
Uniprocessor Scheduling

Chapter 9

1

Aim of Scheduling

•  Assign processes to be executed by the
processor(s)

•  Response time
•  Throughput
•  Processor efficiency

2

3

4

Long-Term Scheduling

•  Determines which programs are admitted
to the system for processing

•  Controls the degree of multiprogramming
•  More processes, smaller percentage of

time each process is executed

5

Medium-Term Scheduling

•  Part of the swapping function
•  Based on the need to manage the degree

of multiprogramming

6

Short-Term Scheduling

•  Known as the dispatcher
•  Executes most frequently
•  Invoked when an event occurs

– Clock interrupts
–  I/O interrupts
– Operating system calls
– Signals

7

Dispatcher Criteria
•  User-oriented

–  Response Time
•  Elapsed time between the submission of a

request until there is output.

•  System-oriented
–  Effective and efficient utilization of the processor

•  Performance-related
–  Quantitative
–  Measurable such as response time and

throughput

•  Predictability (same behavior in time)
8

9

10

Priorities

•  Scheduler will always choose a process of
higher priority over one of lower priority

•  Have multiple ready queues to represent
each level of priority

•  Lower-priority may suffer starvation
– Allow a process to change its priority based

on its age or execution history

11

12

Decision Mode

•  Nonpreemptive
–  Once a process is in the running state, it will continue

until it terminates or blocks itself for I/O
•  Preemptive

–  Currently running process may be interrupted and
moved to the Ready state by the operating system

–  Allows for better service since any one process
cannot monopolize the processor for very long

13

First-Come-First-Served
(FCFS)

•  Each process joins the Ready queue
•  When the current process ceases to

execute, the oldest process in the Ready
queue is selected

14

First-Come-First-Served
(FCFS)

•  A short process may have to wait a very
long time before it can execute

•  Favors CPU-bound processes
–  I/O processes have to wait until CPU-bound

process completes

15

Round-Robin

•  Uses preemption based on a clock
•  An amount of time is determined that

allows each process to use the
processor for that length of time

16

Round-Robin (Time Slicing)
•  Clock interrupt is generated at periodic

intervals
•  When an interrupt occurs, the currently

running process is placed in the ready queue
– Next ready job is selected

•  Better for processor-bound processes
•  Worse for I/O bound processes
•  => Virtual Round Robin (Aux. Queue)

•  Runtime = timeslice – run of last time

17

18

Shortest Process Next

•  Nonpreemptive policy
•  Process with shortest expected processing

time is selected next
•  Short process jumps ahead of longer

processes

19

Shortest Process Next

•  No preemption
•  Predictability of longer processes is

reduced
•  If estimated time for process not correct,

the operating system may abort it
•  Possibility of starvation for longer

processes
•  => preemptive version next

20

Shortest Remaining Time

•  Preemptive version of shortest process next policy
•  Must estimate processing time
•  Must keep track of elapsing time
•  Less interrupts w.r.t. Round Robin

21

Highest Response Ratio Next
(HRRN)

•  No preemption
•  W = waiting time
•  S = expected service time (statistics)
•  Choose next process with the greatest ratio

R = (W + S)/S

•  Fair to short (small S) and aged jobs (large W)

22

Feedback (Preemptive)
•  Difficult to know remaining time
•  =>Penalize jobs that have been running longer

23

Feedback (Preemptive)

•  Problem for long processes: starvation
•  Strategies:

–  Use timeslices of different length for different queues
–  Shorter for upper-level queues
–  Promote a process to an upper-level queue after has

waited for some time on a given queue

24

Traditional
UNIX Scheduling (Fair Share)

•  Multilevel feedback using round robin within each
of the priority queues

•  Process preempted after 1 sec running
•  Priorities are recomputed every second

 CPUj(i) = CPUj(i-1)/2
 Pj(i) = Base_j+ CPUj(i)/2 + nice_j

•  Penalizes processor-bound processes
•  Base priority divides all processes into fixed

bands of priority levels

25

Bands

•  Decreasing order of priority
– Swapper
– Block I/O device control
– File manipulation
– Character I/O device control
– User processes

26

