Google File System



goals

monitoring, fault tolerance, auto-recovery (thousands of low-cost
machines)

focus on multi-GB files

optimised for sequential reads and append writes (websites:
seldom random writes & reads)

handle appends efticiently

co-design GFS and the applications



operations supporteao

classic operations

* create, read, write, delete, open, close

new operations
* snapshot—quick&low cost ‘picture’ of a file(dir)

* record append—multiple clients appending simultaneously, no
sync required



terminology

chunk—fixed-size piece of file
chunk server—holds chunks
master—coordinates chunk servers

chunk handle—ID of a chunk (64 bit, globally unique)



cluster architecture
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the master

* maintains all the metadata
e controls system-wide activities
» collects chunks of a chunk server at startup (polls) and

e generates in-memory mapping of files and chunk server pointers

chunk lease management (replication, (re)placement)

garbage collection of orphaned chunks

chunk migration

HeartBeat with chunk servers (collect state, check they’re ok)

e deals with all clients for metadata operations



avolding master bottleneck

clients
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e cache the direction info for
efficiency (no need to
communicate with master for
further reads of the same chunk)



chunks
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* reduce client-master interaction (large files, sequential access)

* reduce network overhead (successive ops on the same large chunk)
* reduce metadata size on master ==> in-memory metadata is possible
disadvantages of large chunks:

* internal fragmentation

e 1-chunk files turn chunk servers into hotspots (higher replication factor for small-files)



metagata

stuff kept in master’s main memory only:
* namespace

e file <—> chunks mapping

e chunk location info

operation logs:

stored reliably on master’s disk

replicated on multiple machines

necessary to re-build file-system state

checkpoints to speed-up recovery
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consistency

e atomic namespace mutations (master &
op log)
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e write-on-create & append-only

» checkpointing (incremental on defined
states)



mutations & leases

mutation performed on all replicas
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write data flow

. client asks for primary & replicas
master sends info, client caches it
. client sends data to all replicas

. client sends write request to
primary

primary forwards mutation order +
write request to secondaries

. ack to primary about write complete

primary ack to client (errors too)
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data vs control flow

two different flows for efticiency:

e control (through primary)

e data (chain of chunkservers)
data flow:

* next hop is the closest
chunkserver

* closeness determined by IP

e data forwarded as they come
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record appendas

e the client specifies data only (no offset)

 GFS picks offset and sends it to client

data flow:

1.

client sends data to replicas of last
chunk

. client sends request to primary

. primary checks chunk availability &

space (pads it if necessary, tells client
to try with next chunk)

primary writes, tells replicas to write to
the same offset, & acks the client
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f record append ftails

. client retries

. replicas could have different data
in the chunk

. client is ack-ed ok only if record
written at same offset everywhere

. the above regions are defined
(and consistent)

Client

step 1

-t

Master

13

Secondary
Replica A

l

Primary
Replica

l

Secondary
Replica B

Control

—) Data



snapshot (of a file)

master duties
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snapshot (of a file)

properties:

e copy-on-write (optimizes snapshots &
disk usage)

* COpy-on-same-replica (optimizes
network bandwidth usage)
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namespace & locking

master performs many operations
possibly in parallel

namespace locks used to operate on
files

namespace tables: paths to metadata

prefix compression (why?)

every node read/write lock
e.g. to deal with /d1/d2/.../dn/leaf will:
* read-lock /d1, /d1/d2, ..., /d1/../dn

e read/write lock /d1/d2/.../dn/leaf



namespace & locking

properties:
e no directories concept, only files
e read-lock on dir name is sufficient for writing file

e concurrent mutations within same dir

e read lock on dir name (prevents dir delete,

snapshot, renamed)

e write lock on file name

e |ocks acquired in consistent total order to prevent
deadlock—Ievel in the path & lexicograph



(re)placement

distribute replicas over machines
distribute replicas over racks

new replicas on under-utilised chunk servers (equalize disk
utilization)

limit number of recent creations for a chunkserver
replicate when nr of missing replicas is big (2 is better than 1)

give priority to live files



aeleting

file renamed by master (name changes including delete timestamp)
within 3 days can go back to normal

after 3 days metadata is actually deleted

orphan chunks (not reachable from files) are handled later on

* heartbeat messages include list of chunk IDs

* master sends back list of orphan chunks (not pointed by files in in-
memory metadata)



fault-tolerance

high availability

e 3-way replication of chunks

* op logs: master + servers restartable in few secs (fast recovery)
* shadow masters

Integrity

* checksum every 64K block



Thank you!



