
Concurrency: Mutual Exclusion
and Synchronization

1

Concurrency
Regards: Sharing or competing of resources among
multiple processes

Arises because of:
•  Multiple applications
•  Structured applications programmed as sets of

concurrent processes
•  Operating system structure—often implemented

as the above
Basic requirement: Enforcement of Mutual Exclusion

2

Concurrency Terms
•  Critical Session– code that requires access to shared

resource in an exclusive way
•  Deadlock(livelock)—more processes do not change

state (always change state) because awaiting (of the
state of) the others

•  Mutual exclusion—when a critical state is reached and
resources are accessed, no other critical state
depending on those resources is executed

•  Race condition—the final state of a shared resource
depends on the timing of the changes by a group of
processes

•  Starvation—a runnable process is always overlooked
by the scheduler (does never proceed)

3

Difficulties of Concurrency

•  Sharing of global resources—the order of
the access becomes critical

•  Operating system managing the allocation
of resources optimally—risk of deadlock

•  Difficult to locate programming errors—
results can be non deterministic and
reproducible

4

Currency

•  Communication among processes
•  Sharing resources
•  Synchronization of multiple processes
•  Allocation of processor time

5

A Simple Example
/* reads input from keyboard and outputs it on
screen */

void echo()
{
 // chin and chout are characters
 1. chin = getchar();
 2. chout = chin;
 3. putchar(chout);
}

6

A Simple Example
/* reads input from keyboard and outputs it on
screen */

void echo()
{
 // chin and chout are characters
 1. chin = getchar();
 2. chout = chin;
 3. putchar(chout);

}
Question: what happens if A1, B1—3, A2—3?
Solution: “lock” the whole echo() procedure

7

Race Condition
•  Example with one variable: P1&P2 share the

variable a;
–  P1: a = 1;
–  P2: a = 2;
–  P1, P2à(a, 2) != (a, 1) ß P2, P1

•  Example with two variables: P3&P4
sharing variables (b,1) and (c,2)
– P3: b = b + c
– P4: c = b + c
– P3, P4: (b, 3), (c, 5)
– P4, P3: (c,3), (b, 4)

•  Conclusion: the race looser wins!

8

Operating System Concerns
•  Keep track of various processes
•  Allocate and deallocate resources

–  Processor time
–  Memory
–  Files
–  I/O devices

•  Protect data and resources of each process
•  Output of process must be independent of the

speed of execution of other concurrent
processes

9

Ways in which processes interact

•  Processes unaware of each other
– Relationship: competition
– Problems: Mutual Exclusion, DeadLock,

Starvation
•  Processes indirectly aware of each other

(share something)
– Relationship: cooperation by sharing
– Problems: ME, DL, Starv, Data coherence

•  Process directly aware of each other (have
communication primitives)
– Relationship: Cooperation by communication
– Problems: DL, Starvation (no ME! Why?)

10

Competition Among Processes for
Resources

•  Leave the state of recourses unaffected
•  Try to not slow-down processes
•  Mutual Exclusion

– Critical sections
•  Only one program at a time is allowed in its critical

section
•  Example: only one process at a time is allowed to send

command to the printer
•  But we want to avoid:

– Deadlock (two processes and two resources)
– Starvation (among three one always looses)

11

Requirements for Mutual Exclusion

•  Only one process at a time is allowed in
the critical section for a resource

•  A process that halts in its noncritical
section must do so without interfering with
other processes

•  No deadlock or starvation

12

Requirements for Mutual Exclusion

•  A process must not be delayed access to
a critical section when there is no other
process using it

•  No assumptions are made about relative
process speeds or number of processes

•  A process remains inside its critical section
for a finite time only

13

Mutual Exclusion:
Hardware Support

•  Interrupt Disabling
– A process runs until it invokes an operating

system service or until it is interrupted
– Disabling interrupts guarantees mutual

exclusion
– Processor is limited in its ability to interleave

programs
– Multiprocessing

• disabling interrupts on one processor will
not guarantee mutual exclusion

14

Mutual Exclusion:
Hardware Support

•  Special Machine Instructions
– Performed in a single instruction cycle
– Access to the memory location is blocked for

any other instructions

15

Mutual Exclusion:
Hardware Support

 boolean testset (int *bolt) {
 if (*bolt == 0) {
 *bolt = 1;
 return true;
 }
 else {
 // bolt == 1
 return false;
 }
 }

16

const int n = X; // proc. nr
int bolt;
void P(int i){
 …..................
 /* critical section stuff */
 …..........
 /* remainder */

}

void main (){
bolt = ?;
parbegin (P(1),P(2), …, P(n));
}

Mutual Exclusion: with Test&Set
Hardware Support

const int n = X; // number of processes
int bolt;
void P(int i){
 while (true){
 // while bolt == 1 do nothing
 while (!testset(*bolt));
 /* critical section stuff */
 bolt = 0;
 /* remainder */
 }

}

void main (){
 bolt = 0;
 parbegin (P(1), P (2), …, P(n));

}
// wins the first that enters testset with (bolt, 0)

 17

Mutual Exclusion:
Hardware Support

•  Compare&Swap instruction

int compare_and_swap
 (int* bolt, int testval, int newval{
 int oldval = *bolt;
 if (oldval == testval)
 *bolt = newval;
 return oldval;
 } // returns the old value of bolt

18

Mutual Exclusion: with Test&Set
Hardware Support

const int n = X; // number of processes
int bolt;
void P(int i){
 while (true){
 // while bolt == 1 do nothing
 while (compare_and_swap(*bolt, 0, 1) == 1);
 /* critical section stuff */
 bolt = 0;
 /* remainder */
 }

}

void main (){
 bolt = 0;
 parbegin (P(1), P (2), …, P(n));

}
// wins the first that enters c&s with (bolt, 0)

 19

Mutual Exclusion:
Hardware Support

•  Exchange Instruction

 void exchange (int register, int memory) {
 int temp = memory;
 memory = register;
 register = temp;
 }

20

Mutual Exclusion

21

Mutual Exclusion Machine
Instructions

•  Advantages
– Applicable to any number of processes on

either a single processor or multiple
processors sharing main memory

–  It is simple and therefore easy to verify
–  It can be used to support multiple critical

sections (one bolt variable per session)

22

Mutual Exclusion Machine
Instructions

•  Disadvantages
– Busy-waiting consumes processor time
– Starvation is possible when a process leaves

a critical section and more than one process
is waiting. (old elevator effect!)

– Deadlock
•  If a low priority process has the critical region and

a higher priority process needs it, the higher
priority process will obtain the processor to wait for
the critical region

23

Mutual Exclusion: SW Approach

Assumptions:
•  No Hardware support
•  Processes share the same memory
•  A global variable turn is checked and its

value dictates who’s next
•  Processes adopt busy waiting

24

ME, SW Approach: 1st attempt

25

-  P0:
......
 while (turn != 0);
 // do nothing
 /* critical section */
 turn = 1;

- P1:
......
 while (turn != 1);
 // do nothing
 /* critical section */
 turn = 0;

ME, SW Approach: 1st attempt

26

-  P0:
......
 while (turn != 0);
 // do nothing
 /* critical section */
 turn = 1;

- P1:
......
 while (turn != 1);
 // do nothing
 /* critical section */
 turn = 0;

Problems:
-  turn stores only 1 state!
-  Processes must alternate
-  Speed dictated by the

slowest
-  If one fails, the other is

blocked

ME, SW Approach: 2nd attempt

27

-  P1:
......
1. while (flag[0]);
 // do nothing

2. flag[1] = true;
3. /* critical section */
4. flag[1] = false;

-  Shared variable:
-  boolean flag[2] = {false, false}

-  P0:
......
1.   while (flag[1]);
 // do nothing

2. flag[0] = true;
3. /* critical section */
4. flag[0] = false;

ME, SW Approach: 2nd attempt

28

Problems:
-  If a process fails just after setting the flag to true the other is

blocked
-  Is not independent of the relative process execution speeds =>

does not guarantee ME

-  P0:
......
1.   while (flag[1]);
 // do nothing

2. flag[0] = true;
3. /* critical section */
4. flag[0] = false;

-  P1:
......
1. while (flag[0]);
 // do nothing

2. flag[1] = true;
3. /* critical section */
4. flag[1] = false;

ME, SW Approach: 3rd attempt

29

-  P0:
......
1. flag[0] = true;
2. while (flag[1])
 /* do nothing */;

3. /* critical section */
4. flag[0] = false;

-  P1:
......
1.   flag[1] = true;
2. while (flag[0]);
 /* do nothing */;

3. /* critical section */
4. flag[1] = false;

ME, SW Approach: 3rd attempt

30

Properties:
-  Again: if a process fails within its critical section, the other is

blocked;
-  ME is guaranteed
-  Processes check their flags independently of what the others do

=> Risk of deadlock (both processes set the flag to true…)

-  P0:
......
1. flag[0] = true;
2. while (flag[1])
 /* do nothing */;

3. /* critical section */
4. flag[0] = false;

-  P1:
......
1.   flag[1] = true;
2. while (flag[0])
 /* do nothing */;

3. /* critical section */
4. flag[1] = false;

ME, SW Approach: 4th attempt

31

-  P0:
......
1. flag[0] = true;
2. while (flag[1]){
3. flag [0] = false;
 // delay

4.   flag[0] = true;
 }

5.   /* critical section */
6. flag[0] = false;

-  P1:
......
1. flag[1] = true;
2. while (flag[0]){
3. flag [1] = false;
 // delay

4.   flag[1] = true;
 }

5.   /* critical section */
6. flag[1] = false;

ME, SW Approach: 4th attempt

32

Properties:
-  ME is guaranteed
-  But: there is risk for livelock from “mutual courtesy”

-  P0:1, P1:1, P0:2, P1:2, P0:3, P1:3, P0:4, P1:4…..

-  Idea: insist on the turn!

-  P0:
......
1. flag[0] = true;
2. while (flag[1]){
3. flag [0] = false;
 // delay

4.   flag[0] = true;
 }

5.   /* critical section */
6. flag[0] = false;

-  P1:
......
1. flag[1] = true;
2. while (flag[0]){
3. flag [1] = false;
 // delay

4.   flag[1] = true;
 }

5.   /* critical section */
6. flag[1] = false;

ME, SW Approach: Deker’s
Algorithm

33

-  P0:
......
while (true){
 flag[0] = true;
 while (flag[1]){
 if (turn == 1){
 flag [0] = false;
 while (turn == 1)
 /* do nothing */;

 flag[0] = true;
 }
 }

 /* critical section */
 turn = 1;

 flag[0] = false;
}

-  P1:
......
while (true){
 flag[1] = true;
 while (flag[0]){
 if (turn == 0){
 flag [1] = false;
 while (turn == 0)
 /* do nothing */;

 flag[1] = true;
 }
 }

 /* critical section */
 turn = 0;

 flag[1] = false;
}

ME, SW Approach: Pearson’s Alg.

34

-  P0:
......
while (true){
 flag[0] = true;
 turn = 1;
 while (flag[1]&&turn)
 /* do nothing */;
 /* critical section */
 flag[0] = false;
}

-  P1:
......
while (true){
 flag[1] = true;
 turn = 0;
 while (flag[0]&&!turn)
 /* do nothing */;
 /* critical section */
 flag[1] = false;
}

-  If P0 sets flag to true, P1 cannot enter critical section.
-  If P1 is in critical section, flag[1] == true & P0 cannot enter;
-  P0 blocked in the while loop (flag[1] is true and turn is 1)

-  P1 is not interested in entering its critical section (impossible; flag[1] == 1)
-  P1 is waiting for its critical section (impossible; turn = 1)
-  P1 is using its critical section repeatedly (impossible! P1 has to set turn to

0)

