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Abstract—The increasing popularity of micro-scale power-
scavenging techniques for Wireless Sensor Networks (WSNs)
is paving the way to energy-autonomous sensing systems. To
sustain perpetual operations, however, environmentally-powered
devices must adapt their workload to the stochastic nature of
ambient sources. Energy prediction models, which estimate the
future expected energy intake, are effective tools to support
the development of proactive power management strategies. In
this work, we present Pro-Energy, an energy prediction model
for multi-source Energy-Harvesting WSNs that leverages past
energy observations to forecast future energy availability. We
then propose Pro-Energy-VLT, an extension of Pro-Energy that
combines our energy predictor with timeslots of variable lengths
to adapt to the dynamics of the power source. To assess the perfor-
mance of our proposed solutions, we use real-life solar and wind
traces, as well as publicly-available traces of solar irradiance
and wind speed. A comparative performance evaluation shows
that Pro-Energy significantly outperforms state-of-the-art energy
predictors, by improving the prediction accuracy of up to 67%.
Moreover, by adapting the granularity of the prediction timeslots
to the dynamics of the energy source, Pro-Energy-VLT further
improves the prediction accuracy, while reducing the memory
footprint and the energy overhead of energy forecasting.

I. INTRODUCTION

Energy harvesting allows to use energy from the environ-
ment to power embedded devices and nodes of Wireless Sensor
Networks (WSNs) [1], [2]. By scavenging energy from their
surroundings, energy-harvesting wireless sensor nodes can
significantly increase their typical lifetime: If the harvested en-
ergy is efficiently utilized, low-power devices can last virtually
forever. However, although potentially unlimited, the energy
provided by ambient power sources is neither constant nor
always available. For instance, solar-powered nodes experience
significant changes in the power harvested over time, due to
the diurnal cycle in solar energy, varying weather conditions
and seasonal patterns. Moreover, the position of the nodes
and the orientation of their solar cell strongly impact on their
energy intake: even if two nodes are physically co-located,
their harvesting rates may significantly differ [3]. The uncer-
tainty in the energy availability provided by ambient sources
raises new challenges in developing reliable and energy-
efficient power-management solutions for Energy-Harvesting
WSNs (EH-WSNs) [1]. For this reason, many works targeting
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environmentally-powered systems require the energy harvest-
ing profile to be known in advance [4], [5] or that accurate
predictions of the future energy intake are available [6]. In
the case of predictable energy sources, such as solar light,
energy prediction models can estimate the expected energy
intake in the near future. Forecasting future power income
allows to exploit the available energy at best, minimizing both
periods in which nodes are not active due to lack of energy,
and waste of energy in periods during which the harvesting
rate is high. An increasingly number of works on EH-WSNs
thus rely on the use of online energy prediction methods
to implement harvesting-aware solutions, such as algorithms
for smart energy allocation and spending [7], communication
protocols [8] and power management strategies based on
dynamic load adaptation [9], [10].

In this paper we present a framework for accurate online
prediction of the energy intake for multi-source (i.e., solar and
wind) energy-harvesting wireless sensor nodes. In particular,
we make the following contributions:

• We present Pro-Energy (PROfile Energy prediction
model), an energy prediction model that leverages past
energy observations for accurate estimations of future
energy availability at both short (few minutes to half an
hour) and medium (a few hours) predictions horizons.

• We propose Pro-Energy-VLT (PROfile Energy prediction
model with Variable-Length Timeslots), which combines
Pro-Energy with timeslots of variable lengths, whose
granularity is set coarser or finer based on the dynamics
of the power source. Thanks to the online timeslots
adaptation, Pro-Energy-VLT better captures patterns of
the harvesting process, improving accuracy and reducing
the memory and energy overhead of energy prediction.

• We evaluate the performance of our proposed predictors
in several scenarios, using both real-life harvesting traces
that we obtained by interfacing Telos B nodes with pho-
tovoltaic panels and wind micro-turbines, and publicly-
available datasets of solar and wind energy availability.

• We present a case study for energy prediction in WSNs
and assess the practical feasibility of our proposed ap-
proach through implementation on solar-powered motes.

The remainder of this paper is organized as follows. Related
work is surveyed in Section II. We present our prediction
model, Pro-Energy, in Section III. In Section IV a variant
of Pro-Energy using timeslots of variable length, named Pro-
Energy-VLT, is proposed. A comparative performance evalu-
ation of Pro-Energy and of Pro-Energy-VLT against state-of-
the-art energy prediction models is performed in Section V.
Section VI concludes the paper.
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II. RELATED WORK

Driven by the rapid diffusion of small-scale energy-
harvesting techniques for embedded devices, and by the chal-
lenges posed by their uncertain power availability, many recent
works have been focusing on energy prediction techniques
for energy-harvesting wireless sensor networks (EH-WSNs).
Kansal et al. were the first to present a solar energy prediction
scheme for EH-WSNs: the Exponentially Weighted Moving-
Average (EWMA) [11]. EWMA, based on an exponentially
weighted moving-average filter, relies on the assumption that
the energy available at a given time of the day is similar
to the energy harvested at the same time on the previous
days. The amount of energy available during the past days
is maintained in EWMA as a weighted average, in which the
contribution of older data is exponentially decaying. EWMA
provides quite accurate results in presence of scarce weather
variability, but its performance significantly degrades when
weather conditions are frequently changing (e.g., when a
mix of sunny and cloudy days occurs in a row). To address
this shortcoming, Piorno el at. proposed WCMA, a Weather-
Conditioned Moving Average prediction model [12], [13].
Similarly to EWMA, WCMA takes into account the energy
harvested in the previous days, but it additionally introduces a
weighting factor to quantify how the weather conditions of the
current day changed with respect to the previous days. In case
of frequently changing weather conditions, WCMA is shown
to obtain average prediction errors almost 20% smaller than
EWMA. The solution proposed by Noh et al. in [14] uses
the EWMA model to keep track of the solar energy profile
observed in the past. With respect to EWMA, an additional
scaling factor is introduced to adjust future energy expectations
based on short-term varying weather conditions. Scaling is
performed by computing the ratio between the actual energy
harvested during the current timeslot and the energy predicted
for the same timeslot. Linear interpolation is then used to
reduce the scaling value for slots that are further ahead in
time. In [15], Lu et al. addresses energy-harvesting prediction
for real-time embedded systems by investigating common
techniques for real time series prediction. Regression analysis
is shown to obtain the best accuracy for energy predictions
within a time horizon of 1 second, but performance on short
and medium term prediction horizons are not discussed.

These energy prediction methods base their forecasting
upon locally-collected data. In application scenarios in which
Internet connectivity is available, e.g., by means of an external
server connected to the WSN, energy prediction models that
can take advantage of external global information have also
been proposed. For example, Renner investigated in [16]
the integration of local information with global cloud cover
forecasting to improve long-term predictions (of at least one
day) in solar-powered systems. A system architecture that
obtains global weather forecasts and disseminates them into
the sensor network is presented in [17]. To reduce the ad-
ditional complexity and overhead introduced by the need to
periodically disseminate weather forecasting updates in the
network, Renner and Nguyen proposed a lossless compres-
sion method for cloud-cover forecasts [18]. Sharma et al.

presented in [19] an energy-harvesting prediction method for
solar and wind powered sensor systems, which uses models
of solar panels and wind turbines to convert global weather
forecasting, i.e., cloud cover and wind speed, into energy
harvesting predictions. Their approach is shown to outperform
energy predictors based only on past observations for long-
term prediction horizons between 3 hour to 3 days.

Another class of solutions relies on machine learning tech-
niques for energy-harvesting predictions. For example, Lu and
Whitehouse presented in [20] SunCast, a system for using
natural sunlight inside a building to reduce the electricity
demand of artificial lighting. SunCast consists of a control
algorithm to provide stable indoor lighting levels and of a
sunlight prediction algorithm to generate a distribution of
predicted sunlight values. Being not devised to be locally
run on wireless sensor nodes, the computational and mem-
ory demands of SunCast may exceed the limited resources
typically available on WSN motes. Sharma et al. evaluated
in [21] multiple regression techniques to automatically create
site-specific prediction models for solar power generation from
weather forecasts. Such predictions models are intended to be
used by a smart grid and by individual smart houses to plan
electricity generation and consumption in advance.

As for the use of variable-length timeslots, Renner and
Turau were the first to introduce an adaptive slotting scheme
for energy forecasting in EH-WSNs [22]. Their proposed
approach improves the forecast accuracy by identifying the
actual pattern of energy intake at the end of each day. An
online algorithm is presented to derive the optimal timeslot
distribution, defined as the daily timeslot division that min-
imizes the representation error between the harvester output
at time t and the mean of the harvesting samples of the
timeslot covering time t. Due to the difficulty of computing the
optimal timeslot distribution on resource-limited WSN motes,
an adaptive slot distribution algorithm is also discussed.

III. PRO-ENERGY

In this section, we present Pro-Energy [23], [24], an energy
prediction algorithm for wireless sensor networks that uses
past-days observations to derive predictions on the future
energy intake. The key concept of Pro-Energy is to make use
of harvested profiles representing the energy intake available
during different types of “typical” days. For instance, days
may be classified into sunny, cloudy or rainy, and a character-
istic profile may be associated to each of these categories.
Pro-Energy works as follows. Each day is discretized into
a number N of non-overlapping timeslots of equal length.
Predictions are performed once per slot. The energy received
during the current day is stored in a vector, C, of length
N , containing the energy obtained during each of the past
timeslots. A pool of energy profiles observed in the past is
also maintained in a matrix E, of size D×N . These profiles
represent the energy obtained during a number D of typical
days, which are used by Pro-Energy to forecast future energy
intake over short and medium term time frames. Pro-Energy
is made up of three logical components:
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TABLE I
TABLE OF NOTATIONS

Symbol Explanation

N Number of timeslots in a day
D Number of past energy profiles stored
E Matrix of stored energy profiles (D ×N )
Es

t Harvested energy observed during timeslot t of stored day s

C Energy harvested during the current day
Ct Energy harvested during timeslot t of the current day
Êt Predicted energy at timeslot t on the current day
K Number of past observations used to compute profiles

similarity

α Weighting factor for short-term prediction

F Prediction horizon (number of time slots)
G Correlation parameter
P Number of energy profiles combined for energy predictions
WP Weighted profile (combination of P profiles)
γ Weighting factor for short and medium-term predictions

MAE Mean Absolute Error
MADP Mean Absolute Deviation Percent
pt Average harvesting power during timeslot t
dt Duration of timeslot t (in seconds)
EH Energy harvested during the time interval [τ, τ +H]
êH Energy prediction for the time interval [τ, τ +H]

1) the profile analyzer, which selects the stored profile that
is the most similar to the current day among those in the
pool (run at the end of each slot, N times per day);

2) the prediction module, which computes future pre-
dictions for both short and medium term prediction
horizons (run at the end of each slot, N times per day);

3) the profile pool refresher, which periodically updates
the pool of stored energy profiles by discarding profiles
that have become obsolete (run at the end of each day,
once per day).

The profile analyzer and the prediction module are invoked
at the beginning of each time slot to derive future energy
predictions, while the profile pool refresher is run at the end
of each day to update the pool of stored energy profiles.

A. Profile analyzer

Pro-Energy computes energy predictions by combining the
information about the energy harvested during the current
day with the energy intake obtained during the stored profile
that is the most similar to the current day. For each stored
profiles, similarity with the current day is calculated as the
mean absolute error (MAE) of the energy harvested over the
last K timeslots. More formally, we indicate as Ed

t the stored
profile that is the most similar to the current day C among the
D typical profiles stored in the pool. At each timeslot t, Ed

t

is computed as follows:

Ed
t = min

Es
t∈E

t∑
i=t−K+1

1

K
|Ci − Es

i | (1)

Similarity is computed over the last K timeslots. In addition
to reducing the computational overhead, using only the last K
timeslots (rather than the entire profile) allows to react more
quickly to situations in which the weather conditions change
during the current day. For instance, if during the current day

a sunny morning is followed by a cloudy afternoon, the profile
analyzer will likely select different profiles in the morning and
in the afternoon based on the current weather conditions.

B. Prediction module

Pro-Energy can be used to provide future energy predictions
over both short (few minutes to half an hour) and medium
(a few hours) prediction horizons. In the following, we first
detail the approach used in Pro-Energy for short-term energy
predictions, and then explain how the short-term predictor is
generalized for prediction horizons of up to a few hours.

1) Short-term energy predictions: When computing energy
predictions, Pro-Energy tries to match the observations of the
current day with one of the typical profiles stored in its pool.
Specifically, Pro-Energy computes the predicted value for the
next timeslot as a linear combination of the energy observed in
the last timeslot Ct and the value for the next timeslot reported
in the stored profile. More formally, being Ed

t the stored profile
that at timeslot t is the most similar to the current day, the
predicted energy intake for the next slot, t+ 1, of the current
day is computed as:

Êt+1 = α · Ct + (1− α) · Ed
t+1 (2)

where:
Êt+1 is the predicted energy intake in timeslot t+1 of the

current day;
Ed

t+1 is the energy harvested during timeslot t+ 1 on the
stored day d;

Ct is the energy harvested during timeslot t on the
current day C;

α is a weighting factor, 0 ≤ α ≤ 1.
Parameter α weights the combination between the value re-

ported in the stored profile and the current energy observation,
i.e., the energy observed in the last slot, Ct.

2) Medium-term energy predictions: When computing
short-term predictions, considering the correlation between
two consecutive timeslots usually helps increasing the predic-
tion accuracy. This approach, however, may not be as effective
in case of medium-term predictions. In fact, the correlation
between the energy observed at time t and the one observed
at time t+δt generally decreases for increasing δt. To quantify
such correlation, we analyzed both solar and wind harvested
data, discretizing days into 48 timeslots of 30 minutes each,
and computing the correlation between the average energy
harvested during timeslot t and that obtained during timeslot
t + δt, ∀t = {0, . . . , 48}, ∀δ = {0, . . . , 48}. Figure 1
shows an example of such an analysis, reporting the Pearson
correlation1 computed for t = 8:30 AM (results are similar
for different timeslots). In case of solar energy harvesting,
there is a strong correlation (i.e., correlation coefficient > 0.7)
between the energy harvested at 8:30 AM and that gathered
during the successive 4-6 slots (2-3 hours) (Fig. 1(a)). Wind is
generally more variable than solar: energy harvested at 8:30 in

1The Pearson correlation coefficient ranges from -1 to 1. An absolute value
of 1 implies a linear relationship between the energy harvested at two different
timeslots, while a value of 0 means there is no linear correlation between them.
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(a) (b)

Fig. 1. Pearson autocorrelation coefficient for different energy sources: (a) solar and (b) wind.

the morning shows strong correlation only with the successive
1-2 slots, and weak correlation afterwards (Fig. 1(b)).

Knowledge of correlation can be exploited for better predic-
tion accuracy. To this purpose, we introduce a new parameter,
γ, which determines the influence of the last energy observa-
tion while computing predictions for the next F future slots.
Assuming that two slots at a distance equal to or greater than
G show only a weak correlation, the γ parameter to be used
when predicting the energy intake for the future slot at distance
i from the current slot is defined as:

γi =

{
α ·
(
1− i−1

G

)
, if i ≤ G

0 if i > G
∀i, 1 ≤ i ≤ F (3)

where:
α is the weighting factor defined in Equation (2);
i is the ith timeslot in the future, with respect to the

current slot, t;
G is the number of timeslots in the future whose

correlation with timeslot t is above a given threshold;
F is the number of future timeslots for which

Pro-Energy is computing energy predictions.
The γi parameter plays a similar role in Equation (4)

(defined in the following) as the weighting parameter α in
Equation (2): It allows to combine the energy value of the
stored profile with the current energy observation. However,
the weight associated to the value observed during the current
slot progressively decreases when computing predictions for
timeslots that are further away in time. In particular, such a
weight is set to zero for timeslots that are more than G slots
far in the future, as there is weak or no correlation between
the energy harvested at timeslot t and at timeslot t+G.

Having defined such γi parameter, the medium term pre-
dictions are then computed by using a generalization of the
short-term version (Equation 2):

Êt+i = γi · Ct + (1− γi) · Ed
t+i (4)

Short-term predictions are thus computed according to Equa-
tion 4, where the prediction horizon F is equal to 1, i = 1
and γi = α.

C. Stored profiles updates

Pro-Energy maintains a pool of D typical profiles, each
ideally representative of a different weather condition. In order
to adapt predictions to changing seasonal patterns, this pool
has to be periodically updated. In particular, at the end of
each day the pool of stored profiles can be updated with the
profile observed during the current day, C. Pro-Energy jointly
implements two update strategies:

1) If there is a profile in the pool that was stored longer
than x days ago, substitute it with the profile observed
during the current day, C.

2) If two profiles in the pool, Ed1 and Ed2 , are very similar,
i.e., their MAE is below a given threshold Ts:

1

N

N∑
i=1

∣∣∣Ed1
i − E

d2
i

∣∣∣ < Ts (5)

substitute with C the one among the two that is the most
similar to the current day. In case of multiple pairs of
similar profiles, the most similar to C is selected.

The first strategy allows to discard profiles that have become
obsolete, while the second strategy allows to maintain a pool
of profiles that are ideally representative of different weather
conditions, by discarding profiles that are very similar.

D. Combination of multiple profiles

Pro-Energy predictions can be further improved through a
technique that allows to combine multiple profiles together.
Such method selects a set of P profiles, instead of a single
one, among the D profiles stored in the E matrix and combines
them to form a “weighted” profile WP .

The rationale behind the use of multiple profiles is to
consider different possible evolutions of the current day. For
instance, a sunny morning may be followed by a cloudy or
rainy afternoon. While computing medium and long term pre-
dictions, considering a single profile may lead to poor accuracy
if significant variations occur in the weather conditions. On
the contrary, considering multiple profiles allows to account
for these potential changes, reducing the prediction error at
the price of a small additional overhead.

Let Ed1 , Ed2 , . . . , EdP be the ordered list of profiles that
are most similar to the current day C, i.e., profiles with the
smaller Mean Absolute Errors. The weighted profile WP , for
the future slot t+ i, i ∈ {1, 2, . . . , F}, is computed as:

WPt+i =
1

P − 1

P∑
j=1

wj · E
dj

t+i (6)

where

wj = 1− MAEk(E
dj , C)∑P

j=1MAEk(Edj , C)
(7)

Energy predictions for the future slot t+i are then computed
based on both the value for such slot stored in the WP profile
and the energy harvested during the last time slot:

Êt+i = γi · Ct + (1− γi) ·WPt+i (8)
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where:
Êt+i is the predicted energy in timeslot t+i for the current

day;
Ct is the harvested energy during last timeslot;
WP is the vector of the combination of timeslot t+ i of

the P profiles;
γi is a correlation factor for prediction of slot t+ i.
Equation (8) is a generalization of Equation (4). Specifically

Equation (4) is obtained by Equation (8) by using only one
profile for future energy predictions.

IV. PRO-ENERGY WITH VARIABLE-LENGTH TIMESLOTS

Similarly to other state-of-the-art predictors, Pro-Energy
divides each day into N equal-length timeslots to reduce
the time and memory overhead of predictions. Although very
common, however, using equally-distributed timeslots allows
to update future energy estimations only at pre-defined instants
in time. This is generally an under-performing strategy, as the
variability of the harvesting source is typically not constant
over time. A real-life example is shown in Fig. 2, which
reports an energy harvesting trace we collected by interfacing
a Telos B mote with a XOB17-04x3 solar cell [25]. The
dynamics of the energy source can be better captured by using
timeslots with different granularity, so that energy predictions
are updated more or less frequently based on how rapidly
the current energy-harvesting rate is changing. Based on this
observation, we propose Pro-Energy-VLT (PROfile Energy
prediction model with Variable-Length Timeslots), an energy
prediction model that combines Pro-Energy with timeslots
of variable lengths. Pro-Energy-VLT dynamically resizes the
prediction timeslots so as to obtain a timeslots granularity
that is coarser (during periods of low dynamicity) or finer
(during periods of high dynamicity) based on the dynamics of
the power source. An online algorithm is locally run by each
node to periodically update both the number of timeslots and
their size. Pro-Energy-VLT works as follows. During the initial
setup phase, each day is divided into N equal-length timeslots,
as in Pro-Energy. A weight is then assigned to each timeslot
t, based on a simple yet effective heuristic that estimates
how rapidly the availability of the energy source changes
over different timeslots (Section IV-A). Higher weights are
assigned to timeslots that cover periods of time during which
the availability of the energy source varies sharply, while lower
weights are associated with timeslots that cover periods of
time during which the energy source provides stable levels of
power. Then, Pro-Energy-VLT redistributes the N timeslots
based on their weights (Section IV-B). As a first step, the
contiguous timeslots having a weight equal to zero (or, more
generally, below a minimum threshold) are identified and
merged together. For example, in the solar energy harvesting
case, a single large timeslot is created to cover the whole
night, by merging together z timeslots. The remaining N − 1
timeslots are then distributed proportionally to their weights.
In this process, timeslots with higher weights are divided
into a higher number of sub-timeslots, thus resulting in a
finer timeslot granularity. Timeslots with low weights are
instead merged with neighbor timeslots, leading to a coarser
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Fig. 2. Energy harvesting trace collected by interfacing a Telos B mote with
a XOB17-04x3 solar cell.

timeslots granularity. As a last step, the pool of stored profiles
maintained by Pro-Energy-VLT is updated to reflect the new
timeslot setting. To this end, the energy harvesting profiles
stored in the pool are interpolated to determine the power val-
ues corresponding to the new timeslots setting (Section IV-C).

This timeslot adapting phase is periodically run by each
node. Every D days, Pro-Energy-VLT uses the information
collected over the past D days to produce a new timeslot
setting, in which the N timeslots used for prediction are re-
distributed based on the dynamics of the energy source.

A. Weights assignment

During the weight assignment phase, each timeslot t is
assigned a weight based on the variability of the harvesting
process during timeslot t with respect to the previous timeslot
t − 1. To quantify such a variation, the difference between
the average harvested power during timeslots t and t − 1
is considered. Since in Pro-Energy-VLT timeslots generally
have different durations, weights assignment also takes into
account the size of the timeslot, dt. A weight is assigned to
each timeslot t according to the following heuristic:

wt = log (dt abs(pt − pt−1) + 1) (9)

where pt and pt−1 denote the average power harvested during
timeslots t and t − 1, respectively, and dt is the duration of
timeslot t in seconds. (Table I). The logarithm function is used
to reduce the absolute value of the assigned weights, while
preserving their relative difference.

B. Timeslot resizing

During the initial setup phase, Pro-Energy-VLT merges
together one or multiple sets of contiguous timeslots having a
weight equal to zero (or below a minimum threshold). Let z
be the number of generated timeslots during this initialization
phase, the remaining N − z timeslots are then distributed
proportionally to their weights. In particular, each timeslot t
is split into a number nt of sub-timeslots, as follows:

nt =

⌊
wt∑
t wt
· (N − z)

⌋
, (10)

where wt is the weight assigned to t during the weight
assignment phase described in Section IV-A. If the value of
nt is equal to zero (or lower than a small threshold), timeslot
t covers a period of time during which the energy source
provides stable levels of power. A coarser timeslots granularity
is thus used during this period by merging timeslot t with the
successive timeslots.
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Fig. 3. Example: an energy profile stored in the Pro-Energy-VLT pool is
updated to new timeslots settings.

C. Profile pool update

As a last step, the pool of energy profiles maintained by
Pro-Energy-VLT must be updated to reflect the new timeslot
setting. To this end, the energy harvesting profiles stored in the
pool are linearly interpolated to determine the power values
corresponding to the new timeslots setting.

Figure 3 shows an example of a profile stored in the
Pro-Energy-VLT pool that is updated after timeslots resizing.

V. PERFORMANCE EVALUATION

In this section, we systematically evaluate the performance
of both Pro-Energy and Pro-Energy-VLT in different settings,
using six datasets of traces of harvested energy:
• solar-ROME, wind-ROME: real-life solar and wind

traces obtained from a testbed in Rome, Italy;
• wind-BO: real-life wind dataset obtained from a testbed

in Bologna, Italy;
• indoor-EnHANTs: database of indoor radiant light mea-

surements from the EnHANTs (Energy Harvesting Active
Networked Tags) project [26];

• solar-ORNL, wind-ORNL: traces of solar and wind
availability obtained from the National Renewable Energy
Laboratory (NREL) at Oak Ridge, Tennessee [27].

We obtained real-life solar and wind traces (datasets solar-
ROME and wind-ROME) by interfacing Telos B motes with
photovoltaic cells (Fig. 4(a)) and with wind micro turbines
(Fig. 4(b)). The Telos B is a low-power wireless sensor node
featuring a typical current consumption is of just 5.1µA in
sleep mode with the MCU in standby and the radio off.
In active mode (MCU on and radio off) its typical current
consumption is of 1.8mA. When the radio is in RX state,
the Telos B consumes around 21.8mA. The energy harvesting
board shown by Fig. 4(a) stores energy harvested from the
solar panel using rechargeable batteries or supercapacitors. In
our experiments, we used a POW112D2P solar panels of size
7 x 5.5 cm providing a typical peak power of 450 mW, 50F
Panasonic Gold supercapacitors and Duracell NiMH 2450mAh
rechargeable batteries. The harvesting board includes a max-
imum power point controller to maximize the harvesting
efficiency [28]. The TPS63001 DC/DC converter from Texas
Instruments is used to regulate the output voltage. The voltage
of the solar panel and of the supercapacitors of the node are
sampled using two ADC input ports of the Telos B mote
(Fig. 5). A direct voltage look up table is used by the node
to estimate the amount of power generated by the cell based
on its output voltage. We developed a dedicated TinyOS [29]
application to track the amount of energy generated by solar

(a) (b)

Fig. 4. Telos B motes interfaced with (a) a photovoltaic cell; and (b) a wind
micro turbines.

MPPT
Energy
storage DC/DC

PV cell

Sensor node

MCUADC

Fig. 5. Simplified block diagram of the solar harvesting board.

and wind harvesters every 30 seconds. The monitoring motes
were deployed outdoors, on the roof terrace of University of
Rome “La Sapienza” CS Dept. building in downtown Rome.
We also obtained additional real-life wind harvesting data
from an outdoor testbed in Bologna, Italy, of Telos B motes
equipped with wind micro turbines that collected data for 75
days. The fourth type of energy traces we use is a database of
indoor radiant light measurements collected in office buildings
in New York City within the EnHANTs (Energy Harvesting
Active Networked Tags) project of Columbia University [26],
consisting of 90 days of measurements. The other two datasets,
i.e., solar-ORNL and wind-ORNL, have been obtained from
the National Renewable Energy Laboratory (NREL) at Oak
Ridge, Tennessee, and consist of 90 days of solar and wind
data with a granularity of one sample per minute. To use
such traces in our performance evaluation, we converted raw
weather data, i.e., irradiance and wind speed values, into
energy harvesting estimations. We calculate the power Ps

harvested by a solar cell of size A and efficiency η as:

Ps = A · η · I, (11)

where I is the radiant energy incident onto surface. Based on
characteristics of real-life micro photovoltaic cells, we set η =
0.15 and A = 7× 5 cm2 to obtain the harvested power from
indoors EnHANTs traces and η = 0.17 and A = 22× 7 mm2

to obtain the harvested power from outdoors NREL traces. As
for wind energy harvesting, we estimate the output power Pw

of the wind micro turbine as follows [30]:

Pw =
1

2
· v3 ·A · ρ · Cp, (12)

where v is the wind speed in m/s, A is the rotor swept area
in m2, ρ is the air density (typically 1.25 kg/m3), and Cp

is the power coefficient, which represents the ratio of power
extracted by the turbine to the total contained in the wind.
We consider a wind micro turbine with a rotor diameter of
5 cm, and set the power coefficient Cp to 1.5% in order
to obtain harvesting power values consistent with real-life
measurements. Simulations are run using GreenCastalia [31],
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an open-source extension we have developed for the popu-
lar Castalia simulator [32] to model networks of embedded
devices with energy-harvesting capabilities. GreenCastalia al-
lows to perform simulations using timestamped power traces
collected through real-life deployments, and it includes models
of energy harvesting devices to obtain energy harvesting
estimations from raw weather data traces.

A. Prediction algorithms evaluation

We evaluated the performance of Pro-Energy by comparing
the amount of energy actually harvested during each timeslot
against the predicted energy intake. To this end, we introduce a
new metric of comparison that evaluates prediction errors from
the point of view of a generic external module exploiting future
energy intake predictions (e.g., an application-level component
or a harvesting-aware communication protocol). In the general
case, such a module may require estimates of future energy
intake asynchronously with respect to the predictor timeslots.
For example, harvesting-aware task allocation algorithms, such
as [33], use energy prediction to support task allocation
decisions, thus requiring predictions whenever a new task
arrives, rather than at pre-defined instants in time. Moreover,
the prediction horizon may be equal to the task duration,
rather than being a multiple of the prediction timeslot. To
handle such requirements, differently from previous works, we
estimate the prediction error over time windows that are not
necessarily related to the actual size of prediction timeslots.
We evaluate the accuracy of different prediction algorithms in
a general setting, by considering different time horizons, i.e.,
5, 10, 20, 30, 60 and 120 minutes. For generality, we assume
the external module requires energy predictions for all the
future prediction horizons every 5 minutes. The overall error
of a prediction algorithm is thus computed as Mean Absolute
Deviation Percent (MADP)2 of all delivered predictions over
the whole dataset, as follows:

MADP = 100 ·
∑
|EH − êH|∑

EH
, (13)

where EH is the actual energy harvested during the time
interval [τ, τ+H], and êH is the energy prediction for the same
interval, which is computed as follows (Equation 14). Each
time interval [τ, τ+H] is covered by a number n of prediction
timeslots, e.g., tj , . . . , tj+n−1. The predicted energy intake for
a time horizon H, i.e., the total energy that is expected to be
harvested in the time interval [τ, τ +H], is computed as:

êH =

n−1∑
i=j

di × pi, (14)

where dj is the duration of each timeslot tj within the time
interval [τ, τ +H], and pj is the expected average harvested
power during timeslot tj .

2The MADP metric, which is not calculated on a daily basis, correctly takes
into account errors introduced by periods of very low energy intake. Other
commonly-used metrics, such as the Mean Absolute Percentage Error, require
to filter out such periods [23], [34] to prevent the introduction of large errors
during timeslot with very low energy intake.

B. Pro-Energy: Evaluation results

We compare the performance of Pro-Energy with that of
four state-of-the-art energy predictors: EWMA, the energy
prediction model proposed by Noh and Kang in [14], which
we denote for brevity AEWMA, WCMA and the sunlight
prediction algorithm of SunCast. In our experiments, we set
N = 48. WCMA, AEWMA and EWMA assume the energy
harvesting in the near future to be related to the energy intake
at the same time on the previous days. While EWMA and
AEWMA maintain historical data as a single vector of size
N , WCMA stores a matrix of size D × N , where D is
the number of previous days used for energy predictions.
SunCast takes into account for predictions all the historical
data previously collected. Figure 6 shows the prediction error
(computed according to Equation (13)) of the considered pre-
diction algorithms for different solar and wind datasets and for
increasing prediction horizons. To perform a fair comparison,
we set the coefficients of each prediction model to their
optimal value, i.e., the ones minimizing the overall MADP
error. Pro-Energy consistently outperforms EWMA, AEWMA,
WCMA and SunCast for both short and medium term solar
energy predictions. In case of solar energy predictions with
a prediction horizon of up to 2 hours, Pro-Energy performs
up to 49% (Fig. 6(b)) and up to 67% (Fig. 6(c)) better than
competing schemes. Pro-Energy also achieves a good accu-
racy for indoor light forecasting. For the indoor-EnHANTs
dataset (Fig. 6(d)), using Pro-Energy results in a 32%-48%,
9%-15%, 1%-17% and 50%-60% lower MADP errors than
EWMA, AEWMA, WCMA and SunCast, respectively. Results
are similar for wind harvesting forecasting. In case of wind
energy predictions with a prediction horizon of up to 2 hours,
Pro-Energy performs up to 35% (Fig. 6(e) and Fig. 6(c))
and up to 53% (Fig. 6(f)) better than competing schemes,
depending on the considered wind dataset. Overall, WCMA
shows a good accuracy in case of short-term energy prediction,
but its performance tends to degrade in case of medium-
term predictions. This is due to the fact that WCMA, being
designed to only deliver predictions for the next timeslot, does
not exploit the correlation between current observations and
future ones to adjust energy predictions over medium-term
forecasting horizons. Performance of AEWMA significantly
vary for different datasets. This is because AEWMA applies
to future energy prediction a scaling factor that is based on
the ratio between the energy predicted for a timeslot and
the actual energy harvested during that timeslot. Depending
on the considered energy source and dataset, this scaling
factor may be applied to timeslots that have very weak or no
correlation with the current timeslots, which reduces prediction
accuracy. SunCast shows good accuracy in case of solar light
predictions (Fig. 6(c)), but it suffers from high MADP errors
when predicting wind availability and indoor irradiance levels.
The prediction accuracy of EWMA is generally limited, as it
does not use information about the current energy intake to
adjust prediction for future slots: at the end of each slot t, the
only prediction updated is that of slot t, which will be used
for energy prediction on the next day. This leads to EWMA
reacting slowly to changes in weather conditions.
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Fig. 6. Performance comparison of Pro-Energy against WCMA, AEWMA, SunCast and EWMA over different datasets.

C. Pro-Energy-VLT: Evaluation results

In this section we evaluate the impact of using variable-
length timeslots on energy prediction accuracy by comparing
the performance of Pro-Energy-VLT with that of Pro-Energy
with fixed equal-length timeslots. In addition, we assess
the performance of the online time-slotting technique pro-
posed in Section IV by performing a comparative perfor-
mance evaluation of Pro-Energy-VLT using two different
algorithms for timeslots resizing and updating. These variants
of Pro-Energy-VLT, which we termed Pro-Energy-VLT-adapt
and Pro-Energy-VLT-PIP, are described in the following.
In Pro-Energy-VLT-adapt, the distribution of the timeslots
is computed according to the method proposed by Renner
and Turau in [22]. To apply their algorithm, a fine-grained
sampling of the harvesting process must be performed. As
the minimum timeslot size we use in Pro-Energy-VLT is of 5
minutes, a fine-grained representation of the current day is kept
by storing the amount of energy harvested over timeslots of 5
minutes. In Pro-Energy-VLT-PIP, the size of the N timeslots
is determined by running an iterative algorithm based on the
so-called Perceptually Important Point (PIP) method [35], an
heuristic that identifies the N + 1 points with the greatest
impact on the shape of the daily harvesting profile. As Pro-
Energy-VLT-PIP requires a fine-grained representation of the
energy harvesting profiles, in evaluating its performance the
power source is sampled every 30 seconds and the results
is stored in memory. Results are shown in Figure 7. The
effectiveness of our proposed online time-slotting technique
is confirmed by simulation results, which show how using
Pro-Energy-VLT-adapt and Pro-Energy-VLT-PIP results in a
MADP error that is, on average, 13.67% and 9.34% higher

than that of Pro-Energy-VLT, respectively. Results also con-
firm the benefit of using variable-length timeslots for both
solar and wind energy predictions: Using Pro-Energy-VLT
allows to significantly reduce the prediction error with re-
spect to Pro-Energy. In case of solar energy predictions,
combining Pro-Energy with variable-length timeslots further
reduces the average MADP error of 10%-40% (Fig. 7(b)),
3%-22% (Fig. 7(c)) and 1%-25% (Fig. 7(d)), depending on
the considered dataset. The average performance improvement
is lower in case of wind energy predictions due to the higher
variability of wind, which makes it more difficult to determine
a timeslots distribution that well adapts to weather conditions
over different days. Nevertheless, Pro-Energy-VLT achieves
a MADP error of up to 2.59%, 6.54% and 1.21% lower
than that Pro-Energy for wind-ROME, wind-BO and wind-
ORNL datasets, respectively. As for energy consumption and
memory overhead, Figure 8 shows the comparison between
the error obtained by Pro-Energy-VLT for increasing val-
ues of N and the minimum prediction error of Pro-Energy,
WCMA, AEWMA and SunCast, achieved when N = 48. The
prediction error of EWMA is not reported, as it is always
greater than 29%. Pro-Energy-VLT outperforms other models
in terms of prediction error, using a number of timeslots that is
between two fifth and two third of that used by Pro-Energy. In
particular, for a prediction horizon of 10 minutes, Pro-Energy-
VLT obtains the same accuracy of Pro-Energy using just 28
timeslots, and the same accuracy of WCMA, AEWMA and
SunCast with a even smaller number of timeslots. In case of
predictions at 60 minutes, Pro-Energy-VLT outperforms Pro-
Energy using just 32 timeslots (instead of 48). This results
in significant energy saving, as the overhead of an energy
prediction model is directly proportional to N [34]. The
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Fig. 7. Performance comparison of Pro-Energy-VLT against Pro-Energy, Pro-Energy-VLT-adapt and Pro-Energy-VLT-PIP over different datasets.
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Fig. 8. Performance comparison of Pro-Energy-VLT with increasing values of N against competing schemes with N=48, for prediction horizons of a) 10
minutes and b) 60 minutes. The prediction error of WCMA is not reported in b) because it is greater than 23%.

details of the performance of each energy predictor in this
scenario, in terms of average MADP error, average number
of multiplications per day and memory overhead in bytes,
is reported in Table II. The number of timeslots also affects
the memory overhead of a predictor. For example, assuming
harvesting samples are stored as 16 bit values, N = 48 and
D = 20, WCMA and Pro-Energy require approximately 2
KB of RAM to store the matrix of the D previous days
needed for energy predictions, which represents 20-50% of the
total memory available on Telos B and Mica2/MicaZ motes,
respectively. Using just 28 timeslots, Pro-Energy-VLT obtains
a prediction error lower of that of WCMA and Pro-Energy,
reducing the memory footprint of more than 40%.

D. Case study

To evaluate the performance improvement achieved by using
energy prediction in a typical WSN scenario, we present a
case study for task allocation supported by energy prediction.
Finally, we assess the practical feasibility of our proposed
approach through implementation on solar-powered motes.

TABLE II
PERFORMANCE OF ENERGY PREDICTORS: ERROR, AVERAGE NUMBER OF

MULTIPLICATIONS PER DAY, MEMORY OVERHEAD IN BYTES

Predictor % error Multiplications Memory
Pro-Energy-VLT (N=32) 12.67 793 1344
Pro-Energy (N=48) 12.88 1083 2592
WCMA (N=48) 13.51 335 1732
AEWMA (N=48) 13.05 3694 96
EWMA (N=48) 31.85 94 96

For the case study, we consider an application scenario
where solar-powered nodes are deployed for periodically
monitoring of environmental parameters. Nodes are also pe-
riodically requested to perform some energy-costly tasks that
must be run to completion. We verify the performance of a
predictive strategy that makes use of our energy prediction
model to decide whether to accept or to refuse such incoming
tasks. According to this strategy, a task is accepted only
if its energy requirements can be met by using both the
energy currently available to the node and the energy the node
expects to harvest in the near future. In particular, whenever
a task arrives, the node checks whether the sum of the energy
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currently stored in its supercapacitor and of the energy it
expects to harvest within the duration of the task is enough
to run the task to completion. If this is the case, the node
accepts the task, otherwise it rejects it to avoid wasting energy
in running a task that would probably not be completed. We
consider two other strategies for benchmarking: a conservative
one, according to which a task is accepted only if the amount
of energy currently available is enough to meet its energy
requirements (thus not considering energy prediction) and an
energy-unaware greedy strategy that always accepts tasks.

We perform a comparative performance evaluation of the
three task allocation strategies using GreenCastalia. We use
the default settings of GreenCastalia for channel and radio
models. We accurately model energy consumption and har-
vesting by setting models parameters based on experimental
measurements of prototype solar-powered nodes and by using
real-life traces of solar availability. In particular, we consider
Telos B motes powered by the harvesting system described
in Section V. The energy consumption and harvesting param-
eters include energy efficiency of the harvesting board and
experimental parameters extraction to model supercapacitors’
leakage (as detailed in [33]), as well as power consumption
of the Telos B in different states We evaluate the performance
of the three strategies in terms of number of tasks success-
fully completed, i.e., level of service the nodes provide, and
percentage of time nodes are able to stay alive. In particular,
a task is successfully completed if a node accepts to execute
the task and it does not run out of energy before the task
is completed. The percentage of time nodes are able to stay
alive, which we term availability, is the ratio of the number of
seconds for which the supercapacitor voltage is greater than
the minimum operating voltage of the node to the total number
of seconds in the experiment.

Figure 9 shows a performance comparison of the three
strategies. Different scenarios of energy availability are simu-
lated by varying the size of the solar cell powering the nodes,
and thus the amount of energy they harvest (Eq. 11). As
expected, the predictive strategies offers the best tradeoff be-
tween achieved level of service (number of tasks successfully
completed) and availability (in terms of percentage of time
nodes in the network are alive). The conservative strategy
achieves availability very close to 100%, but at the price
of refusing many tasks that cannot be completed by solely
using the energy available in the node supercapacitors. The
predictive strategy, instead, accepts and successfully executes
such tasks when environmental energy is available, thanks
to the fact that the future energy intake is estimated using
the prediction model. On average, the predictive strategy
successfully executes 50% more tasks than the conservative
one. The greedy strategy executes almost 10% more tasks than
the predictive one, but its availability is low, especially for
smaller solar cell sizes. In particular, if the size of the solar
cell is set to 8 cm2 or lower, the average dead time of the nodes
is greater than 40%, which hinders the general functionality
of the network (e.g., periodic sensing). Using the predictive
strategy reduces the dead time of the nodes by 35% in case
of large solar cells (i.e., solar cell size of 32 cm2) and up to
a factor 23x in case a smaller solar cell is used.
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Fig. 9. Completed tasks and percentage of alive time for different allocation
strategies and solar cell sizes.

Finally, to quantify the energy overhead introduced by
energy prediction, we implemented the three task allocation
strategies, together with Pro-Energy and Pro-Energy-VLT, in
TinyOS [29]. Based on experimental measurements of power
consumption, the additional energy overhead experienced by
nodes actually running our proposed forecast algorithm is
around 3 J per day when N = 48 with respect to the case
in which no energy prediction algorithm is used.

VI. CONCLUSIONS

In this paper, we have presented Pro-Energy, a novel energy
prediction model for multi-source energy harvesting WSNs.
Pro-Energy stores and maintains a pool of typical harvested
profiles observed in the past, which are combined with current
observations to compute energy prediction at future timeslots
for both short and medium prediction horizons. An extension
of Pro-Energy, called Pro-Energy-VLT, is proposed to combine
our energy prediction model with timeslots of variable lengths.
Pro-Energy-VLT adapts the granularity of the prediction times-
lots to the dynamics of the energy source, further improving
prediction accuracy and reducing the memory footprint and
the energy overhead of energy prediction. We have performed
extensive validation of Pro-Energy and Pro-Energy-VLT using
real-life traces of the harvested energy we have obtained by
interfacing Telos B nodes with photovoltaic panels and wind
micro-turbines, as well as publicly-available traces of solar and
wind availability. Results show that Pro-Energy outperforms
state-of-the-art energy predictors, providing improvements in
prediction accuracy as high as 67%. With respect to competing
energy prediction models, which achieves good prediction ac-
curacy at the cost of high memory footprint, Pro-Energy-VLT
obtains better prediction performance, while reducing the
memory overhead of up to 40%.
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[4] J. Marašević, C. Stein, and G. Zussman, “Max-min fair rate allocation
and routing in energy harvesting networks: Algorithmic analysis,” in
Proceedings of ACM MobiHoc 2014, Philadelphia, PA, USA, Aug 2014,
pp. 367–376.



IEEE SENSORS JOURNAL 11

[5] N. Tekbiyik, T. Girici, E. Uysal-Biyikoglu, and K. Leblebicioglu,
“Proportional fair resource allocation on an energy harvesting downlink,”
IEEE Transactions on Wireless Communications, vol. 12, no. 4, pp.
1699–1711, Apr 2013.

[6] C. Moser, J.-J. Chen, and L. Thiele, “Power management in energy har-
vesting embedded systems with discrete service levels,” in Proceedings
of ACM/IEEE ISLPED 2009, San Francisco, CA, USA, Aug 2009, pp.
413–418.

[7] X. Ren, W. Liang, and W. Xu, “Quality-aware target coverage in energy
harvesting sensor networks,” IEEE Transactions on Emerging Topics in
Computing, vol. 3, no. 1, pp. 8–21, Mar 2015.

[8] T. N. Le, M. Magno, A. Pegatoquet, O. Berder, O. Sentieys, and
E. Popovici, “Ultra Low Power Asynchronous MAC Protocol Using
Wake-up Radio for Energy Neutral WSN,” in Proceedings of ACM
ENSSys 2013, Rome, Italy, Nov 2013, pp. 10:1–10:6.
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