Semaphores

Two or more processes can cooperate through
signals

A semaphore is a special variable used for
signaling

semsSignal (s) & semWait (s): primitive used to
transmit a signal or to wait for a signal

If a process is waiting for a signal, it is
suspended until that signal is sent

35

Semaphores

 Semaphore is a variable that has an
integer value

— May be initialized to a nonnegative value (# of
processes that pass without being blocked)

— semWait (s) decrements the semaphore

value; if the value becomes < 0, the process is
blocked,;

— semsSignal (s) increments the semaphore
value; only if the value remains <= 0 another
process in the queue is unblocked.

36

Semaphore Primitives

struct semaphore {
int count;
queueType queue;
I
vold semWailt (semaphore s)
{
s.count--;
if (s.count < 0) {
/* place this process 1n s.gueue */;
/* block this process */;

}
vold semSignal (semaphore s)
{
S.count++;
if (s.count <= 0) {
/* remove a process P from s.gqueue */;
/* place process P on ready list */;

37

Binary Semaphores

« Semaphore is a variable that can be initialized to
either 0 or 1

— semWaitB (s) checks the value. If it is 0 the
process is blocked. Ifitis 1, it is set to 0 and the
process continues;

— semSignalB (s) checks the queue; if it is empty,
sets the semaphore to 1. otherwise, puts one of
the queue processes in the ready list.

38

Binary Semaphore Primitives

struct binary_semaphore {
enum {zero, one} value;

queueType queue;

g
void semWaitB (binary_semaphore s)

{

if (s.value == one)
s.value = zero;
else {
/* place this process 1in s.gueue */;

/* block this process */;

}
void semSignalB (semaphore s)

{

(s.queue is empty())

if
s.value = one;
else {
/* remove a process P from s.gueue */;
/* place process P on ready list */;

39

Mutual Exclusion Using Semaphores

/* program mutualexclusion */
const int n = /% number of processes ¥*/;

semaphore s = 1;
void P(int 1)
{
while (true)
{
semWait (s) ;
/* critical section */;
semSignal (s) ;
/* remainder */;
}
}
void main ()
{
parbegin (P(1), P(2), . . ., P(n)):;

}

40

Producer/Consumer Problem

* Problem:

— One or more producers are generating data
and placing these in a buffer

— A single consumer is taking items out of the
buffer one at time

 Conditions:

— Only one producer or consumer may access
the buffer at any one time

— Producers to not write if buffer full
— Consumer to not read if buffer empty

Producer/Consumer Problem

b[1] | b[2] | b[3] | b[4] | b[S]

out in

Note: shaded area indicates portion of buffer that is occupied

Figure 5.8 Infinite Buffer for the Producer/Consumer Problem
42

Abstract definition of producer &
consumer

consumer:
while (true) {
while (in <= out)
/*do nothing */;
w = b[out];
out++;
} /* consume item w */

}

producer:

while (true) {
/* produce item v */
b[in] = v;
in++;

First solution attempt:

* Preserve two properties
— Buffer has elements
— Is accessed in an exclusive way

* |dea:
— n keeps track of the items (= in - out)
— semaphore delay is used to block the consumer

— Semaphore s is used for mutual exclusion among
all

int n;
binary_ semaphore s = 1, delay = 0;
void producer ()
{
while (true) {
produce () ;
semWalitB(s) ;
append () ;
n++;
if (n==1) semSignalB(delay) ;
semSignalB(s) ;

}
void consumer ()
{
semWaltB (delay) ;
while (true) {
semWalitB(s) ;
take () ;
n--;
semSignalB(s) ;
consume () ;
if (n==0) semWaitB(delay) ;

Producer Consumer s n Delay
1 1 0 0
2 semWaitB(s) 0 0 0
3 n++ 0 1 0
4 if (n==1)
(semSignalB(delay)) 0 1 1
5 semSignalB(s) 1 1 1
6 semWaitB(delay) 1 1 0
7 semWaitB(s) 0 1 0
8 n-- 0 0 0
9 semSignalB(s) 1 0 0
10 semWaitB(s) 0 0 0
11 n++ 0 1 0
12 if (n==1)
(semSignalB(delay)) 0 1 1
13 semSignalB(s) 1 1 1
14 if (n==0) (semWaitB(delay)) 1 1 1
15 semWaitB(s) 0 1 1
16 n-- 0 0 1
17 semSignalB(s) 1 0 1
18 if (n==0) (semWaitB(delay)) 1 0 0
19 semWaitB(s) 0 0 0
20 n-- 0 -1 0
21 semiSignlaB(s) 1 -1 0

|dea

* Add variable m which keeps track of the
consumer’s view of the situation (value of n)

Correct Solution

int n;
binary_ semaphore s = 1, delay = 0;
void producer ()
{
while (true) {
produce () ;
semWaitB(s) ;
append () ;
n++;
if (n==1) semSignalB(delay) ;
semSignalB(s) ;

}

void consumer ()

{
int m; /* a local variable */
semWaitB (delay) ;

while (true) {
semWaitB(s) ;
take () ;
n--;
m = n;

semSignalB(s) ;
consume () ;
if (m==0) semWaitB(delay) ;

Solution with General Semaphores

semaphore n = 0, s = 1;

void producer ()

{

while (true) {

produce () ;
semWait (s) ;
append () ;
semSignal (s) ;
semSignal (n) ;

}

void consumer ()
{
while (true) {

semWait (n) ;
semWait (s) ;
take () ;
semSignal (s) ;
consume () ;

49

Inverting commands

semaphore n = 0, s = 1;
void producer ()
{
while (true) {
produce () ;
semWait (s) ;
append () ;
semSignal (s) ;
semSignal (n) ;
}
}
void consumer ()
{
while (true) {
semWait (n) ;
semWait (s) ;
take () ;
semSignal (s) ;
consume () ;

* |nverting semSignals?

50

Inverting commands

semaphore n = 0, s = 1;

vold producer) * Inverting semSignals: OK
while (true) { — Consumer has to wait for
produce () ;
semWait (s) ; two semaphores anyways
append () ;

semSignal (s) ;
semSignal (n) ;

} . .
) * Inverting semWaits?

void consumer ()
{
while (true) {

semWailt (n) ;
semWait (s) ;
take () ;
semSignal (s) ;
consume () ;

51

Inverting commands

semaphore n = 0, s = 1;

vold producer * Inverting semSignals: OK
while (true) — Consumer has to wait for two
produce () ;
semWait (s) ; semaphores anyways
append () ;

semSignal (s) ;
semSignal (n) ;

}

) * Inverting semWaits: Deadlock
void consumer ()
{ — Consumer gets lock on
while (true) {
AN semaphore s when n ==
semWait (s) ; .
el () — Producer cannot write

semSignal (s) ;
consume () ;

Finite Circular Buffer

Block on:

Unblock on:

Producer: insert in full buffer

Consumer: item inserted

Consumer: remove from empty buffer

Producer: item removed

b[1] | b[2] | b[3] | b[4] | b[5]
Out In
(a)
b[1] | b[2] | b[3] | b[4] | b[5]
In Out

(b)

e o o o b[n]

e o o o b[n]

53

Abstract behavior of producer/
consumer with circular buffer

producer:

while (true) {
/* produce item v */
while ((in + 1) % n ==
/* do nothing */;
b[in] = v;

in = (in + 1) % n

out)

consumer:
while (true) {
while (in == out)
/* do nothing */;
w = b[out];
out = (out + 1) % n;
/* consume item w */

 |dea: keep track of consumed elements

Abstract behavior of producer/
consumer with circular buffer

producer:

while (true) {
/* produce item v */
while ((in + 1) % n ==
/* do nothing */;
b[in] = v;

in = (in + 1) % n

out)

consumer:
while (true) {
while (in == out)
/* do nothing */;
w = b[out];
out = (out + 1) % n;
/* consume item w */

 |dea: keep track of consumed elements

— Sem. e (empty) incremented by consumer
and decremented by producers

const int sizeofbuffer = /* buffer size */;

semaphore s = 1, n = 0, e = sizeofbuffer;

void producer ()

{

while (true) {

produce () ;
semWailt (e) ;
semWait (s)
append () ;
semSignal (s) ;

4

semSignal (n) ;

}

void consumer ()

{

while (true) {

semWait (n) ;
semWait (s) ;
take () ;
semSignal (s) ;
semSignal (e) ;
consume () ;

Barbershop Problem

Three chairs
Three barbers
One cashier

Sofa for four waiting
customers

Standing room for other
customers

Capacity: 20 customers

Entrance

0 O O

Standing
room
area

Barber chairs

Sofa

Cashier

57

Exit

Barbershop Problem: semaphores

sofa (4) & max_capacity (20)
Three chairs (three barbers)—barber_chair (3)

— Decremented (incremented) when client sitting (getting up)

— Clients will not wake up from sofa if not signaled by barber
Barber sleeping when no client sited—cust_ready (0)

Clients remaining sitting till cut is over— finished (0)

Barber to not invite other client before current one has left the chair
— leave_b_chair (0)

Client to pay (signal) the cashier (who waits for money)—payment
(0)

Cashier to give (signal) the receipt to client who waits for it after
paying—receipt(0)

Only 3 people performing work in the shop (coordination btw barber
and cashier role)—coord (3)
58

Barbershop Solution

customer:

Wait (max capacity) ;
Enter shop() ;

Wait (sofa) ;

Sit();

Wait (barber chair);
Get up();

Signal (sofa) ;

Sit barber chair();
Signal (cust ready) ;
Wait(finished) ;

Leave barber chair();
Signal (leave b chair);
Pay () ;

Signal (payment) ;

Wait (receipt) ;

Exit shop();
Signal (max capacity) ;

barber:

While (true) {

Wait(cust ready);
Wait (coord) ;

cut _hair();

signal (coord) ;

signal (finished) ;
wait (leave b chair);
signal (barber chair);

cashier:

While (true) {

}

wait (payment) ;
wait (coord) ;
accept payment() ;
signal (coord) ;

signal (receipt) ;

Entrance

room
area

Standing

0O 0O O

Barber chairs

Cashier

|

(L J) Exit

Sofa

Barbershop Solution: Unfair

customer:

Wait (max capacity) ;
Enter shop() ;

Wait (sofa) ;

Sit();

Wait (barber chair);
Get up();

Signal (sofa) ;

Sit barber chair();
Signal (cust ready) ;
Wait(finished) ;

Leave barber chair();
Signal (leave b chair);
Pay () ;

Signal (payment) ;

Wait (receipt) ;

Exit shop();
Signal (max capacity) ;

barber:

While (true) {
Wait(cust ready);
Wait (coord) ;
cut _hair();
signal (coord) ;

signal (finished) ;

wait (leave b chair);
signal (barber chair);

cashier:

While (true) {
wait (payment) ;
wait (coord) ;
accept payment() ;
signal (coord) ;

signal (receipt) ;

 |dea: use different queues

per chair

60

Fair barbershop semaphores

Add variable count—client number

Mutex1 (1) to protect access to count

sofa (4) & max_capacity (20)

barber_chair (3)

Barber sleeping when no client sited—cust_ready (0)

Customers remaining sitting till cut is over— Array of sem. finished [50] (0)
— Wait(finished[custnr]) by customer
— Signal(finished[b_cust]) by barber to release the correct customer

Queue1 protected by mutex2 (1)

— Customers put their number on the queue Enqueue1(custnr) before signaling with
cust_ready

— Barber Dequeue(b_cust) to get the topmost customer and set b_cust=cust_nr
leave b_chair (0)
payment (0)
receipt(0)
coord (3)

61

Fair Barbershop Solution

customer:
Int custnr;

Wait (max capacity) ;
Wait (mutexl) ;
Count++;

custnr = Count;
Signal (mutexl) ;
Wait (sofa) ;

Wait (barber chair);
Signal (sofa) ;

Wait (mutex2) ;
enqueuel (custnr)
Signal (cust ready) ;
Signal (mutex2) ;

Wait(finished[custnr])

Signal (leave b chair);
Signal (payment) ;

Wait (receipt) ;
Signal (max capacity);

barber:
Int b_cust;

While (true) {
Wait (cust ready) ;
Wait (mutex2) ;
Dequeuel (b_cust) ;
Signal (mutex2) ;
Wait (coord) ;
cut_hair();
signal (coord) ;

signal (finished[b_cust]);

wait (leave b chair);
signal (barber chair);

cashier:

While (true) {
wait (payment) ;
wait (coord) ;
accept payment() ;
signal (coord) ;
signal (receipt) ;

}

62

Message Passing Systems

 Enforce mutual exclusion
» Exchange information

 Typical functionalities of MP systems:
send (destination, message)

receive (source, message)

63

Synchronization

Communication of a message implies
synchronization

— msg cannot be received unless has been sent

Send and receive primitives may be blocking

— send: process waiting for message to be received

— receive: blocked until msg arrives or continues abandoning
the reception

Blocking send, blocking receive (redezvous)

Nonblocking send, blocking receive (sender
continues on)

Nonblocking send, nonblocking receive (abandon or
test for arrival)

64

Addressing

* Direct addressing

— Send primitive includes a specific identifier of
the destination process

— Receive primitive could know ahead of time
which process a message is expected from

— Recelve primitive could use source parameter
to return a value when the receive operation
has been performed

65

Addressing

* Indirect addressing

— Messages are sent to a shared data structure
consisting of queues

— Queues are called mailboxes

— One process sends a message to the mailbox
and the other process picks up the message
from the mailbox

66

(a) One to one

e

(c) One to many

Figure 5.18

Sh
(b) Many to one
Ry 5
Rn Sn
(d) Many to many

Indirect Process Communication

Message Format

Message Type

Destination ID

Header Source ID

Message Length

Control Information

Message Contents

Body

Figure 5.19 General Message Format

68

Mutual Exclusion with Mailboxes

* Unblocking send, blocking receive
* One mailbox initialized with 1 empty message in it

/* program mutualexclusion */
const int n = /* number of processes */;

void P(int 1)

{
message msg;
while (true)

{
receive (mutex, msqg);

/* critical section */;
send (mutex, msqg);
/* remainder */;
}
}
void main ()

{
create mailbox (mutex):;

send (mutex, null);

parbegin (P(1), P(2), . . ., P(n));

Producer consumer with
mailboxes

« Two mailboxes:

 Mayconsume

— contains messages sent by producer after
generating data

— Serves as buffer

* Mayproduce

— contains message generated by consumer
each time it consumes

70

const int

capacity = /* buffering capacity */ ;
null =/* empty message */ ;
int i;

void producer()
{ message pmsg;
while (true)

{
receive (mayproduce, pmsqg);
pmsg = produce () ;
send (mayconsume, pmsg);
}
}
void consumer ()
{ message cmsg;
while (true)
{
receive (mayconsume, cmsqg):;
consume (cmsqg) ;
send (mayproduce, null);
}
}

void main ()

{
create mailbox (mayproduce);

create mailbox (mayconsume) ;

for (int i = 1; i <= capacity; i++)
send (mayproduce, null);

parbegin (producer, consumer);

Figure 5.21 A Solution to the Bounded-Buffer Producer/Consumer Problem
Using Messages

Readers/Writers Problem

* Problem:

— Data shared among processes (e.qg. file)

— Any number of readers may simultaneously read
the file

— Only one writer at a time may write to the file

— If a writer is writing to the file, no reader may read
it

72

Readers/Writers Problem

» Case 1: Readers have priority—retain the
shared file

— Semaphore wsem for mutual exclusion

— If other readers enabled, new readers should
pass -> variable readcount and semaphore x

73

/* program readersandwriters */

int readcount;
semaphore x = 1, wsem = 1;
void reader()
{
while (true)
{
semWait (x);
readcount++;
if (readcount == 1)
semWait (wsem) ;
semSignal (x);
READUNIT() ;
semWait (x):;
readcount—-;
if (readcount == 0)
semSignal (wsem);
semSignal (x);
}
}
void writer ()
{
while (true)
{
semWait (wsem) ;
WRITEUNIT ()
semSignal (wsem);
}
}

void main ()

{

readcount = 0;
parbegin (reader, writer);

}

Figure 5.22 A Solution to the Readers/Writers Problem Using
Semaphores: Readers Have Priority

Readers/Writers Problem

« Case 1: Readers retain the data as much as
they need to => risk of starvation for writers

» Case 2: Writers have priority

— Semaphore rsem blocks readers if there is a writer wanting to
write

— Variable writecount controlling setting of rsem
— Semaphore y controlling updating of writecount

— Semaphore z for readers queue

75

Readers/Writers Problem

Readers only in the system

wsem set

no queues

Writers only in the system

wsem and rsem set

writers queue on wsem

Both readers and writers with read first

wsem set by reader

rsem set by writer

all writers queue on wsem
one reader queues on rsem

other readers queue on z

Both readers and writers with write first

wsem set by writer

rsem set by writer

writers queue on wsem
one reader queues on rsem

other readers queue on z

76

/* program readersandwriters*/
int readcount, writecount;
semaphore x =1, y =1, z = 1, wsem = 1,
void reader()
{
while (true)
{
semWait (z);
semWait (rsem);
semWait (x):
readcount++;
if (readcount == 1)
semWait (wsem) ;
semSignal (x):;
semSignal (rsem);
semSignal (z);
READUNIT () ;
semWait (x);
readcount—-;
if (readcount == 0)
semSignal (wsem);
semSignal (x);
}
}
void writer ()
{
while (true)
{
semWait (y);
writecount++;
if (writecount = 1)
semWait (rsem) ;
semSignal (y):;
semWait (wsem) ;
WRITEUNIT () ;
semSignal (wsem):;
semWait (y);
writecount——;
if (writecount == 0)
semSignal (rsem);
semSignal (y):;
}

rsem

1;

77

