
Memory	Management	

Chapter	7	

1	



Memory	Management	

•  Subdividing	memory	to	accommodate	
mul9ple	processes	

•  Memory	needs	to	be	allocated	to	ensure	a	
reasonable	supply	of	ready	processes	to	
consume	available	processor	9me	

2	



Memory	Management	Requirements	

•  Reloca9on	
– Programmer	does	not	know	where	the	program	
will	be	placed	in	memory	when	it	is	executed	

– While	the	program	is	execu9ng,	it	may	be	
swapped	to	disk	and	returned	to	main	memory	at	
a	different	loca9on	(relocated)	

– Memory	references	must	be	translated	in	the	
code	to	actual	physical	memory	address	

3	



Memory	Management	Requirements	

•  Protec9on	
–  Processes	should	not	be	able	to	reference	memory	
loca9ons	in	another	process	without	permission	

–  Impossible	to	check	absolute	addresses	at	compile	9me	
– Must	be	checked	at	run	9me	
– Memory	protec9on	requirement	must	be	sa9sfied	by	the	
processor	(hardware)	rather	than	the	opera9ng	system	
(soKware)	
•  Opera9ng	system	cannot	an9cipate	all	of	the	memory	references	a	
program	will	make	

4	



Memory	Management	Requirements	

•  Sharing	
– Allow	several	processes	to	access	the	same	
por9on	of	memory	

– BePer	to	allow	each	process	access	to	the	same	
copy	of	the	program	rather	than	have	their	own	
separate	copy	

5	



Memory	Management	Requirements	

•  Logical	Organiza9on	
– Programs	are	wriPen	in	modules	
– Modules	can	be	wriPen	and	compiled	
independently	(cross	refs	solved	at	run9me)	

– Different	degrees	of	protec9on	given	to	modules	
(read-only,	execute-only)	

– Share	modules	among	processes	

6	



Memory	Management	Requirements	

•  Physical	Organiza9on	
– Memory	available	for	a	program	plus	its	data	may	
be	insufficient	
•  Overlaying	(various	modules	to	be	assigned	the	same	
region	of	memory)	not	easy	by	programmer	

– Programmer	does	not	know	how	much	space	will	
be	available	

7	



Fixed	Par99oning	
•  Equal-size	par99ons	
– Any	process	whose	size	is	less	than	or	equal	to	
the	par99on	size	can	be	loaded	into	an	
available	par99on	

–  If	all	par99ons	are	full,	the	opera9ng	system	
can	swap	a	process	out	of	a	par99on	

– A	program	may	not	fit	in	a	par99on.		The	
programmer	must	design	the	program	with	
overlays	

– A	process	occupies	an	en9re	par99on!		
	=>	Internal	Fragmenta,on		

8	



Equal	VS	Unequal	Size	Par99oning:	

9	



Placement	Algorithm	with	Par99ons	

•  Equal-size	par99ons	
– Pick	one	available	at	random	(not	important)	

•  Unequal-size	par99ons	
– Can	assign	each	process	to	the	smallest	par99on	
within	which	it	will	fit	

– Processes	are	assigned	in	such	a	way	as	to	
minimize	wasted	memory	within	a	par99on	

10	



11	

•  1	queue	x	par99on	
–  Swapped	out	processes	

•  Inefficient	for		
– Many	small	processes	
–  Big	par99ons	



12	

•  1	queue	x	ALL	par99ons	
–  Swapped	out	processes	

•  Select	smallest	par99on	that	fits	
process	

•  Swap	out	from	the	smallest	
par99on	that	fits	process	



Fixed	par99oning:	problems	

•  Par99on	nr	limits	ac9ve	process	nr	
•  Need	to	know	min	and	max	job	size	
beforehand	

•  Not	good	for	small	jobs	&	very	big	jobs	

13	



Dynamic	Par99oning	

•  Par99ons	are	of	variable	length	and	number	
•  Process	is	allocated	exactly	as	much	memory	
as	required	

•  Eventually	get	holes	in	the	memory.	This	is	
called	external	fragmenta9on	

•  Must	use	compac9on	to	shiK	processes	so	
they	are	con9guous	and	all	free	memory	is	in	
one	block	

14	



15	



Dynamic	Par99oning	Placement	
Algorithm	

•  Opera9ng	system	must	decide	which	free	
block	to	allocate	to	a	process	

•  Best-fit	
–  	Minimizes	the	remaining	empty	fragment	

•  First-Fit		
– The	first	which	fits	the	process	

•  Next-Fit		
– The	First	which	fits	the	process	star9ng	from	the	
last	alloca9on	

16	



17	



Dynamic	Par99oning	Placement	
Algorithm	

•  Best-fit	
– Worst	performer	overall:	memory	fragmented	
with	many	small	fragments	

•  First-fit	
– Fastest	
– Loads	many	processes	in	the	front-end	

•  Next-fit	
– Breaks	up	the	largest	block	into	smaller	ones	
– Compac9on	is	required	to	obtain	a	large	block	at	
the	end	of	memory	

18	



Buddy	System	

•  En9re	space	available	is	treated	as	a	single	block	
of	2U	

•  If	a	request	of	size	s	such	that	2U-1	<	s	<=	2U,	
en9re	block	is	allocated	
– Otherwise	block	is	split	into	two	equal	buddies	
– Process	con9nues	un9l	smallest	block	greater	than	or	
equal	to	s	is	generated	

19	



Reloca9on	

•  When	program	loaded	into	memory	the	actual	
(absolute)	memory	loca9ons	are	determined	

•  A	process	may	occupy	different	par99ons	which	
means	different	absolute	memory	loca9ons	during	
execu9on	(from	swapping)	

•  Compac9on	will	also	cause	a	program	to	occupy	a	
different	par99on	which	means	different	absolute	
memory	loca9ons	

20	



Addresses	
•  Logical	
–  Reference	to	a	memory	loca9on	independent	of	the	current	
assignment	of	data	to	memory	

–  Transla9on	must	be	made	to	the	physical	address	
•  Rela9ve	(Par9cular	case	of	above)	
–  Address	expressed	as	a	loca9on	rela9ve	to	some	known	point	
(e.g.	star9ng	point	of	program)	

•  Physical	
–  The	absolute	address	or	actual	loca9on	in	main	memory	
	
=>	need	for	hardware	support	to	translate	addresses	in	run,me	

21	



22	



Registers	Used	during	Execu9on	

•  Base	register	
– Star9ng	address	for	the	process	

•  Bounds	register	
– Ending	loca9on	of	the	process	

•  These	values	are	set	when	the	process	is	
loaded	or	when	the	process	is	swapped	in	

23	



Registers	Used	during	Execu9on	

•  The	value	of	the	base	register	is	added	to	a	
rela9ve	address	to	produce	an	absolute	
address	

•  The	resul9ng	address	is	compared	with	the	
value	in	the	bounds	register	

•  If	the	address	is	not	within	bounds,	an	
interrupt	is	generated	to	the	opera9ng	system	

24	



Paging	
•  Par99on	memory	into	small	equal	fixed-size	chunks	
and	divide	each	process	into	the	same	size	chunks	

•  The	chunks	of	a	process	are	called	pages	and	chunks	
of	memory	are	called	frames	

•  Base	register	not	enough:	OS	maintains	a	page	table	
for	each	process	
–  Contains	the	frame	loca9on	for	each	page	in	the	
process	

– Memory	address	consist	of	a	page	number	and	offset	
within	the	page	

25	



Assignment	of	Process	Pages	to	Free	
Frames	

26	



Assignment	of	Process	Pages	to	Free	
Frames	

27	



Page	Tables	for	Example	

28	



Addressing	

•  Logical	address	=	PG_nr	+	offseP	
•  Physical	address	=	FR_nr	+	offseP	

29	



Segmenta9on	

•  All	segments	of	all	programs	do	not	have	to	be	
of	the	same	length	

•  There	is	a	maximum	segment	length	
•  Addressing	consist	of	two	parts	-	a	segment	
number	and	an	offset	

•  Segments	not	equal	(dynamic	part.)	
•  Need	to	keep	track	of	segment	length	in	
segment	table	

30	



31	


