
Semaphores

•  Two or more processes can cooperate through
signals

•  A semaphore is a special variable used for
signaling

•  semSignal (s) & semWait (s): primitive used to
transmit a signal or to wait for a signal

•  If a process is waiting for a signal, it is
suspended until that signal is sent

35

Semaphores

•  Semaphore is a variable that has an
integer value
– May be initialized to a nonnegative value (# of

processes that pass without being blocked)
– semWait (s) decrements the semaphore

value; if the value becomes < 0, the process is
blocked;

– semSignal (s) increments the semaphore
value; only if the value remains <= 0 another
process in the queue is unblocked.

36

Semaphore Primitives

37

5.3 / SEMAPHORES 221

Other than these three operations, there is no way to inspect or manipulate
semaphores.

We explain these operations as follows. To begin, the semaphore has a zero or
positive value. If the value is positive, that value equals the number of processes that
can issue a wait and immediately continue to execute. If the value is zero, either by
initialization or because a number of processes equal to the initial semaphore value
have issued a wait, the next process to issue a wait is blocked, and the semaphore
value goes negative. Each subsequent wait drives the semaphore value further into
minus territory.The negative value equals the number of processes waiting to be un-
blocked. Each signal unblocks one of the waiting processes when the semaphore
value is negative.

[DOWN07] points out three interesting consequences of the semaphore
definition:

• In general, there is no way to know before a process decrements a semaphore
whether it will block or not.

• After a process increments a semaphore and another process gets woken up,
both processes continue running concurrently. There is no way to know which
process, if either, will continue immediately on a uniprocessor system.

• When you signal a semaphore, you don’t necessarily know whether another
process is waiting, so the number of unblocked processes may be zero or one.

Figure 5.3 suggests a more formal definition of the primitives for semaphores.
The semWait and semSignal primitives are assumed to be atomic. A more re-
stricted version, known as the binary semaphore, is defined in Figure 5.4. A binary
semaphore may only take on the values 0 and 1 and can be defined by the following
three operations:

1. A binary semaphore may be initialized to 0 or 1.

struct semaphore {

int count;

queueType queue;

};

void semWait(semaphore s)

{

s.count--;

if (s.count < 0) {

/* place this process in s.queue */;

/* block this process */;

}

}

void semSignal(semaphore s)

{

s.count++;

if (s.count <= 0) {

/* remove a process P from s.queue */;

/* place process P on ready list */;

}

}

Figure 5.3 A Definition of Semaphore Primitives

M05_STAL6329_06_SE_C05.QXD 2/21/08 9:25 PM Page 221

Binary Semaphores
•  Semaphore is a variable that can be initialized to

either 0 or 1
–  semWaitB (s) checks the value. If it is 0 the

process is blocked. If it is 1, it is set to 0 and the
process continues;

–  semSignalB (s) checks the queue; if it is empty,
sets the semaphore to 1. otherwise, puts one of
the queue processes in the ready list.

38

Binary Semaphore Primitives

39

2. The semWaitB operation checks the semaphore value. If the value is zero, then
the process executing the semWaitB is blocked. If the value is one, then the
value is changed to zero and the process continues execution.

3. The semSignalB operation checks to see if any processes are blocked on this
semaphore (semaphore value equals zero). If so, then a process blocked by a
semWaitB operation is unblocked. If no processes are blocked, then the value
of the semaphore is set to one.

In principle, it should be easier to implement the binary semaphore, and it can
be shown that it has the same expressive power as the general semaphore (see Prob-
lem 5.17). To contrast the two types of semaphores, the nonbinary semaphore is
often referred to as either a counting semaphore or a general semaphore.

A concept related to the binary semaphore is the mutex. A key difference be-
tween the two is that the process that locks the mutex (sets the value to zero) must
be the one to unlock it (sets the value to 1). In contrast, it is possible for one process
to lock a binary semaphore and for another to unlock it.5

For both counting semaphores and binary semaphores, a queue is used to
hold processes waiting on the semaphore. The question arises of the order in
which processes are removed from such a queue. The fairest removal policy is
first-in-first-out (FIFO): The process that has been blocked the longest is released
from the queue first; a semaphore whose definition includes this policy is called
a strong semaphore. A semaphore that does not specify the order in which

222 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

struct binary_semaphore {

enum {zero, one} value;

queueType queue;

};

void semWaitB(binary_semaphore s)

{

if (s.value == one)

s.value = zero;

else {

/* place this process in s.queue */;

/* block this process */;

}

}

void semSignalB(semaphore s)

{

if (s.queue is empty())

s.value = one;

else {

/* remove a process P from s.queue */;

/* place process P on ready list */;

}

}

Figure 5.4 A Definition of Binary Semaphore Primitives

5In some of the literature, and in some textbooks, no distinction is made between a mutex and a binary
semaphore. However, in practice, a number of operating systems, such as Linux, Windows, and Solaris,
offer a mutex facility that conforms to the definition in this book.

M05_STAL6329_06_SE_C05.QXD 2/21/08 9:25 PM Page 222

Mutual Exclusion Using Semaphores

40

Producer/Consumer Problem

•  Problem:
– One or more producers are generating data

and placing these in a buffer
– A single consumer is taking items out of the

buffer one at time
•  Conditions:

– Only one producer or consumer may access
the buffer at any one time

– Producers to not write if buffer full
– Consumer to not read if buffer empty

Producer/Consumer Problem

42

Abstract definition of producer &
consumer

producer:
while (true) {
 /* produce item v */
 b[in] = v;
 in++;
}

consumer:
while (true) {
 while (in <= out)
 /*do nothing */;
 w = b[out];
 out++;
 /* consume item w */
}

First solution attempt:

•  Preserve	two	proper+es	
– Buffer	has	elements	
–  Is	accessed	in	an	exclusive	way	

•  Idea:		
– n	keeps	track	of	the	items	(=	in	-	out)	
– semaphore	delay	is	used	to	block	the	consumer	
– Semaphore	s	is	used	for	mutual	exclusion	among	
all	

5.3 / SEMAPHORES 227

consumer makes sure that the producer has advanced beyond it (in > out) before
proceeding.

Let us try to implement this system using binary semaphores. Figure 5.9 is a
first attempt. Rather than deal with the indices in and out, we can simply keep track
of the number of items in the buffer, using the integer variable n (= in - out). The
semaphore s is used to enforce mutual exclusion; the semaphore delay is used to
force the consumer to semWait if the buffer is empty.

This solution seems rather straightforward. The producer is free to add to
the buffer at any time. It performs semWaitB(s) before appending and
semSignalB(s) afterward to prevent the consumer or any other producer from
accessing the buffer during the append operation. Also, while in the critical section,
the producer increments the value of n. If n = 1, then the buffer was empty just prior
to this append, so the producer performs semSignalB(delay) to alert the con-
sumer of this fact. The consumer begins by waiting for the first item to be produced,
using semWaitB(delay). It then takes an item and decrements n in its critical sec-
tion. If the producer is able to stay ahead of the consumer (a common situation),
then the consumer will rarely block on the semaphore delay because n will usually
be positive. Hence both producer and consumer run smoothly.

/* program producerconsumer */

int n;

binary_semaphore s = 1, delay = 0;

void producer()

{

while (true) {

produce();

semWaitB(s);

append();

n++;

if (n==1) semSignalB(delay);

semSignalB(s);

}

}

void consumer()

{

semWaitB(delay);

while (true) {

semWaitB(s);

take();

n--;

semSignalB(s);

consume();

if (n==0) semWaitB(delay);

}

}

void main()

{

n = 0;

parbegin (producer, consumer);

}

Figure 5.9 An Incorrect Solution to the Infinite-Buffer Producer/Consumer Problem
Using Binary Semaphores

M05_STAL6329_06_SE_C05.QXD 2/21/08 9:25 PM Page 227

228 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

There is, however, a flaw in this program. When the consumer has exhausted
the buffer, it needs to reset the delay semaphore so that it will be forced to wait
until the producer has placed more items in the buffer. This is the purpose of the
statement: if n == 0 semWaitB (delay). Consider the scenario outlined in
Table 5.4. In line 14, the consumer fails to execute the semWaitB operation. The
consumer did indeed exhaust the buffer and set n to 0 (line 8), but the producer
has incremented n before the consumer can test it in line 14. The result is a
semSignalB not matched by a prior semWaitB. The value of -1 for n in line 20
means that the consumer has consumed an item from the buffer that does not
exist. It would not do simply to move the conditional statement inside the critical
section of the consumer because this could lead to deadlock (e.g., after line 8 of
the table).

A fix for the problem is to introduce an auxiliary variable that can be set in the
consumer’s critical section for use later on. This is shown in Figure 5.10. A careful
trace of the logic should convince you that deadlock can no longer occur.

Table 5.4 Possible Scenario for the Program of Figure 5.9

Producer Consumer s n Delay

1 1 0 0

2 semWaitB(s) 0 0 0

3 n++ 0 1 0

4 if (n==1)
(semSignalB(delay)) 0 1 1

5 semSignalB(s) 1 1 1

6 semWaitB(delay) 1 1 0

7 semWaitB(s) 0 1 0

8 n-- 0 0 0

9 semSignalB(s) 1 0 0

10 semWaitB(s) 0 0 0

11 n++ 0 1 0

12 if (n==1)
(semSignalB(delay)) 0 1 1

13 semSignalB(s) 1 1 1

14 if (n==0) (semWaitB(delay)) 1 1 1

15 semWaitB(s) 0 1 1

16 n-- 0 0 1

17 semSignalB(s) 1 0 1

18 if (n==0) (semWaitB(delay)) 1 0 0

19 semWaitB(s) 0 0 0

20 n-- 0 –1 0

21 semiSignlaB(s) 1 –1 0

NOTE: White areas represent the critical section controlled by semaphore s.

M05_STAL6329_06_SE_C05.QXD 2/21/08 9:25 PM Page 228

Idea

•  Add	variable	m	which	keeps	track	of	the	
consumer’s	view	of	the	situa+on	(value	of	n)	

Correct Solution
5.3 / SEMAPHORES 229

/* program producerconsumer */

int n;

binary_semaphore s = 1, delay = 0;

void producer()

{

while (true) {

produce();

semWaitB(s);

append();

n++;

if (n==1) semSignalB(delay);

semSignalB(s);

}

}

void consumer()

{

int m; /* a local variable */

semWaitB(delay);

while (true) {

semWaitB(s);

take();

n--;

m = n;

semSignalB(s);

consume();

if (m==0) semWaitB(delay);

}

}

void main()

{

n = 0;

parbegin (producer, consumer);

}

Figure 5.10 A Correct Solution to the Infinite-Buffer Producer/Consumer Problem Using
Binary Semaphores

A somewhat cleaner solution can be obtained if general semaphores (also
called counting semaphores) are used, as shown in Figure 5.11.The variable n is now
a semaphore. Its value still is equal to the number of items in the buffer. Suppose
now that in transcribing this program, a mistake is made and the operations
semSignal(s) and semSignal(n) are interchanged.This would require that the
semSignal(n) operation be performed in the producer’s critical section without
interruption by the consumer or another producer. Would this affect the program?
No, because the consumer must wait on both semaphores before proceeding in any
case.

Now suppose that the semWait(n) and semWait(s) operations are acci-
dentally reversed. This produces a serious, indeed a fatal, flaw. If the consumer
ever enters its critical section when the buffer is empty (n.count = 0), then no pro-
ducer can ever append to the buffer and the system is deadlocked. This is a good
example of the subtlety of semaphores and the difficulty of producing correct
designs.

M05_STAL6329_06_SE_C05.QXD 2/21/08 9:25 PM Page 229

Solution with General Semaphores

49

Finally, let us add a new and realistic restriction to the producer/consumer
problem: namely, that the buffer is finite. The buffer is treated as a circular storage
(Figure 5.12), and pointer values must be expressed modulo the size of the buffer.
The following relationships hold:

230 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

/* program producerconsumer */

semaphore n = 0, s = 1;

void producer()

{

while (true) {

produce();

semWait(s);

append();

semSignal(s);

semSignal(n);

}

}

void consumer()

{

while (true) {

semWait(n);

semWait(s);

take();

semSignal(s);

consume();

}

}

void main()

{

parbegin (producer, consumer);

}

Figure 5.11 A Solution to the Infinite-Buffer Producer/Consumer Problem Using Semaphores

b[1] b[2]

Out

b[3] b[4] b[5] b[n]

In

b[1] b[2]

In

b[3] b[4] b[5] b[n]

Out

(a)

(b)

Figure 5.12 Finite Circular Buffer for the
Producer/Consumer Problem

Block on: Unblock on:

Producer: insert in full buffer Consumer: item inserted

Consumer: remove from empty buffer Producer: item removed

M05_STAL6329_06_SE_C05.QXD 2/21/08 9:25 PM Page 230

Inverting commands

50

Finally, let us add a new and realistic restriction to the producer/consumer
problem: namely, that the buffer is finite. The buffer is treated as a circular storage
(Figure 5.12), and pointer values must be expressed modulo the size of the buffer.
The following relationships hold:

230 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

/* program producerconsumer */

semaphore n = 0, s = 1;

void producer()

{

while (true) {

produce();

semWait(s);

append();

semSignal(s);

semSignal(n);

}

}

void consumer()

{

while (true) {

semWait(n);

semWait(s);

take();

semSignal(s);

consume();

}

}

void main()

{

parbegin (producer, consumer);

}

Figure 5.11 A Solution to the Infinite-Buffer Producer/Consumer Problem Using Semaphores

b[1] b[2]

Out

b[3] b[4] b[5] b[n]

In

b[1] b[2]

In

b[3] b[4] b[5] b[n]

Out

(a)

(b)

Figure 5.12 Finite Circular Buffer for the
Producer/Consumer Problem

Block on: Unblock on:

Producer: insert in full buffer Consumer: item inserted

Consumer: remove from empty buffer Producer: item removed

M05_STAL6329_06_SE_C05.QXD 2/21/08 9:25 PM Page 230

•  Inver+ng	semSignals?	
	

Inverting commands

51

Finally, let us add a new and realistic restriction to the producer/consumer
problem: namely, that the buffer is finite. The buffer is treated as a circular storage
(Figure 5.12), and pointer values must be expressed modulo the size of the buffer.
The following relationships hold:

230 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

/* program producerconsumer */

semaphore n = 0, s = 1;

void producer()

{

while (true) {

produce();

semWait(s);

append();

semSignal(s);

semSignal(n);

}

}

void consumer()

{

while (true) {

semWait(n);

semWait(s);

take();

semSignal(s);

consume();

}

}

void main()

{

parbegin (producer, consumer);

}

Figure 5.11 A Solution to the Infinite-Buffer Producer/Consumer Problem Using Semaphores

b[1] b[2]

Out

b[3] b[4] b[5] b[n]

In

b[1] b[2]

In

b[3] b[4] b[5] b[n]

Out

(a)

(b)

Figure 5.12 Finite Circular Buffer for the
Producer/Consumer Problem

Block on: Unblock on:

Producer: insert in full buffer Consumer: item inserted

Consumer: remove from empty buffer Producer: item removed

M05_STAL6329_06_SE_C05.QXD 2/21/08 9:25 PM Page 230

•  Inver+ng	semSignals:	OK	
– Consumer	has	to	wait	for	
two	semaphores	anyways	

•  Inver+ng	semWaits?	
	

Inverting commands

52

Finally, let us add a new and realistic restriction to the producer/consumer
problem: namely, that the buffer is finite. The buffer is treated as a circular storage
(Figure 5.12), and pointer values must be expressed modulo the size of the buffer.
The following relationships hold:

230 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

/* program producerconsumer */

semaphore n = 0, s = 1;

void producer()

{

while (true) {

produce();

semWait(s);

append();

semSignal(s);

semSignal(n);

}

}

void consumer()

{

while (true) {

semWait(n);

semWait(s);

take();

semSignal(s);

consume();

}

}

void main()

{

parbegin (producer, consumer);

}

Figure 5.11 A Solution to the Infinite-Buffer Producer/Consumer Problem Using Semaphores

b[1] b[2]

Out

b[3] b[4] b[5] b[n]

In

b[1] b[2]

In

b[3] b[4] b[5] b[n]

Out

(a)

(b)

Figure 5.12 Finite Circular Buffer for the
Producer/Consumer Problem

Block on: Unblock on:

Producer: insert in full buffer Consumer: item inserted

Consumer: remove from empty buffer Producer: item removed

M05_STAL6329_06_SE_C05.QXD 2/21/08 9:25 PM Page 230

•  Inver+ng	semSignals:	OK	
– Consumer	has	to	wait	for	two	
semaphores	anyways	

•  Inver+ng	semWaits:	Deadlock	
– Consumer	gets	lock	on	
semaphore	s	when	n	==	0	

– Producer	cannot	write	
	

Finite Circular Buffer

53

Finally, let us add a new and realistic restriction to the producer/consumer
problem: namely, that the buffer is finite. The buffer is treated as a circular storage
(Figure 5.12), and pointer values must be expressed modulo the size of the buffer.
The following relationships hold:

230 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

/* program producerconsumer */

semaphore n = 0, s = 1;

void producer()

{

while (true) {

produce();

semWait(s);

append();

semSignal(s);

semSignal(n);

}

}

void consumer()

{

while (true) {

semWait(n);

semWait(s);

take();

semSignal(s);

consume();

}

}

void main()

{

parbegin (producer, consumer);

}

Figure 5.11 A Solution to the Infinite-Buffer Producer/Consumer Problem Using Semaphores

b[1] b[2]

Out

b[3] b[4] b[5] b[n]

In

b[1] b[2]

In

b[3] b[4] b[5] b[n]

Out

(a)

(b)

Figure 5.12 Finite Circular Buffer for the
Producer/Consumer Problem

Block on: Unblock on:

Producer: insert in full buffer Consumer: item inserted

Consumer: remove from empty buffer Producer: item removed

M05_STAL6329_06_SE_C05.QXD 2/21/08 9:25 PM Page 230

Abstract behavior of producer/
consumer with circular buffer

producer:
while (true) {
 /* produce item v */
 while ((in + 1) % n == out)

 /* do nothing */;
 b[in] = v;
 in = (in + 1) % n

}

consumer:
while (true) {
 while (in == out)
 /* do nothing */;
 w = b[out];
 out = (out + 1) % n;
 /* consume item w */

}

•  Idea: keep track of consumed elements

Abstract behavior of producer/
consumer with circular buffer

producer:
while (true) {
 /* produce item v */
 while ((in + 1) % n == out)

 /* do nothing */;
 b[in] = v;
 in = (in + 1) % n

}

consumer:
while (true) {
 while (in == out)
 /* do nothing */;
 w = b[out];
 out = (out + 1) % n;
 /* consume item w */

}

•  Idea: keep track of consumed elements
– Sem. e (empty) incremented by consumer

and decremented by producers

56

5.3 / SEMAPHORES 231

The producer and consumer functions can be expressed as follows (variable in
and out are initialized to 0 and n is the size of the buffer):

producer: consumer:

while (true) { while (true) {

/* produce item v */ while (in == out)

while ((in + 1) % n == out) /* do nothing */;

/* do nothing */; w = b[out];

b[in] = v; out = (out + 1) % n;

in = (in + 1) % n; /* consume item w */;

} }

Figure 5.13 shows a solution using general semaphores. The semaphore e has
been added to keep track of the number of empty spaces.

Another instructive example in the use of semaphores is the barbershop prob-
lem, described in Appendix A. Appendix A also includes additional examples of the
problem of race conditions when using semaphores.

Implementation of Semaphores

As was mentioned earlier, it is imperative that the semWait and semSignal oper-
ations be implemented as atomic primitives. One obvious way is to implement them

/* program boundedbuffer */

const int sizeofbuffer = /* buffer size */;

semaphore s = 1, n = 0, e = sizeofbuffer;

void producer()

{

while (true) {

produce();

semWait(e);

semWait(s);

append();

semSignal(s);

semSignal(n);

}

}

void consumer()

{

while (true) {

semWait(n);

semWait(s);

take();

semSignal(s);

semSignal(e);

consume();

}

}

void main()

{

parbegin (producer, consumer);

}

Figure 5.13 A Solution to the Bounded-Buffer Producer/Consumer Problem Using
Semaphores

M05_STAL6329_06_SE_C05.QXD 2/21/08 9:25 PM Page 231

Barbershop Problem
•  Three chairs
•  Three barbers
•  One cashier
•  Sofa for four waiting

customers
•  Standing room for other

customers
•  Capacity: 20 customers

57

A.3 / A BARBERSHIP PROBLEM A-15

by a thread in B that executes semSignal(notFull_A) . A similar reason-
ing applies to threads in B . Thus, this condition is satisfied.

 2. Once two threads enter their critical sections, they exchange messages with-
out interference from any other threads. No other thread in A can enter its
critical section until the thread in B is completely done with the exchange, and
no other thread in B can enter its critical section until the thread in A is com-
pletely done with the exchange. Thus, this condition is satisfied.

 3. After one thread exits its critical section, no thread in the same group can
rush in and ruin the existing message. This condition is satisfied because a
one-slot buffer is used in each direction. Once a thread in A has executed
semWait(notFull_A) and entered its critical section, no other thread in A
can update buf_a until the corresponding thread in B has retrieved the value
in buf_a and issued a semSignal(notFull_A) .

Lesson Learned: It is well to review the solutions to well-known problems,
because a correct solution to the problem at hand may be a variation of a solution
to a known problem.

 A.3 A BARBERSHIP PROBLEM

 As another example of the use of semaphores to implement concurrency, we
consider a simple barbershop problem. 3 This example is instructive because the
problems encountered when attempting to provide tailored access to barbershop
resources are similar to those encountered in a real operating system.

 Our barbershop has three chairs, three barbers, and a waiting area that can
accommodate four customers on a sofa and that has standing room for additional
customers (Figure A.4). Fire codes limit the total number of customers in the shop

Sofa

Standing
room
area

Entrance

Exit

Barber chairs

Cashier

Figure A.4 The Barbershop

3 I am indebted to Professor Ralph Hilzer of California State University at Chico for supplying this treat-
ment of the problem.

Barbershop Problem: semaphores
•  sofa (4) & max_capacity (20)
•  Three chairs (three barbers)—barber_chair (3)

–  Decremented (incremented) when client sitting (getting up)
–  Clients will not wake up from sofa if not signaled by barber

•  Barber sleeping when no client sited—cust_ready (0)
•  Clients remaining sitting till cut is over– finished (0)
•  Barber to not invite other client before current one has left the chair

— leave_b_chair (0)
•  Client to pay (signal) the cashier (who waits for money)—payment

(0)
•  Cashier to give (signal) the receipt to client who waits for it after

paying—receipt(0)
•  Only 3 people performing work in the shop (coordination btw barber

and cashier role)—coord (3)
58

Barbershop Solution
customer:

Wait(max_capacity);
Enter_shop();
Wait(sofa);
Sit();
Wait(barber_chair);
Get_up();
Signal(sofa);
Sit_barber_chair();
Signal(cust_ready);
Wait(finished);
Leave_barber_chair();
Signal(leave_b_chair);
Pay();
Signal(payment);
Wait(receipt);
Exit_shop();
Signal(max_capacity);

barber:

While (true) {
 Wait(cust_ready);
 Wait(coord);
 cut_hair();
 signal(coord);
 signal(finished);
 wait(leave_b_chair);
 signal(barber_chair);
}

cashier:

While (true) {
 wait(payment);
 wait(coord);
 accept_payment();
 signal(coord);
 signal(receipt);
}

A.3 / A BARBERSHIP PROBLEM A-15

by a thread in B that executes semSignal(notFull_A) . A similar reason-
ing applies to threads in B . Thus, this condition is satisfied.

 2. Once two threads enter their critical sections, they exchange messages with-
out interference from any other threads. No other thread in A can enter its
critical section until the thread in B is completely done with the exchange, and
no other thread in B can enter its critical section until the thread in A is com-
pletely done with the exchange. Thus, this condition is satisfied.

 3. After one thread exits its critical section, no thread in the same group can
rush in and ruin the existing message. This condition is satisfied because a
one-slot buffer is used in each direction. Once a thread in A has executed
semWait(notFull_A) and entered its critical section, no other thread in A
can update buf_a until the corresponding thread in B has retrieved the value
in buf_a and issued a semSignal(notFull_A) .

Lesson Learned: It is well to review the solutions to well-known problems,
because a correct solution to the problem at hand may be a variation of a solution
to a known problem.

 A.3 A BARBERSHIP PROBLEM

 As another example of the use of semaphores to implement concurrency, we
consider a simple barbershop problem. 3 This example is instructive because the
problems encountered when attempting to provide tailored access to barbershop
resources are similar to those encountered in a real operating system.

 Our barbershop has three chairs, three barbers, and a waiting area that can
accommodate four customers on a sofa and that has standing room for additional
customers (Figure A.4). Fire codes limit the total number of customers in the shop

Sofa

Standing
room
area

Entrance

Exit

Barber chairs

Cashier

Figure A.4 The Barbershop

3 I am indebted to Professor Ralph Hilzer of California State University at Chico for supplying this treat-
ment of the problem.

Barbershop Solution: Unfair

60

customer:

Wait(max_capacity);
Enter_shop();
Wait(sofa);
Sit();
Wait(barber_chair);
Get_up();
Signal(sofa);
Sit_barber_chair();
Signal(cust_ready);
Wait(finished);
Leave_barber_chair();
Signal(leave_b_chair);
Pay();
Signal(payment);
Wait(receipt);
Exit_shop();
Signal(max_capacity);

barber:

While (true) {
 Wait(cust_ready);
 Wait(coord);
 cut_hair();
 signal(coord);
 signal(finished);
 wait(leave_b_chair);
 signal(barber_chair);
}

cashier:

While (true) {
 wait(payment);
 wait(coord);
 accept_payment();
 signal(coord);
 signal(receipt);
}

•  Idea: use different queues
per chair

Fair barbershop semaphores
•  Add variable count—client number
•  Mutex1 (1) to protect access to count
•  sofa (4) & max_capacity (20)
•  barber_chair (3)
•  Barber sleeping when no client sited—cust_ready (0)
•  Customers remaining sitting till cut is over– Array of sem. finished [50] (0)

–  Wait(finished[custnr]) by customer
–  Signal(finished[b_cust]) by barber to release the correct customer

•  Queue1 protected by mutex2 (1)
–  Customers put their number on the queue Enqueue1(custnr) before signaling with

cust_ready
–  Barber Dequeue(b_cust) to get the topmost customer and set b_cust=cust_nr

•  leave_b_chair (0)
•  payment (0)
•  receipt(0)
•  coord (3) 61

Fair Barbershop Solution

62

customer:

Int custnr;

Wait(max_capacity);
Wait(mutex1);
Count++;
custnr = Count;
Signal(mutex1);
Wait(sofa);
Wait(barber_chair);
Signal(sofa);
Wait(mutex2);
enqueue1(custnr)
Signal(cust_ready);
Signal(mutex2);
Wait(finished[custnr]);
Signal(leave_b_chair);
Signal(payment);
Wait(receipt);
Signal(max_capacity);

barber:

Int b_cust;

While (true) {
 Wait(cust_ready);
 Wait(mutex2);
 Dequeue1(b_cust);
 Signal(mutex2);
 Wait(coord);
 cut_hair();
 signal(coord);
 signal(finished[b_cust]);
 wait(leave_b_chair);
 signal(barber_chair);
}

cashier:

While (true) {
 wait(payment);
 wait(coord);
 accept_payment();
 signal(coord);
 signal(receipt);
}

Message Passing Systems

•  Enforce mutual exclusion
•  Exchange information

•  Typical functionalities of MP systems:
 send (destination, message)
 receive (source, message)

63

Synchronization
•  Communication of a message implies

synchronization
– msg cannot be received unless has been sent

•  Send and receive primitives may be blocking
–  send: process waiting for message to be received
–  receive: blocked until msg arrives or continues abandoning

the reception

•  Blocking send, blocking receive (redezvous)
•  Nonblocking send, blocking receive (sender

continues on)
•  Nonblocking send, nonblocking receive (abandon or

test for arrival)
64

Addressing

•  Direct addressing
– Send primitive includes a specific identifier of

the destination process
– Receive primitive could know ahead of time

which process a message is expected from
– Receive primitive could use source parameter

to return a value when the receive operation
has been performed

65

Addressing

•  Indirect addressing
– Messages are sent to a shared data structure

consisting of queues
– Queues are called mailboxes
– One process sends a message to the mailbox

and the other process picks up the message
from the mailbox

66

67

Message Format

68

Mutual Exclusion with Mailboxes
•  Unblocking send, blocking receive
•  One mailbox initialized with 1 empty message in it

69

Producer consumer with
mailboxes

•  Two mailboxes:
•  Mayconsume

– contains messages sent by producer after
generating data

– Serves as buffer

•  Mayproduce
– contains message generated by consumer

each time it consumes
70

Readers/Writers Problem

•  Problem:

– Data shared among processes (e.g. file)
– Any number of readers may simultaneously read

the file
– Only one writer at a time may write to the file
–  If a writer is writing to the file, no reader may read

it

72

Readers/Writers Problem

•  Case 1: Readers have priority—retain the
shared file
– Semaphore wsem for mutual exclusion
–  If other readers enabled, new readers should

pass -> variable readcount and semaphore x

73

74

Readers/Writers Problem
•  Case 1: Readers retain the data as much as

they need to => risk of starvation for writers

•  Case 2: Writers have priority
–  Semaphore rsem blocks readers if there is a writer wanting to

write

– Variable writecount controlling setting of rsem

– Semaphore y controlling updating of writecount
– Semaphore z for readers queue

75

Readers/Writers Problem

76

Writers Have Priority

In the previous solution, readers have priority. Once a single reader has begun to ac-
cess the data area, it is possible for readers to retain control of the data area as long
as there is at least one reader in the act of reading. Therefore, writers are subject to
starvation.

Figure 5.23 shows a solution that guarantees that no new readers are allowed ac-
cess to the data area once at least one writer has declared a desire to write. For writers,
the following semaphores and variables are added to the ones already defined:

• A semaphore rsem that inhibits all readers while there is at least one writer
desiring access to the data area

• A variable writecount that controls the setting of rsem
• A semaphore y that controls the updating of writecount

For readers, one additional semaphore is needed.A long queue must not be al-
lowed to build up on rsem; otherwise writers will not be able to jump the queue.
Therefore, only one reader is allowed to queue on rsem, with any additional readers
queuing on semaphore z, immediately before waiting on rsem. Table 5.6 summa-
rizes the possibilities.

An alternative solution, which gives writers priority and which is implemented
using message passing, is shown in Figure 5.24. In this case, there is a controller
process that has access to the shared data area. Other processes wishing to access
the data area send a request message to the controller, are granted access with an
“OK” reply message, and indicate completion of access with a “finished” message.
The controller is equipped with three mailboxes, one for each type of message that
it may receive.

The controller process services write request messages before read request
messages to give writers priority. In addition, mutual exclusion must be enforced.

248 CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION

Table 5.6 State of the Process Queues for Program of Figure 5.23

Readers only in the system • wsem set
• no queues

Writers only in the system • wsem and rsem set
• writers queue on wsem

Both readers and writers with read first • wsem set by reader
• rsem set by writer
• all writers queue on wsem
• one reader queues on rsem
• other readers queue on z

Both readers and writers with write first • wsem set by writer
• rsem set by writer
• writers queue on wsem
• one reader queues on rsem
• other readers queue on z

M05_STAL6329_06_SE_C05.QXD 2/21/08 9:25 PM Page 248

77

