
1

Concurrency: Deadlock and
Starvation

2

Deadlock

•  Permanent blocking of a set of processes
that either compete for system resources
or communicate with each other

•  No efficient solution
•  Involve conflicting needs for resources

by two or more processes

3

Deadlock & Fatal Region

5

6

Reusable Resources
•  Used by only one process at a time and not depleted by

that use
•  Processes obtain resources that they later release for

reuse by other processes
•  Processors, I/O channels, main and secondary memory,

devices, and data structures such as files, databases, and
semaphores

•  Deadlock occurs if each process holds one resource and
requests the other

7

Example of Deadlock

8

Another Example of Deadlock

•  Space is available for allocation of
200Kbytes, and the following sequence
of events occur

•  Deadlock occurs if both processes
progress to their second request

P1

. . .

. . .
Request 80 Kbytes;

Request 60 Kbytes;

P2

. . .

. . .
Request 70 Kbytes;

Request 80 Kbytes;

9

Consumable Resources

•  Created (produced) and destroyed (consumed)
•  Interrupts, signals, messages, and information in

I/O buffers
•  Deadlock may occur if a Receive message is

blocking; e.g.:
– P1: receive(P2, M); P2:receive(P1, M); P1&P2:send

•  May take a rare combination of events to cause
deadlock

10

Resource Allocation Graphs
•  Directed graph that depicts a state of the system of

resources and processes

Resource Allocation Graphs

12

Conditions for Deadlock

•  Mutual exclusion
– Only one process may use a resource at a time

•  Hold-and-wait
– A process may hold allocated resources while

awaiting assignment of others
•  No preemption

– No resource can be forcibly removed form a
process holding it

Conditions for Deadlock
•  Circular wait

–  A closed chain of processes exists, such that each process holds at
least one resource needed by the next process in the chain

14

6.1 / PRINCIPLES OF DEADLOCK 263

This chapter continues our survey of concurrency by looking at two problems that
plague all efforts to support concurrent processing: deadlock and starvation. We begin
with a discussion of the underlying principles of deadlock and the related problem of
starvation. Then we examine the three common approaches to dealing with deadlock:
prevention, detection, and avoidance. We then look at one of the classic problems used
to illustrate both synchronization and deadlock issues: the dining philosophers problem.

As with Chapter 5, the discussion in this chapter is limited to a consideration of
concurrency and deadlock on a single system. Measures to deal with distributed dead-
lock problems are assessed in Chapter 18.

6.1 PRINCIPLES OF DEADLOCK

Deadlock can be defined as the permanent blocking of a set of processes that either
compete for system resources or communicate with each other. A set of processes is
deadlocked when each process in the set is blocked awaiting an event (typically the
freeing up of some requested resource) that can only be triggered by another
blocked process in the set. Deadlock is permanent because none of the events is
ever triggered. Unlike other problems in concurrent process management, there is
no efficient solution in the general case.

All deadlocks involve conflicting needs for resources by two or more processes.
A common example is the traffic deadlock. Figure 6.1a shows a situation in which
four cars have arrived at a four-way stop intersection at approximately the same
time. The four quadrants of the intersection are the resources over which control is
needed. In particular, if all four cars wish to go straight through the intersection, the
resource requirements are as follows:

• Car 1, traveling north, needs quadrants a and b.
• Car 2 needs quadrants b and c.

c b

d a

(a) Deadlock possible (b) Deadlock

4 4

1

1

3

32 2

Figure 6.1 Illustration of Deadlock

M06_STAL6329_06_SE_C06.QXD 2/21/08 9:29 PM Page 263

15

Possibility of Deadlock
(necessary condition)

•  Mutual Exclusion
•  No preemption
•  Hold and wait

16

Existence of Deadlock
(sufficient condition)

•  Mutual Exclusion
•  No preemption
•  Hold and wait
•  Circular wait (fatal region has been

reached)

17

What to do:

•  Prevention: make sure that one of the 4 sufficient
conditions is not met

•  Avoid: make dynamic choices based on system
and resource allocation state

•  Detect: mechanisms to understand that it has
happened

Deadlock Prevention
•  Mutual Exclusion

–  Must be supported by the operating system
•  Hold and Wait: Require a process request all resources at one

time
–  Not efficient & difficult (cannot know in advance)

•  No Preemption: Process must release resource and request
again (priorities)
–  Operating system may preempt a process to require it

releases its resources (handle same priorities)
•  Circular Wait: Define a linear ordering of resource types

–  Enforce requests only in one direction of the ordering (either
increasing or decreasing order)

Deadlock Avoidance
•  A decision is made dynamically whether the

current resource allocation request will, if
granted, potentially lead to a deadlock

•  Requires knowledge of future process request

Two Approaches to
Deadlock Avoidance

•  Do not start a process if its demands might lead to
deadlock

•  Do not grant an incremental resource request to a
process if this allocation might lead to deadlock

Process Initiation denial

•  Start a new process P(n+1) only iff:
– Rj >= C(n+1)j + Sum(i=1->n) Cij for all j.

