Memory Management

Memory Management

e Subdividing memory to accommodate
multiple processes

* Memory needs to be allocated to ensure a
reasonable supply of ready processes to
consume available processor time

Memory Management Requirements

* Relocation

— Programmer does not know where the program
will be placed in memory when it is executed

— While the program is executing, it may be
swapped to disk and returned to main memory at
a different location (relocated)

— Memory references must be translated in the
code to actual physical memory address

Memory Management Requirements

* Protection

— Processes should not be able to reference memory
locations in another process without permission

— Impossible to check absolute addresses at compile time
— Must be checked at run time

— Memory protection requirement must be satisfied by the
processor (hardware) rather than the operating system
(software)

* Operating system cannot anticipate all of the memory references a
program will make

Memory Management Requirements

* Sharing
— Allow several processes to access the same
portion of memory

— Better to allow each process access to the same
copy of the program rather than have their own
separate copy

Memory Management Requirements

* Logical Organization
— Programs are written in modules

— Modules can be written and compiled
independently (cross refs solved at runtime)

— Different degrees of protection given to modules
(read-only, execute-only)

— Share modules among processes

Memory Management Requirements

* Physical Organization
— Memory available for a program plus its data may
be insufficient

e Overlaying (various modules to be assigned the same
region of memory) not easy by programmer

— Programmer does not know how much space will
be available

Fixed Partitioning

* Equal-size partitions R
— Any process whose size is less than or equal to Y
the partition size can be loaded into an
available partition sM
— If all partitions are full, the operating system -
can swap a process out of a partition
— A program may not fit in a partition. The e
programmer must design the program with
overlays -
— A process occupies an entire partition! 8 M
=> Internal Fragmentation
S M

Equal VS Unequal Size Partitioning:

Operating System
§M

2M

4M

6M

§M

§M

Placement Algorithm with Partitions

* Equal-size partitions
— Pick one available at random (not important)
* Unequal-size partitions
— Can assign each process to the smallest partition
within which it will fit
— Processes are assigned in such a way as to
minimize wasted memory within a partition

* 1 queue x partition

— Swapped out processes

* Inefficient for
— Many small processes
— Big partitions

New
rocesses

Operating
System

Pro

(a) One process queue per partition

Figure 7.3 Memory Assignlr%lent fi

Operating
System

* 1 queue x ALL partitions

— Swapped out processes

* Select smallest partition that fits
process

New
* Swap out from the smallest processes

partition that fits process

m (b) Single quew 12

Fixed partitioning: problems

e Partition nr limits active process nr

* Need to know min and max job size
beforehand

* Not good for small jobs & very big jobs

Dynamic Partitioning

Partitions are of variable length and number

Process is allocated exactly as much memory
as required

Eventually get holes in the memory. This is
called external fragmentation

Must use compaction to shift processes so
they are contiguous and all free memory isin
one block

Operating
M}f "
> S6M
)
(a)
Operating
__System
Process 1 20M
14M
Process3 |4 18M
4M

(e)

} I6M
(b)
Operating
M
Process 1 20M
Process 4 M
6M
Process 3 18M
4M

(n

(c)

g

20M

14M

22M

M

&M
6M

18M

M

(d)

(h)

20M

14M

I1ISM

aM

14M

6M

M
6M

18M

4M

15

Dynamic Partitioning Placement

Algorithm

Operating system must decide which free

block to allocate to a process

Best-fit

— Minimizes the remaining empty fragment

First-Fit

— The first which fits the process

Next-Fit

— The First which fits the process starting from the
last allocation

Last
allocated
block (14K)

8M

12M

22M

I18SM

SM

6M

14M

oM

(a) Before

SM
First Fit 12M
| .
6M
Best Fit
| .
2M
SM
oM
Allocated block
Free block
Possible new allocation 14M
Next Fit
20 M

(b) After

17

Dynamic Partitioning Placement

Algorithm

* Best-fit
— Worst performer overall: memory fragmented
with many small fragments

* First-fit
— Fastest
— Loads many processes in the front-end
* Next-fit
— Breaks up the largest block into smaller ones

— Compaction is required to obtain a large block at
the end of memory

Buddy System

* Entire space available is treated as a single block
of 2V

* If a request of size s such that 2Y1< s <=2Y,
entire block is allocated
— Otherwise block is split into two equal buddies

— Process continues until smallest block greater than or
equal to s is generated

Relocation

* When program loaded into memory the actual
(absolute) memory locations are determined

* A process may occupy different partitions which
means different absolute memory locations during
execution (from swapping)

 Compaction will also cause a program to occupy a
different partition which means different absolute
memory locations

Addresses

* Logical

— Reference to a memory location independent of the current
assignment of data to memory

— Translation must be made to the physical address

* Relative (Particular case of above)

— Address expressed as a location relative to some known point
(e.g. starting point of program)

e Physical

— The absolute address or actual location in main memory

=> need for hardware support to translate addresses in runtime

Relative address

Base Reglster e e e e e e e e e e e e e e e e e e

Bounds Register || Comparator - - - - ,

Interrupt to
operating system

<

_Jm Control Block
Program
_’
Data
Stack

Process image in
main memory

22

Registers Used during Execution

* Base register
— Starting address for the process

* Bounds register

— Ending location of the process

* These values are set when the process is
loaded or when the process is swapped in

Registers Used during Execution

* The value of the base register is added to a

relative address to produce an absolute
address

* The resulting address is compared with the
value in the bounds register

e |f the address is not within bounds, an
interrupt is generated to the operating system

Paging

e Partition memory into small equal fixed-size chunks
and divide each process into the same size chunks

* The chunks of a process are called pages and chunks
of memory are called frames

* Base register not enough: OS maintains a page table
for each process

— Contains the frame location for each page in the
process

— Memory address consist of a page number and offset
within the page

Assignment of Process Pages to Free

Frames
Frame Main memory Main memory Main memory
number - - -
0 0 A0 0 A0
1 1 A.l 1 A.l
2 2 A.2 2 A.2
3 3 A3 3 A3
4 4 4 NANBONNN
5 5 5 ANNNNBLNNN
6 6 6 N B.2 >
7 7 7
8 8 8
9 9 9
10 10 10
11 11 11
12 12 12
13 13 13
14 14 14

(a) Fifteen Available Frames (b) Load Process A (¢) Load Process B
26

W=D

th &

L S -

10
11
12
13
14

Assignment of Process Pages to Free

Main memory

A.0
A.l

(d) L.oad Process C

W=D

th &

LB S -

Frames

Main memory

A.O0

A.l

A.2

A3

N RN o

(e) Swapout B

W=D

th &

L R -

10
11
12
13
14

Main memory

A.0

A.l

A.2

A3

D.0

D.1

D.2
C.

\
W".u;df—
N\

() L.oad Process D
27

Page Tables for Example

0. 0 0| N 0, 7 0, 4 13
1 1 1N 1| 8 1| S 14
2 2 2N 29 2| 6 Free frame
J_ 3 Process B J_10 J 11 list
Process A page table Process C 41 12
page table page table Process D
page table

Figure 7.10 Data Structures for the Example of Figure 7.9 at Time Epoch (f)

28

Addressing

* Logical address = PG_nr + offsett
* Physical address = FR_nr + offsett

16-bit logical address
- >

6-bit page # 10-bit offset
< >

0/|0|0|O0fO(1(O|2]|2]21/Of2(2]|2]2]0O
- —~ A —_— _—

0[000101
»1[000110
2|011001 l

Process
page table

0]0j0f1]1]0|0f1]1]1

Segmentation

All segments of all programs do not have to be
of the same length

There is a maximum segment length

Addressing consist of two parts - a segment
number and an offset

Segments not equal (dynamic part.)

Need to keep track of segment length in
segment table

16-bit logical address
it segment # 12-bit offset
>

0]0{0|1{0f0}1({0)1f21(1]1(0]O]0
,’—Y_& —~—~

2] v

Length Base

0/001011101110{000001000000000 0|
— 1|011110011110J001000000010000 0} >+

Process segment table

~— ‘L -
0/0f1/0/0]|01(1|0j0j0O]1]0|0|0O]|0O
< >

16-bit physical address
(b) Segmentation

Figure 7.12 Examples of Logical-to-Physical Address Translati

31

