Concurrency: Deadlock and
Starvation

Deadlock

Permanent blocking of a set of processes
that either compete for system resources
or communicate with each other

No efficient solution

Involve conflicting needs for resources
by two or more processes

(a) Deadlock possible (b) Deadlock

Figure 6.1 Illustration of Deadlock

Deadlock & Fatal Region

Progress
OfQ A
Al 2
Release
A
b4
R ‘:i red Release
eq B RESERARER \Q
Get A //. 2 2 I
B 3 deadlock
R . ’Inevlhble
equired
Get B 44 2
6
>
Progress
of P

Get A Get B Release A Release B

% = both P and Q want resource A \———‘—Y\J
A

= both P and Q want resource B Rquuil'ed \—"'—Y\J
D = deadlock-inevitable region B Required

sl = possible progress path of P and Q.
Horizontal portion of path indicates P is executing and Q is waiting.
Vertical portion of path indicates P is executing and Q is waiting.

Progress

of Q
A
Al 2 A3
Release
A
o :
>
A_ Release /
Required B / “87 \\\
x 7
B
Required
Get B S >
6
>
Progress
> of P
GetA ReleaseA GetB Release B

% = both P and Q want resource A A Required B Required

= both P and Q want resource B sl = passible progress path of P and Q.

N Horizontal portion of path indicates P is executing and Q is waiting.

Vertical portion of path indicates P is executing and Q is waiting.

Figure 6.3 Example of No Deadlock [BACO03]

Reusable Resources

Used by only one process at a time and not depleted by
that use

Processes obtain resources that they later release for
reuse by other processes

Processors, I/0 channels, main and secondary memory,
devices, and data structures such as files, databases, and
semaphores

Deadlock occurs 1f each process holds one resource and
requests the other

Example of Deadlock

Process P Process Q
Step Action Step Action
Po Request (D) q Request (T)
Py Lock (D) q, Lock (T)
P, Request (T) Qs Request (D)
Ps Lock (T) Qs Lock (D)
Ps Perform function Qs Perform function
Ps Unlock (D) s Unlock (T)
Ps Unlock (T) Qs Unlock (D)

Figure 6.4 Example of Two Processes Competing for Reusable Resources

Another Example of Deadlock

Space 1s available for allocation of
200KDbytes, and the following sequence
of events occur

P1 P2

Request 80 Kbytes; Request 70 Kbytes;

Request 60 Kbytes; Request 80 Kbytes;

Deadlock occurs 1f both processes
progress to their second request

Consumable Resources

Created (produced) and destroyed (consumed)

Interrupts, signals, messages, and information in
I/O buffers

Deadlock may occur 1f a Receive message 1s
blocking; e.g.:
P1: receive(P2, M); P2:recerve(P1, M); P1&P2:send

May take a rare combination of events to cause
deadlock

Resource Allocation Graphs

» Directed graph that depicts a state of the system of

resources and ProcCcsscs

Pl

Requests

Ra

(a) Resouce is requested

Pl

Held by

Ra

(b) Resource is held

10

Resource Allocation Graphs

(¢) Circular wait (d) No deadlock

Figure 6.5 Examples of Resource Allocation Graphs

Conditions for Deadlock

Mutual exclusion

Only one process may use a resource at a time
Hold-and-wait

A process may hold allocated resources while
awaiting assignment of others

No preemption

No resource can be forcibly removed form a
process holding it

12

Conditions for Deadlock

Circular wazit

A closed chain of processes exists, such that each process holds at
least one resource needed by the next process in the chain

P1

(¢) Circular wait

(b) Deadlock

P1 P2 P3 P4

A A A A
' ' ®
Ra Rb Re Rd

Figure 6.6 Resource Allocation Graph for Figure 6.1b

14

Possibility of Deadlock
(necessary condition)

Mutual Exclusion
No preemption
Hold and wait

15

Existence of Deadlock
(sufficient condition)

Mutual Exclusion
No preemption
Hold and wait

Circular wait (fatal region has been
reached)

16

What to do:

Prevention: make sure that one of the 4 sufficient
conditions 1s not met

Avoid: make dynamic choices based on system
and resource allocation state

Detect: mechanisms to understand that 1t has
happened

17

Deadlock Prevention

Mutual Exclusion
Must be supported by the operating system
Hold and Wait: Require a process request all resources at one
time
Not efficient & difficult (cannot know 1n advance)
No Preemption: Process must release resource and request
again (priorities)
Operating system may preempt a process to require it
releases its resources (handle same priorities)

Circular Wait: Define a linear ordering of resource types

Enforce requests only in one direction of the ordering (either
increasing or decreasing order)

Deadlock Avoidance

A decision 1s made dynamically whether the
current resource allocation request will, 1f
granted, potentially lead to a deadlock

Requires knowledge of future process request

Two Approaches to
Deadlock Avoidance

Do not start a process if 1ts demands might lead to
deadlock

Do not grant an incremental resource request to a
process 1f this allocation might lead to deadlock

Process Initiation denial

[Resource = R = (R,Ry,...,R,) total amount of each resource in the system
Available = V = (V,V,,...,V,) total amount of each resource not allocated to any process
Cu Ci Cim
C21 C22 ... CZ’"
Claim=C=| C;j = requirement of process i for resource j
Cnl Cn2 Cnm
All A12 - .. Alm
AZI An - .. Az’"
Allocation = A =| ., - A;; = current allocation to process i of resource j
Ay Ap T A

n
L Ri=V;+ EA,-,-, for all j All resources are either available or allocated.
=1

2. Cjs=R;, forallij No process can claim more than the total amount
of resources in the system.

3 A< C

> foralli,j No process is allocated more resources of any

type than the process originally claimed to need.

» Start a new process P(n+1) only 1iff:
— Ry >=C(n+1); + Sum(1=1->n) Cij for all ;.

