File Management

Chapter 12

File System Properties

* Long-term existence
« Sharable between processes
« Structure

File Operations

Create
Delete
Open
Close
Read
Write

Terms Used with Files

* Field
— Basic element of data
— Contains a single value (e.g. student last name, date of birth..)
— Characterized by its length and data type
— Fixed or variable length
 Record
— Collection of related fields
— Fixed or variable length (if contains fields of variable length)
— Treated as a unit
« Example: student record

Terms Used with Files

* File
— Collection of similar records
— Treated as a single entity
— Have file names
— Access control apply at file level

« Database
— Collection of related data
— Relationships exist among elements
— Consists of one or more file types

Typical Operations

Retrieve All- records of file
Retrieve One—record

Retrieve Next—Ilogically after the most recently
retreived record

Retrieve Previous

Insert One

Delete One

Update One

Retrieve Few—that sattisfy a certain criteria

File Management Systems

* The way a user or application may access
files

* Programmer does not need to develop file
management software

Obijectives for a
File Management System
Meet the data management needs and
requirements of the user
Guarantee that the data in the file are valid
Optimize performance

Provide |/O support for a variety of storage
device types

Obijectives for a
File Management System
* Minimize or eliminate the potential for lost
or destroyed data

* Provide a standardized set of I/O interface
routines

* Provide I/O support for multiple users

Minimal Set of Requirements

Each user should be able to create, delete,
read, write and modify files

Each user may have controlled access to files
of others

Each user may control what type of accesses
are allowed to his own files

Each user should be able to restructure the
user’ s files in a form appropriate to the problem

10

Minimal Set of Requirements

 Each user should be able to move data
between files

« Each user should be able to back up and
recover the user’ s files in case of damage

« Each user should be able to access the user’s
files by using symbolic names

11

User Program

Pile e e Indexed Hashed
| Sequential
Logical 1/O
Basic I/O Supervisor

Basic File System

Disk Device Driver

Tape Device Driver

Figure 12.1 File System Software Architecture

Device Drivers

L owest level

Communicates directly with peripheral
devices

Responsible for starting 1/O operations on
a device

Processes the completion of an I/O
request

13

Basic File System

Physical I/0
Deals with exchanging blocks of data

Does not understand the content or
structure of data

Concerned with the placement of blocks

Concerned with buffering blocks in main
memory

14

Basic |/O Supervisor

Responsible for file I/O initiation and
termination

Control structures are maintained

Concerned with selection of the device on
which file 1/O is to be performed

Concerned with scheduling access to
optimize performance

Part of the operating system

15

Logical I/O

* Enables users and applications to access
records

* Provides general-purpose record /O
capability
* Maintains basic data about file

16

Access Method

 Provides standard interfaces btw
applications and filesystems & devices

» Reflect different file structures
 Different ways to access and process data

17

Physical blocks Physical blocks

Records in main memory in secondary
File buffers storage (disk)
Structure
Directory Access .
management method . Disk
Blocking scheduling
User & 1 1
ser pn:lgram — - > —
comands Operation, File /0 Free storage
File name manipulation management
functions
file
allocation
User access
control
-« >
File management concerns
-+ >
Operating system concerns

Figure 12.2 Elements of File Management

18

File Directories

« Contains information about files
— Attributes
— Location
— Ownership

 Directory itself is a file owned by the
operating system

* Provides mapping between file names and
the files themselves

19

Elements of a File Directory

Basic Info

— File Name, type, organization
Address Information

— Volume (storage device)

— Starting Address—physical address on secondary storage (e.g.
track & block number)

— Size used (words/bytes/blocks) and allocated (max size)

Access Control Information
— Owner, Access Info (user name &passwd for each user),
Permitted actions (R/W/X, NW transmission)
Usage Information

— Date Created/Last Read Access/Last Modified/Last Backup with
corresponding user identities

— Current usage (processes that are accessing it and how,
possible locks, updates in MM but not in disk)

20

Two-level Scheme for a Directory

One directory for each user and a master directory
Master directory contains entry for each user

— Provides address and access control information
Each user directory is a simple list of files for that user

Problems with structuring (list by type, date created/

modified and so on/ listing only some filetypes e.g. .pdfs/
all names need to be unique)

21

Tree-Structured Directory

Master directory with user directories underneath

Each user directory may have subdirectories and
files as entries o

Files->paths /I\
Same filename allowed;

Subirectory Subirectory Subirec

Current dir is working dir TR
Files referenced rel. to

Subirectory Subirectory File

working dir w

File File File

Master Directory

System |
User_ A
User_B
User_C
Directory i Directory
"User_C" Directory "User_B" "User_A"
Draw
l Word
Directory "Word" - Directory "Draw"
Unit_ A ABC
Directory "Unit_A*"
v
ABC File
"ABC"
File Pathname: /User_ B/Draw/ABC
"ABC"

Pathname: /User_ B/Word/Unit_ AVABC

Secondary Storage Management

* Space must be allocated to files

* Must keep track of the space available for
allocation

24

Preallocation vs Dynamic allocation

Preallocation:

— Need the maximum size for the file at the time of
creation

— Difficult to reliably estimate the maximum
potential size of the file

— Tend to overestimated file size so as not to run
out of space

» Dynamic allocation: File portions
— block division vs entire file
— Fixed portions vs dynamic portions

25

Methods of File Allocation

» Contiguous allocation

— Single set of blocks is allocated to a file at the
time of creation

— Only a single entry in the file allocation table
« Starting block and length of the file

« External fragmentation will occur
— Need to perform compaction

26

5

PN

6

7

File B

1o] n[] 2] 13 14

15 16 17 18[9
File C

20 100 207 23V 2417
File E

25V/// 26 27 29

File D
30RRA 31K 32 33 34
N —

File Allocation Table

File Name Start Block Length

File A 2 3
File B 9 5
File C 18 8
File D 30 2
File E 26 2

Kiocure 17 7T (Cantionnne Kilae Allacatinn

27

Methods of File Allocation

Chained allocation
— Allocation on basis of individual block
— Each block contains a pointer to the next block in the chain
— Only single entry in the file allocation table
« Starting block and length of file
No external fragmentation

No accommodation of the principle of locality
(several disk accesses to bring in several blocks
block)

Some systems perform Consolidation to overcome
the problem

28

10

15

20

30

File Allocation Table

File Name Start Block Length

File B 1 5

L L L

File B
1! 2 3 4
— A

6 7 8 9
11 12 13 14
16 17 18 19
21 22 23 24
26 27 mi 29
31 2[]33 34

Figure 12.9 Chained Allocation

File Allocation Table

File Name Start Block

Length

File B 0

5

File B

5 6 7 8 9
10 11 12 13 14
15 16 17 18 19
20 21 22 23 24
25 26 27 28 29
30 31 32 33 34
S—

Figure 12.10 Chained Allocation (After Consolidation)

30

Methods of File Allocation

 Indexed allocation

— File allocation table contains a separate one-
level index for each file

- T
a
- T

ne index has one entry for each portion
located to the file

ne file allocation table contains block number

for the index

31

File Allocation Table
File Name Index Block
File B 24
1
8
3
14
.| 28
30 31 32 33 34
S -

Figure 12.11 Indexed Allocation with Block Portions

File Allocation Table
File Name Index Block
File B 24
Start Block Length
1 3
28 4
14 1

gure 12.12 Indexed Allocation with Variable-Length Portio!
33

Free Space Management

Bit Tables

— 1 bit for each block: 0 free; 1 allocated.

— Can be considerably big to be kept in main memory
— Will then need many access to disk for search
Chained Free Portions (pointer + length value)

— Prone to fragmentation

Indexing—one entry for each free portion

Free Block List

— Cannot be kept in MM (considerably larger than bitmap)
— Space devoted is less than 1% of disk

— Can be partially stored on MM (push-down stack or FIFO)

34

UNIX File Management

« Types of files
— Regular, or ordinary—data as streams of bytes

— Directory—list of flenames + pointers to inodes;
editable by OS; readable by user programs

— Special—mechanism to map phy dev to files (e.g. I/O
devs)

— Named pipes—IPC facility; buffers data; readable in
FIFO fashion

— Links—alterative filename for a file

— Symbolic links—a datafile containing the name of the
file linked to

35

Index nodes (inodes)

Control structure that contains key
information for a particular file

One inode per file; but:

Several filenames assoc to a unique
Inode.

Inode table or list resides on disk.

When file accessed its iINode its brought in
MM

36

Inode structure

Type&access mode

File’s owner&group-access ids

Times: creation;last write&read;last inode update by the OS
Size of file in bytes

Sequence of block pointers

Nr of phy blocks used by the file (both data and attributes)
Nr. of references to the file

Flags describing file characteristics (kernel&user settable)

Block size of data-blocks referenced by inode (same as the
filesystem blocksize)

Size of extended attribute information

Extended attribute entries (e.g. access control lists or security

labels for mandatory access control schemes)
37

File
info

Direct(0)

Direct(1)

Direct(2)

Direct(3)

Direct(4)

Direct(5)

Direct(6)

Direct(7)

Direct(8)

Direct(9)

single
indirect

double
indirect

triple
indirect

Inode

—

Blocks on disk

38

File allocation & Advantages

Done on block-bases
Is dynamic—not all blocks are contiguous
Indexed method to keep track of pieces of file;

Inodes: some direct pointers, 3 indirect pointers (single,
double, triple)

FreeBSD (4KB block size)—120 bytes of address information:
— 12 direct pointers to first 12 blocks of the file (12 blocks, 48K size)

— 13t pointer -> single indirect block (512 block addresses, 2M size)

— 14% pointer -> double indirect block (256K block addresses, 1G size)

— 15% pointer -> triple indirect block (128M block addresses, 521G size)

Advantages:
— Inode is of fixed size & small—easily kept in MM
— Reduced access time (little or no indirection) 4 small files
— Max file size large enough to satisfy all apps

39

Directories:

Structured in hierarchical tree

Inode table Directory

Contain files and/or other A e

AN

directories (subdirectories) A 2| Namez

Simple files containing lists of 3 Name3

flenames and pointers to 4] Named
corresp. Inodes (the i-number)

The i-number indexes the inode
table

Figure 12.14 UNIX Directories and Inodes
40

FAT: File Allocation Table

Linear table with 1 column:; element-size is of 12/16/32 bits

Usage and allocation status of blocks

Resides at the beginning of the disk
Status == value (0 free; used otherwise)
Value of used block == address of next block (last block all

bits 1)

Filenames, attributes&first block address within a directory in

the system

Fixed directories (and files) for FAT-12/16, dynamic with

FAT-32

Directory

FAT —W

>

FILE1 . T=T

aoo:

FILEZ T~=T

aoos

FILES . T=T

ooy

2

3

gl

2

]

7

o

aoos

a0

FFFF

o0&

aoosg

FFFF

FFFF

[4L ¢

L+ ___¢

« Getting worse with bigger file systems

FAT limitations

« Max block nr limited by bits associated to each table entry
— Bigger files ->bigger blocks->more internal fragmentation

 Difficult cashing for the whole FAT for large disks

Directory

FAT —

p | |FILEL.TAT| 000Z) | FILEZ. TAT [0005 FILES . TAT | 0007
1 2 3 < =] b 7 i
o003 | 0004) FFFF | 0006 | 0005 FFFF| FFFF

[4L ¢

Y

