Uniprocessor Scheduling

Aim of Scheduling

Assign processes to be executed by the
processor(s)

Response time
Throughput
Processor efficiency

Table 9.1 Types of Scheduling

Long-term scheduling

Medium-term scheduling

Short-term scheduling

/O scheduling

The decision to add to the pool of processes to be executed

The decision to add to the number of processes that are partially or
fully in main memory

The decision as to which available process will be executed by the
processor

The decision as to which process's pending I/O request shall be
handled by an available 'O device

Short Term

Long-Term Scheduling

* Determines which programs are admitted
to the system for processing

» Controls the degree of multiprogramming

* More processes, smaller percentage of
time each process is executed

Medium-Term Scheduling

» Part of the swapping function

 Based on the need to manage the degree
of multiprogramming

Short-Term Scheduling

 Known as the dispatcher
« Executes most frequently

* |Invoked when an event occurs
— Clock interrupts
— 1/O interrupts
— Operating system calls
— Signals

Dispatcher Criteria

User-oriented
— Response Time

» Elapsed time between the submission of a
request until there is output.

System-oriented
— Effective and efficient utilization of the processor

Performance-related

— Quantitative

— Measurable such as response time and
throughput

Predictability (same behavior in time)

8

Table 9.2 Scheduling Criteria

User Oriented, Performance Related

Turnaround time This is the interval of time between the submission of a process and its completion.
Includes actual execution time plus time spent waiting for resources, including the processor. This is an
appropriate measure for a batch job.

Response time For an interactive process, this is the time from the submission of a request until the
response begins to be received. Often a process can begin producing some output to the user while
continuing to process the request. Thus, this is a better measure than turnaround time from the user's point

of view. The scheduling discipline should attempt to achieve low response time and to maximize the
number of interactive users receiving acceptable response time.

Deadlines When process completion deadlines can be specified. the scheduling discipline should
subordinate other goals to that of maximizing the percentage of deadlines met.

User Oriented, Other

Predictability A given job should run in about the same amount of time and at about the same cost
regardless of the load on the system. A wide variation in response time or turnaround time is distracting to
users. It may signal a wide swing in system workloads or the need for system tuning to cure instabilities.

System Oriented, Performance Related

Throughput The scheduling policy should attempt to maximize the number of processes completed
per unit of time. This is a measure of how much work is being performed. This clearly depends on the
average length of a process but is also influenced by the scheduling policy, which may affect utilization.

Processor utilization This is the percentage of time that the processor is busy. For an expensive shared
system, this is a significant criterion. In single-user systems and in some other systems, such as real-time
systems, this criterion is less important than some of the others.

System Oriented, Other

Fairness In the absence of guidance from the user or other system-supplied guidance, processes should
be treated the same, and no process should suffer starvation.

Enforcing priorities When processes are assigned priorities, the scheduling policy should favor
higher-priority processes.

Balancing resources The scheduling policy should keep the resources of the system busy. Processes
that will underutilize stressed resources should be favored. This criterion also involves medium-term and
long-term scheduling.

10

Priorities

* Scheduler will always choose a process of
higher priority over one of lower priority

* Have multiple ready queues to represent
each level of priority

» Lower-priority may suffer starvation

— Allow a process to change its priority based
on its age or execution history

11

RQO

Processor

Release

Event Wait

Dispatch
Sm— o
A
RQ1
— i
Admit — :
RQn
_>
Preemption
—~at}
Event
occurs Blocked Queue

12

Decision Mode

* Nonpreemptive

— Once a process is in the running state, it will continue
until it terminates or blocks itself for I/O

* Preemptive

— Currently running process may be interrupted and
moved to the Ready state by the operating system

— Allows for better service since any one process
cannot monopolize the processor for very long

13

First-Come-First-Served
(FCFS)

0 5 10 15 20
e rrreeeer e e el

lllllllllllllllllllll
lllllllllllllllllllll
lllllllllllllllll
lllllllllllllllll
lllllllllll
lllllll
lllllll
A A A A

First-Come-First B, | |
Served (FCFS) c'ovor
D

* Each process joins the Ready queue

 When the current process ceases to
execute, the oldest process in the Ready

gueue Is selected

14

First-Come-First-Served
(FCFS)

* A short process may have to wait a very
long time before it can execute
* Favors CPU-bound processes

— 1/O processes have to wait until CPU-bound
process completes

15

Round-Robin

0 s 10 15 20
NN S R R S S R A RN S A - S R
nnnnnnnnnnnnnnnn
P W [I R A TR T T TR TR TR S SRR SR SR R RN R S SR
Round-Robin B, :
(RR).g=1 cCvooro
D : : : : : | | I I I I I
E v v o0 0 00 ' T

« Uses preemption based on a clock

* An amount of time is determined that
allows each process to use the
processor for that length of time

16

Round-Robin (Time Slicing)

Clock interrupt is generated at periodic
Intervals

When an interrupt occurs, the currently
running process is placed in the ready queue

— Next ready job is selected
Better for processor-bound processes
Worse for |/O bound processes

=> Virtual Round Robin (Aux. Queue)
 Runtime = timeslice - run of last time

17

Time-out

Ready Queue d
Admit Dispatch] Release
- Processor |+ -
]
—
Auxiliary Queue
/O 1 < 1/O 1 Wait
Occurs
1/0 1 Queue
/0O 2 I I/0 2 Wait
Occurs
I/0 2 Queue
/O n I/0 n Wait
Occurs
I/O n Queue

18

Shortest Process Next

10

r,

I Y “—
SR B S @)
©

- -"———-—-- (4]
()

--=-1 {-—————- c
I Y ©
(/)]

- _r r______ Q.
ﬁ m
e Dl o e o — — — — — lw
- -l - - — — — — -)
(/)]

- - O
. (&)

< 2D a= nru

Q.

T

@)

-

)

o

Shortest Process
Next (SPN)

Processes

19

Shortest Process Next

No preemption

Predictability of longer processes is
reduced

If estimated time for process not correct,
the operating system may abort it

Possibility of starvation for longer
processes

=> preemptive version next

20

Shortest Remaining Time

Shortest Remaining
Time (SRT)

l
l
l
l
l
l
|

=T, ==

— — — —
— — — —

— — — — —
— — — — — -
— — — — —
— —— — — -

* Preemptive version of shortest process next policy
Must estimate processing time

Must keep track of elapsing time

Less interrupts w.r.t. Round Robin

21

Highest Response Ratio Next
(HRRN)

No preemption

W = waiting time

S = expected service time (statistics)
Choose next process with the greatest ratio

R = (W + S)/S

« Fair to short (small S) and aged jobs (large W)

22

Feedback (Preemptive)

* Difficult to know remaining time
« =>Penalize jobs that have been running longer

Release

RQO
Admit
----------- -
RQ1
------ -»
RQn
- .
pr—

S

Release

Release

23

Feedback (Preemptive)

* Problem for long processes: starvation

« Strategies:
— Use timeslices of different length for different queues
— Shorter for upper-level queues

— Promote a process to an upper-level queue after has
waited for some time on a given queue

24

Traditional
UNIX Scheduling (Fair Share)

Multilevel feedback using round robin within each
of the priority queues

Process preempted after 1 sec running
Priorities are recomputed every second
CPUj(i) = CPUj(i1-1)/2

Pj(i) = Base_j+ CPUj(i)/2 + nice_]j
Penalizes processor-bound processes

Base priority divides all processes into fixed
bands of priority levels

25

Bands

* Decreasing order of priority
— Swapper
— Block 1/O device control
— File manipulation
— Character |/O device control
— User processes

26

