyStorage

EnergyManager

EnergyHarvesting

En
er

gy
So

ur
ce

(s
)

Function call
Data

Signal emission
Message flow

Signal registration

En
er

gy
Pr

ed
ic

to
r

Figure 2: Architecture of the EnergySubsystem module.

file specified by the harvesterTraceFile parameter. This is especially useful to feed an harvester with
a specific trace collected in a real-life deployment.

The interface from a SolarCell module additionally allows to specify the size of the solar cell (in cm2)
and its efficiency (which depends on the type of cell considered). This module is meant to be connected to
a TraceEnergySource emitting irradiance values in unit W/m2, or to read irradiance values in the same
unit from the file specified by the harvesterTraceFile parameter.

The interface from a WindTurbine module allows to specify the rotor diameter (in cm), as well as air
density and power coefficient.

It is worth noting that the current implementation of solar cell and wind micro turbine models does
not take the storage level into account when computing the effective amount of energy harvested. The
inclusion in GreenCastalia of more realistic harvester models is planned in the next release.

4.2 Energy storage

The EnergyStorage module represents a storage device that supplies energy to the node. The default
interface for this module includes parameters such as charging and discharging efficiency, maximum rated
voltage and initial charge fraction of the storage. GreenCastalia currently provides an implementation of
two battery models and of a supercapacitor model:

• IdealBattery : a simple model in which the voltage of the battery remains constant over its lifetime
and the discharge rate is always proportional to the power drawn from the battery. This is the
default battery model provided by Castalia;

4.2 Energy storage 7

EnergyStorage

Batteries Supercapacitors Rechargeable batteries

Battery
1

Battery
2

Battery
b

Supcap
1

Supcap
2

Supcap
s

R-Batt
1

R-Batt
2

R-Batt
r

Figure 3: EnergyStorages module in GreenCastalia including a combinations of disposable batteries,
supercapacitors and rechargeable batteries. Inward and outward arrows represent energy intake and
provisioning.

• EmpiricalBattery : a model similar to IdealBattery, but including support to simulate the voltage
of the battery decreasing over time based on its depth of discharge. The estimated voltage of the
battery is computed by using a piecewise linear approximation of its empirical discharge pattern:

V (t) =


a1 · C(t) + b1, CR1 ≤ C(t) < CR2

· ·· ·
an · C(t) + bn, CRn ≤ C(t) < CRn+1

where CR1 , . . . , CRn+1 are the residual energy values in which the slope of the discharge curve changes
significantly and a1, . . . , an , b1, . . . , bn are constants representing the coefficients of the line segments
used for the approximation. An example of such approach is shown in Figure 4.

• Supercapacitor : a simple model in which the voltage of the supercapacitor is estimated based on
the formula: E(t) = 1

2C(V (t))2, where E(t) is the energy stored by the supercapacitor at time t, C
is its rated capacity and V (t) is the voltage across it.

As for RechargeableBattery, a simple model accounting for remaining battery cycles is provided, while
more accurate models are under investigation.

EnergyStorage modules supply energy to the sensor node through the discharge() function called by
the EnergyManager module. Supercapacitors and rechargeable batteries also implement the charge()

function that is called by the EnergyManager module whenever there is an excess of harvesting energy

8 Contents

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0 20 40 60 80 100

V
ol

ta
ge

 [V
]

Battery charge (%)

Measured voltage Linear approximation

Figure 4: Piecewise linear approximation of battery empirical discharge pattern.

available. Each storage device can also implement a selfDischarge() function, which models the leak-
age and self-discharge effects suffered by charged supercapacitor and batteries. GreenCastalia currently
provides a basic supercapacitor leakage model that can be used in simulations, serving as a starting point
for future extension:

• Constant current : The leakage experienced by a charged supercapacitor is modeled as a constant
current [7];

More accurate models, such as those recently proposed in [8, 9], can be integrated in GreenCastalia by
extending the Supercapacitor module and its corresponding class.

4.3 Energy manager

The EnergyManager module is the core of the energy subsystem, having a complete view of the power
harvested and drawn over time. It implements the control logic for storage devices utilization and charg-
ing, simulating the energy flow from harvesters and storage devices to the load, and from harvesters to
storage devices. Moreover, it also keeps track of the energy wasted due to storage devices non-idealities,
such as charging and discharging efficiency, self-discharge, and limited capacity, which may cause excess
energy from harvesting to be lost. Energy updates are performed through the energyUpdate function in
response to power consumption changes, which are triggered by modules modeling hardware components
when their state changes. Updates are also triggered by EnergyHarvesters, which asynchronously notify
the EnergyManager module of variations in their harvesting power, which can occur because of the dy-
namics of the energy source or due to temporary variations in the surrounding environment (e.g., moving
shadows that impact on the amount of power generated by solar cells). In addition, the EnergyManager
performs periodic updates with the period specified by the periodicEnergyCalculationInterval pa-
rameter. When the energyUpdate function is called, the EnergyManager module computes the net power
consumption of the node, taking into account its current power consumption and harvesting rate. If the
net power consumption is negative, the excess energy is used to recharge storage devices. Otherwise,
storage devices are discharged to supply energy to the node. Devices handled by the EnergyManager can
include a combinations of supercapacitors, rechargeable batteries and disposable batteries (Fig. 3). By
extending the EnergyManager module, the specific controller for storage devices utilization and charging

4.4 Support for energy predictions 9

can be modified so as to simulate a variety of architectures, including hybrid and multi-stage storage sys-
tems [10]. During energy updates, self-discharge of storage devices is also taken into account. Whenever
the node runs out of energy, the EnergyManager notifies other modules by sending an OUT_OF_ENERGY

message. If energy becomes available again, a NODE_STARTUP message is sent to simulates a node reset.

4.4 Support for energy predictions

Power-scavenging systems need to deal with the dramatic changes of energy availability over time. In the
case of predictable energy sources, such as solar light, energy prediction models are a precious tool to devise
smart energy allocation strategies. In fact, by forecasting the expected energy intake in the near future,
proactive power management strategies can be implemented to optimize the utilization of the available
energy. Acknowledging the importance of energy predictions for the design of harvesting-aware protocols,
we included in GreenCastalia an EnergyPredictor module. The interface of this module allows to define
the prediction horizon, the number of timeslots per day and the frequency with which the energy source
is sampled within each timeslot. GreenCastalia currently implements the widely used energy prediction
model EWMA [7], based on an exponentially weighted moving-average filter, and includes an advanced
expectation model of the amount of harvested energy that can account for temporary environmental
conditions [11].
This basic module can be extended to implement more sophisticated predictors [12, 13, 14].
EWMA maintains the history of the energy harvested on past days as an exponential moving average.
Predictions are delivered based on the assumption that the energy available at a given time of the day
is similar to the energy intake at the same time on the previous days. Time is discretized into N time
slots of fixed length (usually 30 minutes each). The number of time slots used by the prediction model
is determined based on parameter slotSize in AEWMA.ned, which specify the duration of each time slots
in seconds. The history of the energy harvested on past days is maintained as an exponential moving
average, in which the contribution of older data is exponentially decaying.
The EWMA model predicts that in time slot n the amount of energy

µ(d)n = α · xn + (1 − α) · µ(d−1)
n

will be available for harvesting, where:

xn is the amount of energy harvested by the end of the nth slot;

µ
(d−1)
n is the average over the previous d− 1 days of the energy harvested in their nth slot, and

α is a weighting factor, 0 ≤ α ≤ 1, whose value is defined by the alpha parameter in AEWMA.ned.

EWMA exploits the diurnal solar energy cycle and adapts to seasonal variations. The prediction results
quite accurate in presence of scarce weather variability. However, when weather conditions are frequently
changing (e.g., a mix of sunny and cloudy days in a row) EWMA does not adapt well to the variations in
the solar energy profile.
In order to account for short-term varying weather conditions, the model proposed by Noh and Kang
in [15] has also been implemented. Such model introduces a scaling factor ϕn to adjust future energy
expectations. This factor is computed as: ϕn = xn−1

µn−1
, where xn−1 is the amount of energy harvested

by the end of slot n − 1, and µn−1 is the prediction of the amount of energy harvestable during slot
n− 1 according to the EWMA. Thus, ϕn expresses the ratio between the actual harvested energy at time
slot n and the energy predicted for the same time slot. This scaling factor is then used to adjust future
predictions:

µK%N =

(
ϕn +

1 − ϕn
N

· (k − 1)

)
µK%N , n ≤ k < N + i.

10 Contents

Since the scaling factor computed for time slot t is only valid temporarily, its influence decreases linearly
for time slots that are far away in time.

To use this advanced model in GreenCastalia, the parameter useAdvancedModel must be set to true in
AEWMA.ned.

5 Software organization

GreenCastalia OMNeT++ modules (NED/C++ files) are located in the src/energySource and in the
src/node/resourceManager/energySubsystem sub-folders of Castalia.

The structure of the GreenCastalia source subtree is the following:
src/

energySource/..Definition of EnergySource modules
traceEnergySource/ ...TraceEnergySource module

node/

resourceManager/

energySubsystem/

energyHarvester/..................Definition of EnergyHarvester modules (Sec. 4.1)
solarCell/...SolarCell module
windTurbine/ ..WindTurbine module
traceHarvester/...TraceHarvester module

energyManager/.....................Definition of EnergyManager modules (Sec. 4.3)
energyStorage/.......................Definition of EnergyStorage modules (Sec. 4.2)

supercapacitor/..Supercapacitor module
rechargeableBattery/...............................RechargeableBattery module
battery/ ..Battery module

energyPrediction/..................Definition of EnergyPredictor modules (Sec. 4.4)
aewma/..AEWMA energy prediction module

6 Using GreenCastalia

In this section we provide some configuration examples that can be added to the omnetpp.ini file of a
simulation to make use of GreenCastalia features.

6.1 Multi-storage architectures

GreenCastalia provides support for multi-storage architectures consisting of a combination of disposable
batteries, supercapacitors and rechargeable batteries. The following snapshot shows the configuration that
should be added to the omnetpp.ini file to define a network of nodes each equipped with a supercapacitor,
a rechargeable battery and a primary battery.

[EnergyStorage]

SN.node[*].ResourceManager.EnergySubsystem.EnergyStorage.numSupercaps = 1

SN.node[*].ResourceManager.EnergySubsystem.EnergyStorage.numRechBatteries = 1

SN.node[*].ResourceManager.EnergySubsystem.EnergyStorage.numBatteries = 1

[Supercapacitor] Rated capacity: 100F, Rated voltage: 2.7V

SN.node[*].ResourceManager.EnergySubsystem.EnergyStorage.Supercapacitors[0].maxVoltage = 2.7

SN.node[*].ResourceManager.EnergySubsystem.EnergyStorage.Supercapacitors[0].capacitance = 100

6.1 Multi-storage architectures 11

[Rechargeable battery] 2 x AA 1.2V 2450mAh

SN.node[*].ResourceManager.EnergySubsystem.EnergyStorage.RechBatteries[0].maxVoltage = 2.4

SN.node[*].ResourceManager.EnergySubsystem.EnergyStorage.RechBatteries[0].mAmpereHour = 2450

[Battery] 2 x AA 1.5V 1800mAh

SN.node[*].ResourceManager.EnergySubsystem.EnergyStorage.Batteries[0].maxVoltage = 3

SN.node[*].ResourceManager.EnergySubsystem.EnergyStorage.Batteries[0].mAmpereHour = 1800

Note that is possible to define networks of nodes with heterogeneous storage capabilities. In the following
example, all nodes are battery-powered, except for node 0 that is powered by a supercapacitor and a
rechargeable battery.

All nodes are battery-powered except from node 0

[EnergyStorage]

SN.node[1..].ResourceManager.EnergySubsystem.EnergyStorage.numSupercaps = 0

SN.node[1..].ResourceManager.EnergySubsystem.EnergyStorage.numRechBatteries = 0

SN.node[1..].ResourceManager.EnergySubsystem.EnergyStorage.numBatteries = 1

SN.node[1..].ResourceManager.EnergySubsystem.EnergyStorage.Batteries[0].maxVoltage = 3

SN.node[1..].ResourceManager.EnergySubsystem.EnergyStorage.Batteries[0].mAmpereHour = 1800

Node 0 is powered by a supercapacitor and a rechargeable battery

[EnergyStorage]

SN.node[0].ResourceManager.EnergySubsystem.EnergyStorage.numSupercaps = 1

SN.node[0].ResourceManager.EnergySubsystem.EnergyStorage.numRechBatteries = 1

SN.node[0].ResourceManager.EnergySubsystem.EnergyStorage.numBatteries = 0

SN.node[0].ResourceManager.EnergySubsystem.EnergyStorage.Supercapacitors[0].maxVoltage = 2.7

SN.node[0].ResourceManager.EnergySubsystem.EnergyStorage.Supercapacitors[0].capacitance = 100

SN.node[0].ResourceManager.EnergySubsystem.EnergyStorage.RechBatteries[0].maxVoltage = 2.4

SN.node[0].ResourceManager.EnergySubsystem.EnergyStorage.RechBatteries[0].mAmpereHour = 2450

By default, storage devices are assumed to be ideal, i.e., having a round-trip efficiency of 100%. The
charging and discharging efficiency of each device can be specified by using the chargingEfficiency

and dischargingEfficiency parameters. The following snapshot of the omnetpp.ini file shows how to
configure a supercapacitor with 95% efficiency.

SN.node[*].ResourceManager.EnergySubsystem.EnergyStorage.Supercapacitors[0].chargingEfficiency

= 0.95

SN.node[*].ResourceManager.EnergySubsystem.EnergyStorage.Supercapacitors[0].

dischargingEfficiency = 0.95

The fraction of charge of each device at the beginning of the simulation can be defined as follows:

At the beginning of the simulation the supercapacitor battery is 20% charged

SN.node[*].ResourceManager.EnergySubsystem.EnergyStorage.Supercapacitors[0].

fractionInitialCharge = 0.2

At the beginning of the simulation the rechargeable battery is 75% charged

SN.node[*].ResourceManager.EnergySubsystem.EnergyStorage.RechBatteries[0].fractionInitialCharge

= 0.75

If the fraction of charge at the beginning of the simulation is not specified, it is assumed to be equal to 1.
Unless otherwise specified, GreenCastalia uses by default the ideal battery model when a battery is
instantiated. The following configuration snapshot shows how to define a battery whose estimated voltage

12 Contents

is computed by using a piecewise linear approximation of its empirical discharge pattern:

SN.node[*].ResourceManager.EnergySubsystem.EnergyStorage.Batteries[0].batteryModel = "empirical

"

SN.node[*].ResourceManager.EnergySubsystem.EnergyStorage.Batteries[0].empiricalDischargeFile =

"path/to/empiricalDischargeFile"

The discharge pattern is specified by the empiricalDischargeFile parameter, which gives the filename
of a specially formatted input file. The input file has lines of the following format:

CR1
a1 b1

CR2
a2 b2

. . .
CRn an bn

where CR1 , CR2 , . . . CRn+1 are the percentage charge level of the battery where the slope of the discharge
curve changes significantly, and a1, . . . , an , b1, . . . , bn are constants representing the coefficients of the
line segments used for the approximation.
This means that when the charge level of the battery, C(t), is between CR1 and CR2 , its estimated voltage
is computed as a1 · C(t) + b1, when it is between CR2 and CR3 its estimated voltage is computed as
a2 · C(t) + b2, and so on. Please note that charge levels CR1 , CR2 , . . . CRn+1 must be sorted in increasing
order.
An example of such file is included in the GreenCastalia distribution:
Simulation/Parameters/EnergySubsystem/constantDischarge.dat.

6.2 Energy sources and energy harvesters

The following configuration snapshot shows how to instantiate two TraceEnergySource modules, i.e., a
solar energy source reading irradiance values from file NREL-1year.irradiance and a wind energy source
reading wind speed values from file NREL-1year.speed. Such traces of solar and wind energy availability
were obtained from the National Renewable Energy Laboratory at Oak Ridge, Tennessee [6].

Define a solar energy source

Energy sources

SN.numEnergySources = 2

SN.energySource[0].description = "Solar"

SN.energySource[0].traceFile = "../Parameters/EnergySource/SolarTraces/NREL-1year.irradiance"

SN.energySource[1].description = "Wind"

SN.energySource[1].traceFile = "../Parameters/EnergySource/WindTraces/NREL-1year.speed"

In order to be able to harvest power from an energy source, sensor nodes must be equipped with at least
one harvesting device:

Node 0 harvests energy from solar light

SN.node[0].ResourceManager.EnergySubsystem.EnergyHarvesting.numEnergyHarvesters = 1

SN.node[0].ResourceManager.EnergySubsystem.EnergyHarvesting.Harvesters[0].typename = "SolarCell

"

Node 1 harvests energy through a wind micro turbine

SN.node[1].ResourceManager.EnergySubsystem.EnergyHarvesting.numEnergyHarvesters = 1

SN.node[1].ResourceManager.EnergySubsystem.EnergyHarvesting.Harvesters[0].typename = "

WindTurbine"

6.3 Energy predictions 13

6.3 Energy predictions

An energy predictor can be instantiated by assigning a valid type name to the PredictorType parameter
of the energy subsystem module. The following configuration snapshot shows how to define a network of
nodes using the EWMA energy predictor with alpha parameter set to 0.7.

SN.node[*].ResourceManager.EnergySubsystem.PredictorType = "AEWMA"

SN.node[*].ResourceManager.EnergySubsystem.EnergyPrediction.alpha = 0.7

The following code snapshot shows how to access energy prediction within an application:

#include "VirtualEnergyPredictor.h"

/* Obtain a pointer to the energy predictor module */

VirtualEnergyPredictor* predictorModule = check_and_cast<VirtualEnergyPredictor*>

(getParentModule()->getSubmodule("ResourceManager")->getSubmodule("EnergySubsystem")->

getSubmodule("EnergyPrediction"));

/* Get the harvesting power predicted at some time predTime */

simtime_t predTime = ...;

double predHarvPwr = predictorModule->getPrediction(predTime);

7 Frequently Asked Questions

7.1 Get the current energy level from the routing module

The following code snapshot shows how to get information about the currently energy level from the
routing module:

#include "VirtualEnergyManager.h"

/* Obtain a pointer to the energy manager module */

VirtualEnergyManager* engyMgr =

check_and_cast<VirtualEnergyManager*>(getParentModule()->getParentModule()->getSubmodule("

ResourceManager")->getSubmodule("EnergySubsystem")->getSubmodule("EnergyManager"));

double currentEnergyRatio = engyMgr->getCurrentEnergyRatio();

14 References

References

[1] D. Benedetti, C. Petrioli, and D. Spenza, “Greencastalia: An energy-harvesting-enabled framework
for the castalia simulator,” in Proceedings of the 1st International Workshop on Energy Neutral
Sensing Systems, ser. ACM ENSSys 2013. New York, NY, USA: ACM, 2013, pp. 7:1–7:6. [Online].
Available: http://doi.acm.org/10.1145/2534208.2534215

[2] A. Boulis, “Castalia: Revealing Pitfalls in Designing Distributed Algorithms in WSN,” in Proceedings
of SenSys 2007, New York, NY, USA, 2007, pp. 407–408.

[3] A. Cammarano, D. Spenza, and C. Petrioli, “Energy-harvesting WSNs for structural health monitor-
ing of underground train tunnels,” in Proceedings of IEEE INFOCOM WKSHPS 2013, April 2013,
pp. 75–76.

[4] M. Gorlatova, M. Zapas, E. Xu, M. Bahlke, I. J. Kymissis, and G. Zussman, “CRAWDAD Data Set
Columbia/Enhants,” April 2011. [Online]. Available: http://crawdad.cs.dartmouth.edu/columbia/
enhants

[5] “EH Network Data Repository.” [Online]. Available: http://eh-network.org/data

[6] “NREL: Measurement and Instrumentation Data Center,” 2011. [Online]. Available: http:
//www.nrel.gov/midc

[7] A. Kansal, J. Hsu, S. Zahedi, and M. Srivastava, “Power Management in Energy Harvesting Sen-
sor Networks,” ACM Transactions in Embedded Computing Systems, vol. 6, no. 4, p. Article 32,
September 2007.

[8] A. Kailas, M.-A. Ingram, and D. Brunelli, “A Simple Energy Model for the Harvesting and Leakage
in a Supercapacitor,” in Proceedings of IEEE ICC 2012, Ottawa, Canada, June 2012, pp. 6278–6282.

[9] G. Merrett and A. Weddell, “Supercapacitor Leakage in Energy-Harvesting Sensor Nodes: Fact or
Fiction?” in Proceedings of EnHaNSS 2012, Antwerp, Belgium, June 2012.

[10] A. Nasiri, S. Zabalawi, and G. Mandic, “Indoor Power Harvesting Using Photovoltaic Cells for Low-
Power Applications,” IEEE Transactions on Industrial Electronics, vol. 56, no. 11, pp. 4502–4509,
2009.

[11] D. K. Noh and K. Kang, “Balanced energy allocation scheme for a solar-powered sensor system and
its effects on network-wide performance,” J. Comput. Syst. Sci., vol. 77, no. 5, pp. 917–932, Sep.
2011.

[12] J. Piorno, C. Bergonzini, D. Atienza, and T. Rosing, “Prediction and Management in Energy Har-
vested Wireless Sensor Nodes,” in Proceedings of Wireless VITAE 2009, Aalborg, Denmark, May
2009, pp. 6–10.

[13] A. Cammarano, C. Petrioli, and D. Spenza, “Pro-Energy: A novel energy prediction model for solar
and wind energy-harvesting wireless sensor networks,” in Proceedings of IEEE MASS 2012, Las Vegas,
Nevada, Oct 2012, pp. 75–83.

[14] A. Cammarano, C. Petrioli, and D. Spenza, “Improving Energy Predictions in EH-WSNs with Pro-
Energy-VLT,” in Proceedings of ACM SenSys 2013, Poster Session. New York, NY, USA: ACM,
2013, pp. 41:1–41:2.

http://doi.acm.org/10.1145/2534208.2534215
http://crawdad.cs.dartmouth.edu/columbia/enhants
http://crawdad.cs.dartmouth.edu/columbia/enhants
http://eh-network.org/data
http://www.nrel.gov/midc
http://www.nrel.gov/midc

References 15

[15] D. Noh and K. Kang, “Balanced Energy Allocation Scheme for a Solar-Powered Sensor System and
its Effects on Network-Wide Performance,” Journal of Computer and System Sciences, vol. 77, no. 5,
pp. 917–932, September 2011.

	Introduction
	Installation
	Overview
	Integration into Castalia
	The EnergySubsystem module

	Modeling in GreenCastalia
	Energy harvesters
	Energy storage
	Energy manager
	Support for energy predictions

	Software organization
	Using GreenCastalia
	Multi-storage architectures
	Energy sources and energy harvesters
	Energy predictions

	Frequently Asked Questions
	Get the current energy level from the routing module

