Google File System

goals

monitoring, fault tolerance, auto-recovery (thousands of low-cost
machines)

focus on multi-GB files

optimised for sequential reads and append writes (websites:
seldom random writes & reads)

handle appends efticiently

co-design GFS and the applications

operations supporteao

classic operations

* create, read, write, delete, open, close

new operations
* snapshot—quick&low cost ‘picture’ of a file(dir)

* record append—multiple clients appending simultaneously, no
sync required

terminology

chunk—fixed-size piece of file
chunk server—holds chunks
master—coordinates chunk servers

chunk handle—ID of a chunk (64 bit, globally unique)

cluster architecture

Application (file name, chunk index) _ GFS master o~ /foo/bar

chunk 2ef0

GFS client | File namespace

(chunk handle, \
chunk locations)

Instructions to chunkserver

Chunkserver state

(chunk handle, byte range)

GFS chunkserver GFS chunkserver

chunk data

Linux file system Linux file system

99 - 99 -

the master

* maintains all the metadata
e controls system-wide activities
» collects chunks of a chunk server at startup (polls) and

e generates in-memory mapping of files and chunk server pointers

chunk lease management (replication, (re)placement)

garbage collection of orphaned chunks

chunk migration

HeartBeat with chunk servers (collect state, check they’re ok)

e deals with all clients for metadata operations

avolding master bottleneck

clients

¢ g et on |y ‘C h un kse rver pOI ﬂte s , Application (file name, chunk index) _ GFS master o~ /foo/bar

GES client | File namespace ,~ | chunk 2ef0

from master (chunk handle,
chunk locations) Aﬁi

¢ retrl eve d ata d I re Ct | y fro m ! Instructions to chunkserver
chunkservers (master just gives (chunk handle, byte range) | 1 Chunkserver state | 4
. . m GFS chunkserver GFS chunkserver
th e d | reCt 1oNs to Wh ere...) chunk data Linux file system Linux file system

ol - 55 -

e cache the direction info for
efficiency (no need to
communicate with master for
further reads of the same chunk)

chunks

p ro p e I’tl eS 1IN G FS . Application (file name, chunk index) GFS master - ffoo/bar
GFS client | File namespace ,/ chunk 2ef0
. . . (chunk handle,
* size = 64 MB; ID size = 64 bit chunk locations) /§i
. . . A) A
o p | aln | INUX f| |e OonNn server Instructions to chunkserver
(chunk handle, byte range) Y Chunkserver state Y
. GFS chunkserver GFS chunkserver
advantages of 64MB chunks: chunk data — —
Linux file system Linux file system

55 - g5 -

* reduce client-master interaction (large files, sequential access)

* reduce network overhead (successive ops on the same large chunk)
* reduce metadata size on master ==> in-memory metadata is possible
disadvantages of large chunks:

* internal fragmentation

e 1-chunk files turn chunk servers into hotspots (higher replication factor for small-files)

metagata

stuff kept in master’s main memory only:
* namespace

e file <—> chunks mapping

e chunk location info

operation logs:

stored reliably on master’s disk

replicated on multiple machines

necessary to re-build file-system state

checkpoints to speed-up recovery

Application

(file name, chunk index)

GFS client |

(chunk handle,
chunk locations)

GFS master

File namespace ,~

’
’
’
i
’
’
’
’
’
’
.
-
-

- /foo/bar

chunk 2ef0

(chunk handle, byte range)

A

Y

Instructions to chunkserver

Chunkserver state

Y

»|

GFS chunkserver

GFS chunkserver

chunk data

Linux file system

Linux file system

give logical timeline to operations on metadata

g5 -

g5 -

Application

(file name, byte range)

(2)

(file name,
chunk index)

reading

Application

GFS Client .

(chunk handle,
replica locations)

@)

Master

6)| (data from file)

GFS Client

i

t__—'-’

|1

(chunk handle,

e

(data from file)

()

)

Chunk Server

\

Chunk Server

Chunk Server

Application

(file name, byte range)

(2)

(file name,
chunk index)

Writing

v

GFS Client .

(chunk handle,
replica locations)

@)

Master

Application

\

GFS Client

]

—_

Primary
Chunk
Buffer
(Data)
Secondary
Chunk
(Data) > Buffer
Secondary
| (Oa) Chunk
—— Buffer

Application

GFS Client

(Write
command)

(®)

WTI|

(write command,

@)

serial order)
Primary @ >
——*Chunk
e D1 | D2| D3| D4
Secondary
Chunk
D1 | D2| D3| D4
Secondary
Chunk
D1 | D2| D3| D4

-

ting

Application

GFS Client

d

O,

(response)

Primary
Chunk
(empty)
Secondary
Chunk
(empty)
Secondary
Chunk
(empty)

(response)

consistency

e atomic namespace mutations (master &
op log)

* fl | e re g |O n States (U n)d efl n ed : Application (file name, chunk index) _ GFS master - /foo/bar
: GFS client |, File namespace chunk 2ef0
(un)consistent (chunk handle, ﬂﬁi
chunk locations)
e data mutations: writes or record F T nstructions to chunkserver
a p p e n d S (chunk handle, byte range) R Y Chunkserver state y
GFS chunkserver GFS chunkserver
chunk data } :))
Linux file system Linux file system

applications & consistency: % %

_____ glF ..

e write-on-create & append-only

» checkpointing (incremental on defined
states)

mutations & leases

mutation performed on all replicas

primary:
. . . P 1
 deciding mutation order T |
Application oata) e
 selected by the master (chunk secondary Chunk
v Buffer
lease) A=
GFS Client — | ©osts) | SecONdary .
lease lasts 60 secs “““G‘)“*-Ew- Buffer

can be extended on request

lease-messages piggybacked on
heartbeat messages

write data flow

. client asks for primary & replicas
master sends info, client caches it
. client sends data to all replicas

. client sends write request to
primary

primary forwards mutation order +
write request to secondaries

. ack to primary about write complete

primary ack to client (errors too)

Client

step 1

-t

13

Secondary
Replica A

l

Primary
Replica

Master

l

Secondary
Replica B

Control

—) Data

data vs control flow

two different flows for efticiency:

e control (through primary)

e data (chain of chunkservers)
data flow:

* next hop is the closest
chunkserver

* closeness determined by IP

e data forwarded as they come

Client

step 1

-t

Master

13

Secondary
Replica A

l

Primary
Replica

l

Secondary
Replica B

Control

—) Data

record appendas

e the client specifies data only (no offset)

 GFS picks offset and sends it to client

data flow:

1.

client sends data to replicas of last
chunk

. client sends request to primary

. primary checks chunk availability &

space (pads it if necessary, tells client
to try with next chunk)

primary writes, tells replicas to write to
the same offset, & acks the client

Client

step 1

-t

13

Secondary
Replica A

l

Primary
Replica

Master

l

Secondary
Replica B

Control

—) Data

f record append ftails

. client retries

. replicas could have different data
in the chunk

. client is ack-ed ok only if record
written at same offset everywhere

. the above regions are defined
(and consistent)

Client

step 1

-t

Master

13

Secondary
Replica A

l

Primary
Replica

l

Secondary
Replica B

Control

—) Data

snapshot (of a file)

master duties

4 step 1 _
: : : ~ Client | Master
e duplicates the in-memory metadata for the file 5
(reference count is now >1) 13
» revokes leases on chunk (why?) Secondary
Replica A ¢
e |ogs the op l
L Primary '
actual copying (of chunk C) — Replica .
Legend
* when client needs to write on C Control
Secondary 0 — e
 reference count indicator Replica B |= bata

e triggers creation of copy C’ (new chunk handle) on all
replicas

 client will modity chunk C’

snapshot (of a file)

properties:

e copy-on-write (optimizes snapshots &
disk usage)

* COpy-on-same-replica (optimizes
network bandwidth usage)

Client

step 1

-t

Master

13

Secondary
Replica A

l

Primary
Replica

l

Secondary
Replica B

Control

—) Data

namespace & locking

master performs many operations
possibly in parallel

namespace locks used to operate on
files

namespace tables: paths to metadata

prefix compression (why?)

every node read/write lock
e.g. to deal with /d1/d2/.../dn/leaf will:
* read-lock /d1, /d1/d2, ..., /d1/../dn

e read/write lock /d1/d2/.../dn/leaf

namespace & locking

properties:
e no directories concept, only files
e read-lock on dir name is sufficient for writing file

e concurrent mutations within same dir

e read lock on dir name (prevents dir delete,

snapshot, renamed)

e write lock on file name

e |ocks acquired in consistent total order to prevent
deadlock—Ievel in the path & lexicograph

(re)placement

distribute replicas over machines
distribute replicas over racks

new replicas on under-utilised chunk servers (equalize disk
utilization)

limit number of recent creations for a chunkserver
replicate when nr of missing replicas is big (2 is better than 1)

give priority to live files

aeleting

file renamed by master (name changes including delete timestamp)
within 3 days can go back to normal

after 3 days metadata is actually deleted

orphan chunks (not reachable from files) are handled later on

* heartbeat messages include list of chunk IDs

* master sends back list of orphan chunks (not pointed by files in in-
memory metadata)

fault-tolerance

high availability

e 3-way replication of chunks

* op logs: master + servers restartable in few secs (fast recovery)
* shadow masters

Integrity

* checksum every 64K block

Thank you!

