Concurrency: Mutual Exclusion
and Synchronization

Concurrency

Regards: Sharing or competing of resources among
multiple processes

Arises because of:
* Multiple applications

« Structured applications programmed as sets of
concurrent processes

« Operating system structure—often implemented
as the above

Basic requirement: Enforcement of Mutual Exclusion

Concurrency Terms

Critical Session— code that requires access to shared
resource in an exclusive way

Deadlock(livelock)—more processes do not change
state (always change state) because awaiting (of the
state of) the others

Mutual exclusion—when a critical st_a’ge IS reached and
resources are accessed, no oth_er critical state
depending on those resources is executed

Race condition—the final state of a shared resource
depends on the timing of the changes by a group of
processes

Starvation—a runnable process is always overlooked
by the scheduler (does never proceed)

Difficulties of Concurrency

* Sharing of global resources—the order of
the access becomes critical

» Operating system managing the allocation
of resources optimally—risk of deadlock

* Difficult to locate programming errors—
results can be non deterministic and
reproducible

Currency

Communication among processes
Sharing resources

Synchronization of multiple processes
Allocation of processor time

A Simple Example

/* reads input from keyboard and outputs it on
screen */

void echo()
{
// chin and chout are characters
1. chin = getchar();
2. chout = chin;
3. putchar (chout) ;

A Simple Example

/* reads input from keyboard and outputs it on
screen */

void echo()

{

// chin and chout are characters
1. chin = getchar() ;

2. chout = chin;

3. putchar (chout) ;

}
Question: what happens if A1, B1—3, A2—3?

Solution: “lock™ the whole echo() procedure

Race Condition

« Example with one variable: P1&P2 share the
variable a;

- P1:a=1;
— P2:a =2,
— P1,P2>(a, 2) 1= (a, 1) € P2, P1
« Example with two variables: P3&P4
sharing variables (b,1) and (c,2)
—P3:b=b+c
—P4:c=b+c
— P3, P4: (b, 3), (c, 5)
— P4, P3: (c,3), (b, 4)
» Conclusion: the race looser wins!

Operating System Concerns

Keep track of various processes

Allocate and deallocate resources

— Processor time

— Memory

— Files

— 1/O devices

Protect data and resources of each process

Output of process must be independent of the
speed of execution of other concurrent
processes

Ways in which processes interact

* Processes unaware of each other
— Relationship: competition

— Problems: Mutual Exclusion, DeadlLock,
Starvation

* Processes indirectly aware of each other
(share something)
— Relationship: cooperation by sharing
— Problems: ME, DL, Starv, Data coherence

* Process directly aware of each other (have
communication primitives)

— Relationship: Cooperation by communication
— Problems: DL, Starvation (no ME! Why?)

10

Competition Among Processes for
Resources

Leave the state of recourses unaffected
Try to not slow-down processes

Mutual Exclusion

— Critical sections

* Only one program at a time is allowed in its critical
section

« Example: only one process at a time is allowed to send
command to the printer

But we want to avoid:
— Deadlock (two processes and two resources)
— Starvation (among three one always looses)

11

Requirements for Mutual Exclusion

* Only one process at a time is allowed in
the critical section for a resource

* A process that halts in its noncritical
section must do so without interfering with
other processes

* No deadlock or starvation

12

Requirements for Mutual Exclusion

* A process must not be delayed access to
a critical section when there is no other
process using it

 No assumptions are made about relative
process speeds or number of processes

* A process remains inside its critical section
for a finite time only

13

Mutual Exclusion:
Hardware Support

* Interrupt Disabling

— A process runs until it invokes an operating
system service or until it is interrupted

— Disabling interrupts guarantees mutual
exclusion

— Processor is limited in its ability to interleave
programs

— Multiprocessing

» disabling interrupts on one processor will
not guarantee mutual exclusion

14

Mutual Exclusion:
Hardware Support

» Special Machine Instructions
— Performed in a single instruction cycle

— Access to the memory location is blocked for
any other instructions

15

Mutual Exclusion:
Hardware Support

boolean testset (int *bolt) {

if (*bolt == 0) ({

*bolt = 1;
return true;

}

else {
// bolt ==
return false;

}

const int n = X; // proc. nr
int bolt;
void P(int i) {

/* critical section stuff */
/* remainder */
}

void main () {

bolt = ?;

parbegin (P(1),P(2), .., P(n));
} 16

Mutual Exclusion: with Test&Set
Hardware Support

const int n = X; // number of processes

int bolt;

void P(int i) {

while (true) {

// while bolt == 1 do nothing
while (!'testset(*bolt));
/* critical section stuff */
bolt = 0;
/* remainder */

}

void main () {
bolt = 0;
parbegin (P(1), P (2), .., P(n));

}
// wins the first that enters testset with (bolt, 0)

17

Mutual Exclusion:
Hardware Support

« Compare&Swap instruction

int compare and swap
(int* bolt, int testwval, int newval({
int oldval = *bolt;
if (oldval == testval)
*bolt = newval;
return oldval;
} // returns the old value of bolt

18

Mutual Exclusion: with Test&Set
Hardware Support

const int n = X; // number of processes
int bolt;
void P(int i) {
while (true) {
// while bolt == 1 do nothing

while (compare and swap(*bolt, 0, 1) == 1);
/* critical section stuff */
bolt = 0;

/* remainder */

}

void main () {
bolt = 0;
parbegin (P(1), P (2), .., P(n));

}
// wins the first that enters c&s with (bolt, 0)

19

Mutual Exclusion:
Hardware Support

* Exchange Instruction

void exchange (int register, int memory) ({
int temp = memory;
memory = regilster;

register = temp;

20

Mutual Exclusion

/* program mutualexclusion */
int const n = /* number of processes**/;
int bolt;
void P(int 1)
{
int keyi;
while (true)
{
keyi = 1;
while (keyi != 0)
exchange (keyi, bolt):;
/* critical section */;
exchange (kevyi, bolt):;
/* remainder =/
}
}

void main ()

{
bolt = 0;

parbegin (P(1), P(2), . . ., P(n));

21

Mutual Exclusion Machine
Instructions

* Advantages

— Applicable to any number of processes on
either a single processor or multiple
processors sharing main memory

— It is simple and therefore easy to verify

— It can be used to support multiple critical
sections (one bolt variable per session)

22

Mutual Exclusion Machine
Instructions

* Disadvantages
— Busy-waiting consumes processor time
— Starvation is possible when a process leaves

a critical section and more than one process
IS waiting. (old elevator effect!)

— Deadlock

* |f a low priority process has the critical region and

a higher priority process needs it, the higher
priority process will obtain the processor to wait for

the critical region

23

Mutual Exclusion: SW Approach

Assumptions:
 No Hardware support
* Processes share the same memory

* A global variable turn is checked and its
value dictates who's next

* Processes adopt busy waiting

24

ME, SW Approach: 1st attempt

while (turn !'= 0);
// do nothing
/* critical section */
turn = 1;
- P1:
while (turn !'= 1);
// do nothing
/* critical section */

turn = 0;

ME, SW Approach: 1st attempt

while (turn !'= 0);
// do nothing
/* critical section */
turn = 1;
- P1:
while (turn !'= 1);
// do nothing
/* critical section */

turn = 0;

Problems:

turn stores only 1 state!
Processes must alternate

Speed dictated by the
slowest

If one fails, the other is
blocked

26

ME, SW Approach: 2" attempt

- Shared variable:
- boolean flag[2] = {false, false}

- PO: - P1
1. while (flag[1l]) 1. while (flag[O0]);
// do nothing // do nothing
2. flag[0] = true; 2. flag[l] = true;
3. /* critical section */ 3. /* critical section */

4. flag[0] = false; 4. flag[l] = false;

27

ME, SW Approach: 2" attempt

- PO: - P1
1. while (flag[1l]) 1. while (flag[O0]);

// do nothing // do nothing
2. flag[0] = true; 2. flag[l] = true;
3. /* critical section */ 3. /* critical section */
4. flag[0] = false; 4. flag[l] = false;
Problems:

- If a process fails just after setting the flag to true the other is
blocked

- Is not independent of the relative process execution speeds =>
does not guarantee ME

28

ME, SW Approach: 3 attempt

- PO: - P1
1. flag[0] = true; 1. flag[l] = true;
2. while (flag[1l]) 2. while (flag[O0])
/* do nothing */; /* do nothing */;
3. /* critical section */ 3. /* critical section */

4. flag[0] = false; 4. flag[l] = false;

29

ME, SW Approach: 3 attempt

- PO: - P1
1. flag[0] = true; 1. flag[l] = true;
2. while (flag[1l]) 2. while (flag[0])

/* do nothing */; /* do nothing */;
3. /* critical section */ 3. /* critical section */
4. flag[0] = false; 4. flag[l] = false;
Properties:

- Again: if a process fails within its critical section, the other is
blocked;

- ME is guaranteed

- Processes check their flags independently of what the others do

=> Risk of deadlock (both processes set the flag to true...)
30

ME, SW Approach: 4th attempt

- PO: - P1
1. flag[0] = true; 1. flag[l] = true;
2. while (flag[1l]) { 2. while (flag[O0]) {
3. flag [0] = false; 3. flag [1] = false;
// delay // delay

4. flag[0] = true; 4. flag[l] = true;

} }
5. /* critical section */ 5. /* critical section */

6. £flag[0] = false; 6. flag[l] = false;

31

ME, SW Approach: 4th attempt

- PO: - P1
1. flag[0] = true; 1. flag[l] = true;
2. while (flag[1l]) { 2. while (flag[O0]) {
3. flag [0] = false; 3. flag [1] = false;
// delay // delay

4. flag[0] = true; 4. flag[l] = true;

} }
5. /* critical section */ 5. /* critical section */
6. £flag[0] = false; 6. flag[l] = false;
Properties:

- ME is guaranteed

- But: there is risk for livelock from “mutual courtesy”
- PO0O:1, P1:1, P0:2, P1:2, PO:3, P1:3, P0:4, P1:4.....

- ldea: insist on the turn! 32

ME, SW Approach: Deker’s

while (true) {
flag[0] = true;
while (flag[1l]) {
if (turn == 1) {
flag [0] = false;
while (turn == 1)
/* do nothing */;
flag[0] = true;
}
}

/* critical section */

turn = 1;
flag[0] = false;

Algorithm

while (true) {
flag[l] = true;
while (flag[O0]) {

}

if (turn == 0) {

flag [1l] = false;
while (turn == 0)

/* do nothing */;

flag[l] = true;

/* critical section */

turn = O;
flag[l] = false;

33

ME, SW Approach: Pearson’s Alg.

while (true) {
flag[0] = true;
turn = 1;
while (flag[l]&&turn)

/* do nothing */;

/* critical section */
flag[0] = false;

}

while (true) {

}

flag[l] = true;

turn = O;

while (flag[0]&&!turn)
/* do nothing */;

/* critical section */

flag[l] = false;

- If PO sets flag to true, P1 cannot enter critical section.

- If P1is in critical section, flag[1] == true & PO cannot enter;

- PO blocked in the while loop (flag[1] is true and turn is 1)
- P1is not interested in entering its critical section (impossible; flag[1] == 1)
- P1 is waiting for its critical section (impossible; turn = 1)
- P1 is using its critical section repeatedly (impossible! P1 has to set turn to

0)

34

