
Virtual Memory

Chapter 8

1

Hardware and Control Structures

•  Memory references are dynamically translated
into physical addresses at run time
–  A process may be swapped in and out of main

memory such that it occupies different regions
•  A process may be broken up into pieces that do

not need to be located contiguously in main
memory

•  All pieces of a process do not need to be loaded
in main memory during execution

2

Execution of a Program

•  Operating system brings into main
memory a few pieces of the program

•  Resident set - portion of process that is in
main memory

•  An interrupt is generated when an address
is needed that is not in main memory

•  Operating system places the process in a
blocking state

3

Execution of a Program

•  Piece of process that contains the logical
address is brought into main memory
– Operating system issues a disk I/O Read

request
– Another process is dispatched to run while the

disk I/O takes place
– An interrupt is issued when disk I/O complete

which causes the operating system to place
the affected process in the Ready state

4

Breaking up Processes: Advantages

•  More processes may be maintained in
main memory
– Only load in some of the pieces of each

process
– With so many processes in main memory, it is

very likely a process will be in the Ready state
at any particular time

•  A process may be larger than all of main
memory

5

Types of Memory

•  Real memory
– Main memory

•  Virtual memory
– Memory on disk
– Allows for effective multiprogramming and

relieves the user of tight constraints of main
memory

6

Risk of Thrashing

•  Swapping out a piece of a process just
before that piece is needed

•  The processor spends most of its time
swapping pieces rather than executing
user instructions

7

Principle of Locality

•  Program and data references within a
process tend to cluster

•  Only a few pieces of a process will be
needed over a short period of time

•  Possible to make intelligent guesses about
which pieces will be needed in the future

•  This suggests that virtual memory may
work efficiently

8

Support Needed for
Virtual Memory

•  Hardware must support paging and
segmentation

•  Operating system must be able to manage
the movement of pages and/or segments
between secondary memory and main
memory

9

Paging

•  Each process has its own page table
•  Each page table entry contains the frame

number of the corresponding page in main
memory

•  A bit is needed to indicate whether the
page is in main memory or not

10

Paging

11

Modify Bit in Page Table

•  Modify bit is needed to indicate if the page
has been altered since it was last loaded
into main memory

•  If no change has been made, the page
does not have to be written to the disk
when it needs to be swapped out

12

13

Paging: Address Translation

Page Tables

•  The entire page table may take up too
much main memory

•  Page tables are also stored in virtual
memory

•  When a process is running, part of its
page table is in main memory

14

Two-Level Scheme: 32-bit Address

15

8.1 / HARDWARE AND CONTROL STRUCTURES 353

user page table. If that page is not in main memory, a page fault occurs. If that page is
in main memory, then the next 10 bits of the virtual address index into the user PTE
page to find the PTE for the page that is referenced by the virtual address.

Inverted Page Table A drawback of the type of page tables that we have been
discussing is that their size is proportional to that of the virtual address space.

An alternative approach to the use of one or multiple-level page tables is the
use of an inverted page table structure. Variations on this approach are used on the
PowerPC, UltraSPARC, and the IA-64 architecture.An implementation of the Mach
operating system on the RT-PC also uses this technique.

4-kbyte root
page table

4-Mbyte user
page table

4-Gbyte user
address space

Figure 8.4 A Two-Level Hierarchical Page Table

Figure 8.5 Address Translation in a Two-Level Paging System

10 bits10 bits 12 bits

Root page
table ptr

Frame # Offset

Virtual address

4-kbyte page
table (contains

1024 PTEs)
Root page table

(contains 1024 PTEs)

!
!

Program Paging mechanism Main memory

Page
frame

M08_STAL6329_06_SE_C08.QXD 2/21/08 9:31 PM Page 353

Translation Lookaside Buffer

•  Each virtual memory reference can cause
two physical memory accesses
– One to fetch the page table
– One to fetch the data

•  To overcome this problem a high-speed
cache is set up for page table entries
– Called a Translation Lookaside Buffer (TLB)
– Contains most recently used PT Entries

16

Translation Lookaside Buffer

•  Given a virtual address, processor examines
the TLB

•  If (TLB hit), the frame number is retrieved and
the real address is formed

•  If (TLB miss), the page number is used to index
the process page table; TLB updated for new
page entry

•  If Present Bit not set => Page Fault =>New
page is loaded; PT updated; TLB updated

17

18

19

20

TLB & MemCache Operations

Segment Tables

•  Corresponding segment in main memory
•  Each entry contains the length of the

segment
•  A bit is needed to determine if segment is

already in main memory
•  Another bit is needed to determine if the

segment has been modified since it was
loaded in main memory

21

Segment Table Entries

22

23

Combined Paging and
Segmentation

•  Paging is transparent to the programmer
•  Segmentation is visible to the programmer
•  Each segment is broken into fixed-size

pages

24

Combined Segmentation and
Paging

25

26

Fetch Policy

•  Fetch Policy
– Determines when a page should be brought

into memory

a. Demand Paging: Bring page when
referenced

•  Many page faults when process first started

b. Prepaging: Bring in several continuous pages

27

Placement Policy

•  Determines where in real memory a
process piece is to reside

•  Important in a segmentation system
•  Paging or combined paging with

segmentation hardware performs address
translation

28

Replacement Policy

•  Placement Policy
– Which page is replaced?
– Page removed should be the page least likely

to be referenced in the near future
– Most policies predict the future behavior on

the basis of past behavior

29

Replacement Policy

•  Frame Locking
–  If frame is locked, it may not be replaced
– Kernel of the operating system
– Control structures
–  I/O buffers
– Associate a lock bit with each frame (frame

table or page table)

30

Basic Replacement Algorithms

•  Optimal policy (Benchmark)
– Selects for replacement that page for which

the time to the next reference is the longest
–  Impossible to have perfect knowledge of

future events

31

Basic Replacement Algorithms

•  Least Recently Used (LRU)
– Replaces the page that has not been

referenced for the longest time
– By the principle of locality, this should be the

page least likely to be referenced in the near
future

– Each page could be tagged with the time of
last reference = overhead

32

Basic Replacement Algorithms

•  First-in, first-out (FIFO)
– Treats page frames allocated to a process as

a circular buffer
– Pages are removed in round-robin style
– Simplest replacement policy to implement
– Page that has been in memory the longest is

replaced
– These pages may be needed again very soon

33

Basic Replacement Algorithms

•  Clock Policy
–  Additional bit called a use bit
–  When a page is first loaded in memory, the use bit is

set to 1
–  When the page is referenced, the use bit is set to 1
–  When it is time to replace a page, the first frame

encountered with the use bit set to 0 is replaced.
–  During the search for replacement, each use bit set to

1 is changed to 0

34

35

36

Clock with Used and Modified Bits

37

•  Each	frame	two	bits	associated:	
– U:	used	
– M:	modified	

Algorithm:	
1)	First	scan	to	find	(u	=	0;	m	=	0)	
2)	Second	scan	to	find	(u	=	0;	m	=	1);	Set	u	=	0	
for	all	encountered	
3)	Repeat	Step	1;	

Basic Replacement Algorithms

•  Page Buffering
– Replaced page PT-entry is added to one of

two lists
•  Free page list, if page has not been modified
•  Modified page list, otherwise

– Free page list used to read-in new pages
(overwrite)

– Modified page list used to write out modified
pages in clusters

38

