
Pro-Energy: a novel energy prediction model for solar and wind
energy-harvesting Wireless Sensor Networks

Alessandro Cammarano
Computer Science Department
Sapienza University of Rome

Rome, Italy
Email: cammarano@di.uniroma1.it

Chiara Petrioli
Computer Science Department
Sapienza University of Rome

Rome, Italy
Email: petrioli@di.uniroma1.it

Dora Spenza
Computer Science Department
Sapienza University of Rome

Rome, Italy
Email: spenza@di.uniroma1.it

Abstract—Energy harvesting is one of the most promising
technologies towards the goal of perpetual operation of wireless
sensor networks (WSNs). Environmentally-powered systems,
however, have to deal with the variable behavior of ambient
energy sources, which results in different amounts and rates
of energy available over time. To alleviate the problem of the
harvested power being neither constant nor continuous, energy
prediction methods can be employed. Such models forecast the
source availability and estimate the expected energy intake,
allowing the system to take critical decisions about the utiliza-
tion of the available energy. In this work, we present a novel
energy prediction model, named Pro-Energy (PROfile energy
prediction model), for multi-source energy harvesting WSNs,
which is able to leverage past energy observations to provide
accurate estimations of future energy availability. To assess the
performance of our proposed solution, we use real-life solar and
wind traces that we collected by interfacing TelosB nodes with
solar cells and wind micro-turbines, as well as public available
traces of solar and wind obtained from weather monitoring
stations in the US. A comparative performance evaluation
between Pro-Energy and energy predictors previously proposed
in the literature, such as EWMA and WCMA, has shown that
our solution significantly outperforms existing algorithms for
both short and medium term prediction horizons, improving
the prediction accuracy up to 60%.
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I. INTRODUCTION

Many works have demonstrated both the potential and
the feasibility of applying energy-harvesting techniques to
wireless sensor networks [1], [2], [3]. However, networks
powered by ambient energy sources, such as solar light
and wind, have to face the problem of dealing with a
variable energy intake. For instance, solar-powered nodes
experience significantly changes in the power harvested over
time, due to the diurnal cycle in solar energy, varying
weather conditions, monthly trends and seasonal patterns.
Moreover, the position of the nodes and the orientation of
their solar cell strongly impact the energy intake: even if
two nodes are physically co-located, often their harvesting
rates significantly differ [4], [5].

The uncertainty in the energy availability provided by
ambient sources raises new challenges in developing reliable
and energy-efficient power-management solutions. Many
works assume that accurate predictions about the future
energy intake are available to the system, either by simply
looking at the past history [6] or by employing more sophis-
ticated energy predictors [7]. Knowledge about the behavior
of energy sources over short and medium time frames is
often needed to optimize the system and some solutions
even rely on it to work well [8]. In general, having no
such knowledge available will result in an under-performing
system, in which nodes have no possibility to plan in
advance how to spend the energy they will harvest in the near
future. Predictions about the future energy availability also
helps minimizing waste of energy. Nodes store the harvested
energy in devices such as supercapacitors or rechargeable
batteries, which are limited in both size and time, due to
their limited capacity and to leakage and self-discharge,
respectively. Developing energy predictors for WSNs that
provide accurate future predictions over short (few minutes
to half an hour) and medium (a few hours) time frames is
very important, as they allow to exploit at best the available
energy, minimizing the likelihood that important tasks are
not executed due to lack of energy, and minimizing energy
waste, i.e., cases in which the generated energy is neither
used nor stored as the buffer is full.

So far, existing works, such as WCMA [9], have mainly
focused on short-term predictions for solar energy harvest-
ing. In WCMA, each day is discretized into N time slots
and, at the end of each timeslot t, the energy prediction for
timeslot t+ 1 is derived.

Our goal has instead been to develop a general framework
for multi-source (i.e., solar and wind) energy-harvesting
systems such as [1], [10], which is able to accurately predict
energy for forecasting horizons that are dynamically chosen
based on the application needs.

In this paper, we make the following contributions:
• We present a novel energy prediction model, named

Pro-Energy (PROfile Energy prediction model), which
is able to leverage past energy observations to provide



accurate estimations of future energy availability, for
both solar and wind harvesting WSNs.

• We discuss a variation of our solution which combines
multiple energy profiles in order to improve predictions
accuracy for short and medium-term forecasting hori-
zons.

• We provide a performance evaluation framework for
energy prediction models. To validate our solution, we
use real-life traces of energy availability obtained by
interfacing Telos B nodes with photovoltaic panels and
wind micro-turbines. We also exploit two additional so-
lar and wind datasets from the US National Renewable
Energy Laboratory [11]. Our results show than Pro-
Energy performs up to 60% better than other prediction
models, being able to provide higher accuracy than
EWMA and WCMA.

• We perform a thorough analysis of how varying key
parameters of our scheme impacts on the predictions
accuracy achieved for short and medium term predic-
tion horizons.

The remainder of this paper is organized as follows.
Related work is presented in Section II. In Section III we
describe our prediction model, Pro-Energy. In Section IV
we discuss a variation of our scheme that may be employed
to achieve better predictions accuracy for short and medium
term predictions. We perform a comparative performance
evaluation of Pro-Energy and other energy prediction models
proposed in the literature in Section V. In the same section,
we also evaluate the impact of critical parameters on the
performance of our prediction scheme. Finally, we present
our conclusions in Section VI.

II. RELATED WORK

The Exponentially Weighted Moving-Average (EWMA)
algorithm is a widely used solar energy prediction scheme
proposed by Kansal et al. in [12], which is based on an
exponentially weighted moving-average filter [13]. EWMA
relies on the assumption that the energy available at a given
time of the day is similar to the energy generation observed
at the same time on the previous days. The amount of
energy available during the past days is maintained as a
weighted average, in which the contribution of older data is
exponentially decaying. This approach is able to both exploit
the diurnal cycle in solar energy and to adapt to seasonal
variations, but leads to significant prediction errors in case
of frequently changing weather conditions, i.e, when sunny
and cloudy days are mixed.

In order to address this problem, a new estimation method,
the Weather-Conditioned Moving Average (WCMA), has
been proposed by Piorno el at. in [9]. The high prediction er-
rors shown by EWMA when sunny and cloudy days alternate
is due to the high impact that the weather conditions of the
previous day have when estimating the energy generation for
the current day. The WCMA prediction algorithm avoids this

effect by taking into account, when computing the prediction
for a given timeslot, the average energy availability experi-
enced in that slot in the previous days. Such average value
is then scaled according to a weighting factor indicating
how the weather conditions of the current day changed
with respect to the previous days. In case of frequently
changing weather conditions, WCMA is shown to obtain
average prediction errors almost 20% smaller than EWMA.

Another estimation method based on a weighted sum
of historical data is presented by Moser et al. in [14], to
provide information to a predictive controller able to adapt
parameters of an application. Their prediction algorithm
assumes the solar power to be periodic on a daily basis. To
estimate the energy which will be harvested in the next time
interval it combines the value of the energy harvested during
the current time interval with the energy harvested in the
past (whose age is a multiple of days). As for EWMA, the
contribution of older data is exponentially decaying. In [15],
this predictor is shown to often result in underestimation of
the forecast values, thus in high prediction errors.

The solution proposed by Noh et al. in [16] is similar to
previous approaches. They use the EWMA model to keep
track of the solar energy profile observed in the past. In
order to account for short-term varying weather conditions,
they also introduce a scaling factor to adjust future energy
expectations. At the end of each slot, scaling is performed
by computing the ratio between the actual energy harvested
during the current timeslot and the energy predicted for the
same timeslot, appropriately scaled for future timeslots that
are far away in time.

Lu et al. addressed the problem of energy-harvesting
prediction for real-time embedded systems (RTES) in [17].
They argue that accurate prediction of the energy intake in
the near future is crucial for RTES, as the performance of
optimization techniques depends on harvesting predictions.
Thus, they investigate three common techniques in real time
series prediction (regression analysis, moving average and
exponential smoothing), showing that regression analysis
has the best accuracy for energy predictions within a time
horizon of 1 second. Their approach, however, works well
for real-time energy predictions, but it is not designed for
medium-term prediction horizons.

A completely different approach is proposed by
Sharma et al. in [18]. The authors explore a system for
solar and wind powered sensor node that is able to derive
energy harvesting predictions based on weather forecast.
More in detail, they observe that, when predicting energy
availability at timescales between 3 hour to 3 days, using
forecasting data provides higher accuracy than calculating
energy predictions based on past observation. The reason
they give for the scarce performance of traditional predictors
is the fact that weather patterns are not consistent in many
regions of the United States. They thus formulate a model
for solar panel and wind turbine that is able to convert



Table I
TABLE OF NOTATIONS

Symbol Explanation

N Number of timeslots in a day
D Number of energy profiles stored in the memory
E Matrix of energy profiles (D ×N )
Ed

t Harvested energy observed during timeslot t of day d
C Power harvested during the current day
Ct Power harvested during timeslot t of the current day
K Number of past observations used to compute profiles sim-

ilarity
Êt+1 Predicted energy at timeslot t+ 1 on the current day
α Weighting factor for short-term prediction

F Prediction horizon (number of time slots)
G Correlation parameter
P Number of energy profiles combined for energy predictions
WP Weighted profile (combination of P profiles)
γ Weighting factor for short and medium-term predictions

MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error

weather forecast data into energy harvesting predictions.
However, they compare the performance of their solution
with simple energy predictors based on past observations; a
comparison with state-of-the-art solutions is not presented.
Beyond being applicable only in some application scenarios,
periodic forecast transmissions introduce an overhead that
impacts on network lifetime.

To the best of our knowledge, no solution has been
provided so far which allows to dynamically choose the
time horizon of forecasting based on the application needs.
Pro-Energy is the only prediction algorithm that forecasts
the future energy intake for both short and medium term
prediction horizons using only the information collected by
the nodes themselves.

III. PRO-ENERGY

In this section, we discuss a new energy prediction al-
gorithm for wireless sensor networks, which uses past-days
observations to derive predictions on the future energy intake
for both short (few minutes to half an hour) and medium (a
few hours) predictions horizons.

To reduce the time and memory overhead of the prediction
model, each day is discretized into a given number, N , of
equal-length timeslots and predictions are performed once
per slot. The main idea of our energy prediction algorithm
is to make use of harvested profiles representing the energy
intake available during different types of “typical” days. For
instance, days may be classified into sunny, cloudy or rainy
and a characteristic profile may be associated to each of
these categories.

The energy received during the current day is stored in
a vector, C, of length N , containing the energy obtained
during each of the past timeslots. A pool of energy profiles
observed in the past is also maintained in a matrix E, of
size D × N . These profiles represent the energy obtained
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Figure 1. Pro-Energy: harvesting profiles representing energy observations
from past days are used to predict the future energy availability.

during a given number, D, of typical days. Such energy
profiles are used by Pro-Energy to forecast future energy
intake over short and medium term time frames: Once per
timeslot, Pro-Energy delivers energy predictions by looking
at the stored profile that is the most similar to the current
day. For each of these profiles, the similarity with the energy
profile observed during the current day is computed as their
mean absolute error (MAE), taking into account the last K
energy observations. More formally, the stored profile, Ed,
that, among the D typical profiles stored, is the most similar
at timeslot t to the current day, C, is defined as follows:

Ed = min
Ed∈E

t∑
i=t−K

1

K

∣∣Ci − Ed
i

∣∣ (1)

Figure 1 shows an example of application of the Pro-
Energy algorithm over 4 days of solar predictions. During
the initial timeslots of Oct 23, the first stored profile is
selected among the typical ones, as it is the most similar
to the portion of the current day observed so far. As the
day goes on, the shape of the profile is scaled and adapted
according to the new observations. Two other different
profiles are used for predictions during days 2 and 3. Then,
on the fourth day, the first profile is selected again as the
most similar to the current observations.

If the weather conditions change during the current day,
e.g., a sunny morning followed by a cloudy afternoon, we
expect the most similar profile to be one of those stored
which corresponds to a sunny day in the morning, and a
cloudy one in the afternoon. In such cases, considering only
the last K observations in Equation (1) has the effect of
lowering the probability of choosing the wrong profile, while
reducing at the same time the computational overhead of
Pro-Energy.

Pro-Energy is made up of three components:
1) The prediction module delivers future predictions for

short and medium term prediction horizons;
2) The profile analyzer selects, among the stored profiles,

the one that is the most similar to the current day;
3) The profile pool refresh updates the pool of energy

profiles, taking into account the age of profiles and their
similarity.
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Figure 2. Pearson autocorrelation coefficient for (a) solar ORNL Dataset and (b) wind Bologna Dataset.

A. Short-term energy predictions

When delivering energy predictions, Pro-Energy tries to
match the observations of the current day with one of the
typical profiles stored in its pool.

Specifically, Pro-Energy computes the predicted value for
the next timeslot based on a combination of the value for the
next timeslot reported in the stored profile and the energy
observed in the last timeslot, Ct. More formally, being Ed

the stored profile that is the most similar (up to timeslot t)
to the current day, the predicted energy intake for the next
slot, t+ 1, of the current day is computed as:

Êt+1 = α · Ct + (1− α) · Ed
t+1 (2)

where:
Êt+1 is the predicted energy intake in timeslot t+ 1 of

the current day;
Ed

t+1 is the energy harvested during timeslot t+1 on the
stored day d;

Ct is the energy harvested during timeslot t on the
current day C;

α is a weighting factor, 0 ≤ α ≤ 1.
The weighting parameter, α, allows to combine the value

reported in the stored profile with the current energy obser-
vation, i.e., the energy observed in the last slot, Ct.

B. Medium-term energy predictions

When computing short-term predictions, considering the
correlation between two consecutive timeslots usually helps
increasing the prediction accuracy. This approach, however,
is not as effective when delivering medium term predictions.
In fact, the correlation between the energy observed at time
t and the one observed at time t + δt generally decreases
for increasing δt. To analyze such correlation, we discretized
each day in 48 slots of 30 minutes duration and considered a
given timeslot, t, which corresponds, in our example, to the
8:30 AM (results are similar for different timeslots). Figure 2
shows the Pearson correlation of the power observed during
timeslot t and timeslot t + δt, ∀δ = {0, . . . , 48}, for
both solar and wind harvested data. The Pearson correlation
coefficient ranges from -1 to 1. An absolute value of 1
implies a linear relationship between the energy observed at
two different timeslots, while a value of 0 means that there
is no linear correlation between them. It is evident from the

figure that, in the solar case, there is a strong correlation
(i.e., correlation coefficient > 0.7) between the harvested
power observed at 8:30 AM and the energy intake during
the successive 4− 6 slots (2− 3 hours) (Fig. 2(a)). On the
contrary, wind energy observed at 8:30 in the morning shows
strong correlations only with the successive 1− 2 slots (30
minutes to one hour) (Fig. 2(b)).

Figure 3 shows an example of the power harvested by a
solar cell and a wind micro turbine over 8 days in August,
which highlights that the wind energy intake is generally
much more variable than the solar one.

Knowledge of correlation can be exploited for better
prediction accuracy. To this purpose, we introduce a new
parameter, γ, which determines the influence of the last
energy observation while deriving predictions for the next
F future slots.

Assuming that two slots at a distance equal to or greater
than G show only a weak correlation, the γ parameter to be
used when predicting the energy intake for the future slot i
is defined as:

γi =

{
α ·
(
1− i−1

G

)
, if i ≤ G

0 if i > G
∀i, 1 ≤ i ≤ F

where:

α is the weighting factor defined in Equation (2);
i is the ith timeslot in the future, with respect to the

current slot, t;
G is the number of timeslots in the future which show

a correlation above a given threshold with timeslot
t;

F is the number of future timeslots for which Pro-
Energy is delivering energy predictions.

The γi parameter plays a similar role in Equation (3)
(defined in the following) as the weighting parameter α
in Equation (2): It allows to combine the energy value
of the stored profile with the current energy observation.
However, the weight associated to the value observed during
the current slot progressively decreases when computing
predictions for timeslots that are further away in time. For
timeslots that are more than G slots in the future from
timeslot t, such weight, γt+G, is set to zero, as there is
little or no correlation between the energy value observed at
timeslot t and that observed at timeslot t+G.
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Figure 3. Power generated by our (a) solar cell and (b) wind micro-turbine over 8 days in August 2011.

Having defined such γi parameter, the medium term
predictions are then computed by using a generalization of
the short-term version (Equation 2):

Êt+i = γi · Ct + (1− γi) · Ed
t+i (3)

Indeed, short-term predictions are computed according to
Equation 3, where the prediction horizon F is equal to 1,
i = 1 and γi = α.

C. Stored profiles updates

Pro-Energy maintains a pool of D typical profiles, each
ideally representative of a different weather condition. In
order to adapt predictions to changing seasonal patterns, this
pool has to be periodically updated. At the end of each day,
Pro-Energy decides whether to update the pool of stored
profiles with the profile observed during the current day,
C, or not. Specifically, it jointly implements two update
strategies:

1) If there is a profile in the pool that was stored longer
than A days ago, substitute it with the profile observed
during the current day, C.

2) If there are two profiles Ed1 and Ed2 in the pool that are
very similar, i.e., their MAE is below a given threshold,
substitute with C the one among the two that is the most
similar to the current day. In case of multiple pairs of
similar profiles we select among these pairs the most
similar to C.

The first strategy allows to discard profiles that have
become obsolete, while the second strategy allows to main-
tain a pool of profiles that are ideally representative of
different weather conditions, by discarding profiles that are
very similar.

IV. IMPROVING PREDICTION ACCURACY BY COMBINING
MULTIPLE PROFILES

Pro-Energy predictions can be further improved through
a technique which allows to combine multiple profiles
together. Such method selects a set of P profiles, instead of
a single one, among the D profiles stored in the E matrix
and combines them to form a ”weighted” profile WP .

The main idea behind the use of multiple profiles is to
consider different possible evolutions of the current day.
For instance, a sunny morning may be followed by a
cloudy or rainy afternoon. While delivering medium and
long term predictions, considering a single profile may lead
to poor accuracy if significant variations occur in the weather
conditions. On the contrary, considering multiple profiles
allows to account for these potential changes, reducing the
prediction error at the price of a small additional overhead.

Let Ed1 , Ed2 , . . . , EdP be the ordered list of profiles that
are most similar to the current day C, i.e., profiles with the
smaller Mean Absolute Errors. The weighted profile WP ,
for the future slot t+ i, i ∈ {1, 2, . . . , F}, is computed as:

WPt+i =
1

P − 1

P∑
j=0

wj · E
dj

t+i (4)

where

wj = 1− MAEk(E
dj , C)∑P

j=1MAEk(Edj , C)
(5)

As for the previous case (Section III-B), energy predic-
tions for the future slot t+i are computed based on the value
for such slot stored in the WP profile and on the energy
harvested during the last time slot.

The predicted energy intake for the future slot, t + i, is
then computed as:

Êt+i = γi · Ct + (1− γi) ·WPt+i (6)

where:

Êt+i is the predicted energy in timeslot t + i for the
current day;

Ct is the harvested energy during last timeslot;
WP is the vector of the combination of timeslot t + i

of the P profiles;
γi is a correlation factor for prediction of slot t+ i.

Equation (6) is a generalization of Equation (3). Specifi-
cally Equation (3) is obtained by Equation (6) by using only
one profile for future energy predictions.



V. PERFORMANCE EVALUATION

We evaluated the accuracy of the Pro-Energy predictor
in many different settings, by using four different types of
harvested energy datasets: 1) real-life solar data obtained
from a testbed in Rome, Italy; 2) real-life wind data ob-
tained from a testbed in Bologna, Italy; 3) traces of solar
availability obtained from the National Renewable Energy
Laboratory at Oak Ridge, Tennessee [11]; and 4) traces of
wind availability obtained from the same source.

We obtained real-life solar data by interfacing Telos B
motes [19] with photovoltaic cells (Figure 5(a)). A dedicated
TinyOS application was developed to track the amount of
energy generated by the harvesters every 30 seconds. The
monitoring motes were deployed close to the window of
our university building in Rome for 46 days reporting data
under variable weather conditions and in different locations.
Ten nodes were deployed in different locations, inside and
outside the windows, with windows selected in offices with
different orientations (west/east/south). In general, due to
varying weather conditions, seasonal patterns and different
node positions and solar cell orientations, the amount of
energy harvested varied significantly over time (3−220 J per
day). Real-life wind harvesting data were obtained from an
outdoor testbed, located in Bologna, Italy, of Telos B motes
equipped with micro wind turbines (Figure 5(b)), collecting
data for 75 days. The other two datasets were obtained from
the National Renewable Energy Laboratory at Oak Ridge,
Tennessee, and consist of 90 days of solar and wind data
collected with a granularity of one per minute.

A. Prediction algorithms evaluation

We evaluated the performance of Pro-Energy by com-
paring, for each timeslot, the amount of energy predicted
with the energy actually harvested. The prediction error was
calculated by using the Mean Absolute Percentage Error
(MAPE) function [20]:

MAPE =
1

T

∑∣∣∣∣et − êtet

∣∣∣∣ , (7)

where:
êt is the energy predicted for timeslot t;
et is the actual energy harvested during timeslot t;
T is the total number of timeslots over which the

MAPE error is computed.
In general, T is lower than the total number of timeslots

in a given dataset. When computing the MAPE error, we
only consider the timeslots in which the energy intake is
meaningful to evaluate the prediction accuracy [9]. For this
reason, we discard from the MAPE calculation the timeslots
in which the harvested power is low, i.e., it is less than the
10% of the maximum peak power of the day.

We compare the performance of Pro-Energy with that
of two energy predictors previously proposed in the lit-
erature, EWMA and WCMA. In our experiments, we set

(a) (b)

Figure 5. Telos B motes interfaced with (a) photovoltaic cell (b) and wind
micro turbines.

N = 48. Thus, a whole day is represented by a vector of
48 timeslots, each corresponding to a 30 minutes interval.
In order to perform a fair comparison, we set the coefficient
of each prediction model to their optimal value, i.e., the
ones minimizing the overall MAPE error, using the same
energy traces. Since WCMA is designed to only deliver
predictions for the next timeslot, we needed to extend it
to make it able to perform predictions for different time
horizons. Specifically, we modified WCMA so that, when it
is asked to predict the energy intake at timeslot t+δ, δ > 1,
it returns the average energy observed at timeslot t + δ,
computed over the last Dwcma days.

B. Accuracy of short and medium term energy predictions

Figure 4 shows the prediction error of Pro-Energy,
WCMA and EWMA for four different solar and wind
datasets and for different prediction horizons. Specifically,
we report here results about the accuracy of both short and
medium term energy predictions. The prediction error shown
in the figure is the MAPE (Equation (7)) between the amount
of energy predicted and the one actually observed, computed
over the whole dataset.

The results highlight that the characteristics of the energy
source impact the accuracy of prediction. As can be seen,
wind energy (Fig. 4(c)- 4(d)) is more difficult to predict than
solar energy (Fig. 4(a)- 4(b)), since it is less stable over time.

As can be expected, the prediction error of Pro-Energy
increases for longer prediction horizons. In fact, correctly
estimating the energy trend of the current day becomes
much more difficult as the forecasting horizon increases.
Pro-Energy however consistently outperforms EWMA and
WCMA for both short and medium term solar energy pre-
dictions. In case of solar energy predictions with a prediction
horizon of 1 hour, Pro-Energy performs ≈ 25% better than
EWMA and WCMA (Fig. 4(a)). The parameter setting in
such scenario is summarized in Table III. More generally, for
both short and medium-term energy predictions, Pro-Energy
achieves a 5% − 26% reduction of the overall MAPE with
respect to WCMA. The reduction of the MAPE error with
respect to EWMA is between 9%− 43%.
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Figure 4. Short and medium-term energy predictions accuracy: comparison between Pro-Energy, WCMA and EWMA for (a) solar ROME dataset; (b)
solar ORNL dataset; (c) wind BOLOGNA dataset and (d) wind ORNL dataset.

Such an improvement is even more significant in the solar-
ORNL dataset (Fig. 4(b)). For energy predictions within
a prediction horizon of 1 hour, Pro-Energy performs 60%
better, by exhibiting a MAPE error that is almost one third
of that of EWMA and WCMA. For medium-term energy
predictions, Pro-Energy achieves an average reduction of
the overall MAPE error of almost 50% with respect to
WCMA and EWMA. In case of short-term predictions,
the performance of Pro-Energy is comparable with that of
WCMA while it is 75% better than EWMA’s.

Differently from the other predictors, Pro-Energy achieves
a good accuracy also also when performing wind harvesting
forecasting. For the Wind-Bologna dataset (Fig. 4(c)), Pro-
Energy leads to a 7%−19% lower MAPE error than WCMA.
The improvement is between 9% and 54% in case of
EWMA. Figure 4(b) shows the improvement of Pro-Energy
over WCMA and EWMA in the wind-ORNL dataset. The
overall MAPE error achieved by Pro-Energy is 3% − 25%
lower than WCMA and 13%− 38% lower than EWMA.

Figure 4 shows that EWMA is the worse performing
predictor even if its performance are constant and do not
depend on the prediction horizon. The reason is that EWMA
does not use information about the current energy intake in
slot t to adjust prediction in future slots t + δ. At the end
of each slot t, the only prediction that is updated is the one
relative to the same slot t, which will be used for energy
predictions on the next day. WCMA performs very well
in delivering accurate short-term term energy predictions.
Its prediction accuracy, however, degrades when handling
medium term predictions. This is due to the fact that
WCMA, being designed to only deliver predictions for the

next timeslot, does not exploit the current energy observation
and the correlation between current observation and future
ones to adjust future energy predictions over medium-term
forecasting horizons. The remarkable improvement achieved
by Pro-Energy over WCMA highlights the importance of
considering the correlation between the current conditions
and the future time slots for accurate medium term predic-
tion.

C. Accuracy of energy predictions for varying parameter
settings

The last part of our analysis is focused on the impact of
varying parameter settings on the accuracy of the energy
predictions. We focus our evaluation on the solar-ROME
dataset, which well represents a practical application sce-
nario. Due to space restrictions, we restrict our analysis
considering three different predictions horizons: 30 minutes,
1 hour and 2 hour. We performed three sets of experiments,
varying the value of the parameters α,K and P . While fix-
ing a parameter, the value of the other parameters have been
set so as to minimize the overall MAPE error (Table III).

Figure 6(a) displays the impact of varying the α parameter
on the prediction accuracy of Pro-Energy, for 30 minutes,
1 hour and 2 hours energy prediction horizons. Figure 6(a)
shows that the α parameter has a high impact on the total
MAPE error in case of short-term predictions. In such case,
the total error, computed over the whole solar dataset, is
minimized for α = 0.5. This corresponds to a balanced
contribution between the energy value reported in the stored
profile Ed

t+1 and the last energy observation made during
the current day, Ct. Higher values of the parameter, i.e.,
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Figure 6. Impact of varying Pro-Energy parameters on the overall MAPE error for 30 minutes, 1 hour and 2 hours prediction horizons: (a) α parameter;
(b) K parameter and (c) P parameter.

values of α > 0.75, lead to performance degradations: The
MAPE error increases of up to 5 percentage points. This
is because in such settings Pro-Energy strongly relies on
the energy trend expressed by the typical profiles, without
effectively adapting them to the current weather conditions.
When considering prediction horizons of one and two hours,
instead, the performance of Pro-Energy are quite stable with
respect to variations of the α parameter, as varying it changes
the MAPE error only up to 0.5 percentage points. This is
due to the fact that, for such prediction horizon, the value of
the G parameter has a stronger impact than in the previous
cases on the overall MAPE error.

Figure 6(b) shows that the value of K does not deeply
influence the accuracy of energy predictions of short term
energy prediction. In fact, for K parameter ranging from 1
to 10, the MAPE error increases only up to ≈ 0.5 percentage
points. Such results suggest that, to characterize the future
energy intake during the current day, it is enough to consider
the energy harvested in the last few timeslots. In fact, the
information collected during timeslots that are further away
in time does not provide significant improvement in the
accuracy of energy predictions. This characteristic allows
Pro-Energy to use small values of K while performing MAE
computations, thus reducing the overhead of computing
similarity between different profiles.

Figure 6(c) shows how varying the number of profiles
used by Pro-Energy impacts on the overall MAPE error.
The overall trend is that increasing the number of profiles
that Pro-Energy takes into account tends to reduce the
prediction error. However, in case of short-term predictions,
combining multiple profiles together does not have a very
strong impact, as it improves the prediction accuracy only
up to 0.5 percentage point. This means that the overhead
of the Pro-Energy algorithm may be reduced in such case
by choosing a small values of P , with limited impact on
performance. On the contrary, the effect of the P parameter
is much more evident for medium term predictions, as using
a combination of multiple profiles can reduce the overall

Table II
PREDICTION ALGORITHMS OVERHEAD OF PRO-ENERGY, WCMA AND

EWMA USING THE SOLAR-ROME DATASET

Prediction Algorithm Number of multiplications
Pro-Energy (1 profile) 4369
Pro-Energy (2 profiles) 12917
Pro-Energy (3 profiles) 17047
Pro-Energy (4 profiles) 21081
Pro-Energy (5 profiles) 25019
WCMA 27931
EWMA 4416

MAPE error up to ≈ 4 percentage points with respect to the
setting in which a single profile is used.

D. Pro-Energy Overhead

Table II compares the overhead of Pro-Energy with that
introduced by other solutions, in terms of number of mul-
tiplications performed by each scheme, computed over the
solar-Rome dataset. The values reported in the table refer to
a setting of parameters in which D = 10 (number of energy
profiles stored), K = 7 (number of slots used for comparing
profiles), F = 1 (prediction horizon) and P (number of
combined profiles) varies in {1, 2, 3, 4, 5}.

VI. CONCLUSIONS

In this paper, we have presented Pro-Energy a novel
energy prediction model for multi-source energy harvest-
ing WSNs, which is able to provide accurate predictions
for short and medium term forecasting horizons. We have
performed extensive validation of Pro-Energy using real-
life traces of the harvested energy we have obtained by
interfacing Telos B nodes with photovoltaic panels and wind
micro-turbines. We have also exploited two additional solar
and wind datasets from the US National Renewable Energy
Laboratory. Our results show that Pro-Energy performs
better than previous solutions such as EWMA and WCMA,
with improvements in prediction accuracy which can be as
high as 60%.



Table III
SOLAR ROME DATASET: PARAMETER SETTINGS OF PRO-ENERGY, WCMA AND EWMA FOR SHORT AND MEDIUM TERM PREDICTIONS.

Pro-Energy WCMA EWMA
MAPE Error α D K G P MAPE Error α D K MAPE Error α

30m 20.00 0.50 14 2 - 9 21.12 0.6 11 5 35.21 0.2
1h 26.18 0.40 14 2 5 9 35.51 - 10 7 35.21 0.2

1h30m 27.68 0.45 9 6 5 7 35.51 - 10 7 35.21 0.2
2h 29.81 0.45 14 1 6 9 35.51 - 10 7 35.21 0.2

2h30m 31.68 0.60 14 3 6 9 35.51 - 10 7 35.21 0.2
3h 31.92 0.55 18 3 7 9 35.51 - 10 7 35.21 0.2
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