Resource Allocation Denial

Referred to as the banker’ s algorithm

State of the system 1s the current allocation of
resources to process

Safe state 1s where there 1s at least one
sequence that does not result in deadlock

Unsafe state 1s a state that 1s not safe

22

P1
P2
P3
P4

Determination of a Safe State

R1 R2 R3 R1 R2 R3 R1 R2 R3
3 2 2 P1 1 0 0 P1 2 2 2
6 1 3 P2 6 1 2 P2 0 0 1
3 1 4 P3 2 1 1 P3 1 0 3
4 2 2 P4 0 0 2 P4 4 2 0

Claim matrix C Allocation matrix A C-A
R1 R2 R3 R1 R2 R3
L 9 [3 | 6 | L o [1t [1 |
Resource vector R Available vector V

(a) Initial state

* Is there a run that will bring all processes
to completion?

23

Determination of a Safe State

R1 R2 R3 R1 R2 R3 R1 R2 R3
P1 3 2 2 P1 1 0 0 P1 2 2 2
P2 6 1 3 P2 6 1 2 P2 0 0 1
P3 3 1 4 P3 2 1 1 P3 1 0 3
P4 4 2 2 P4 0 0 2 P4 4 2 0

Claim matrix C Allocation matrix A C-A
R1 R2 R3 R1 R2 R3
L 9 [3 | 6 | L o [1t [1 |
Resource vector R Available vector V

(a) Initial state

* Is there a run that will bring all processes to completion?

» Is there an allocation which can bring 1 process to

. 24
completion?

P1
P2
P3
P4

Determination of a Safe State

P2 Runs to Completion

R1 R2 R3 R1 R2 R3
3 2 2 P1 1 0 0 P1
0 0 0 P2 0 0 0 P2
3 1 4 P3 2 1 1 P3
N 2 2 P4 0 0 2 P4
Clatm matrix C Allocation matrix A
R1 R2 R3 R1 R2 R3
9 3 6 6 2 3

Resource vector R Available vector V

(b) P2 runs to completion

R1 R2 R3
2 2 2
0 0 0
1 0 3
3 2 0

C-A

25

P1

P3
P4

Determination of a Safe State
P1 Runs to Completion

R1 R2 R3 R1 R2 R3 R1 R2 R3
0 0 0 P1 0 0 0 P1 0 0 0
0 0 0 P2 0 0 0 P2 0 0 0
3 1 4 P3 2 1 1 P3 1 0 3
4 2 2 P4 0 0 2 P4 4 2 0

Claim matrix C Allocation matrix A C-A
R1 R2 R3 R1 R2 R3
9 3 6 7 2 3
Resource vector R Available vector V

(c) P1 runs to completion

26

P1
P2
P3
P4

Determination of a Safe State

P3 Runs to Completion

R1 R2 R3 R1 R2 R3
0 0 0 P1 0 0 0 P1
0 0 0 P2 0 0 0 P2
0 0 0 P3 0 0 0 P3
4 2 2 P4 0 0 2 P4
Claim matrix C Allocation matrix A
R1 R2 R3 R1 R2 R3
L 9 | 3 [6 | Lo [3 | 4

Resource vector R Avatilable vector V

(d) P3 runs to completion

o|lo| oo

27

Determining Unsafe State

R1 R2 R3 R1 2 R3
P1 3 2 2 P1 1 0 0 P1
P2 6 1 3 P2 s 1 1 P2
P3 3 1 4 P3 2 1 1 P3
P4 4 2 2 P4 0 0 2 P4
Claim matrix C Allocation matrix A
R1 R2 R3 R1 R2 R3
L o [3 [s | L r [+ | 2 |
Resource vector R Available vector V
(a) Initial state
R1 R2 R3 R1 R2 R3
P1 3 2 2 P1 2 0 1 P1
P2 6 1 3 P2 5 1 1 P2
P3 3 1 4 P3 2 1 1 P3
P4 4 2 2 P4 0 0 2 P4

Claim matrix C

Allocation matrix A

R1 R2 R3 R1 R2 R3

S 3 6

0 1 1

Resource vector R

Available vector V

(b) P1 requests one unit each of R1 and R3

 Unsafe but not necessarily deadlock

R1 R2 R3
2 2 2
1 (0] 2
1 (0] 3
4 2 0

C—A

R1 R2 R3
1 2 1
1 0 2
1 0 3
4 2 0

C—A

— P1 blocked or p1 releases resources it already has in the mean time

Deadlock Avoidance Logic

struct state

{
int resource[m];
int available[m];
int claim[n] [m];
int alloc[n] [m];

(a) global data structures

if (alloc [1i,*] + request [*] > claim [1i,*])

< error >; /* total request > claim*/
else if (request [*] > available [*])

< suspend process >;
else /* simulate alloc ¥/
{

< define newstate by:

alloc [1i,*] = alloc [i,%*] + request [*];

available [*] = available [*] - request [*] >;

if (safe (newstate))
< carry out allocation >;
else
{
< restore original state >;
< suspend process >;

(b) resource alloc algorithm

Deadlock Avoidance Logic

boolean safe (state 3)
{
int currentavail[m];
process rest[<number of processes>];
currentavail = available;
rest = {all processes};
possible = true;
while (possible)
{

<find a process Px in rest such that

claim [k,*] - alloc [k,*] <= currentavail;>
if (found) /* simulate execution of Py */
{

currentavail = currentavail + alloc [k, *];

rest = rest - {Px};
}
else
possible = false;
}

return (rest == null);

(c¢) test for safety algorithm (banker's algorithm)

30

Deadlock Avoidance

Maximum resource requirement must be stated
in advance

Processes under consideration must be
independent; no synchronization requirements

There must be a fixed number of resources to
allocate

No process may exit while holding resources

31

Deadlock Detection Algorithm

Matrix Q (requests) and A (allocated)
Vector Available

Algorithm:
Mark each process that has all 0 1n A
Initialize vector W to equal Available vector
Search for P1 unmarked such that Q(1)<=W(1)

If not exists: break;

If exists,
update W(1) = W(1) + A(1);
Mark Pi.
go to 3;

Strategies once Deadlock Detected

Abort all deadlocked processes

Back up each deadlocked process to some
previously defined checkpoint, and restart all
process

Original deadlock may occur

Successively abort deadlocked processes until
deadlock no longer exists

Successively preempt resources until deadlock
no longer exists

33

Selection Criteria Deadlocked
Processes

Least amount of processor time consumed so far
Least number of lines of output produced so far
Most estimated time remaining

Least total resources allocated so far

Lowest priority

34

Dining Philosophers Problem

Each philosopher requires 2 @ @
forks to eat |

Build an algorithm that allows ="
philosophers to eat =

Mutual exclusion (not same fork ,
by two people) @
No starvation N~
No deadlock

35

Dining Philosophers Problem

/* program diningphilosophers */
semaphore fork [5] = {1};
int i;

void philosopher (int 1)

{

while (true)

{
think () ;
wait (fork[i]):;
wait (fork [(1+1l) mod 5]):;
eat();
signal(fork [(i+1l) mod 5]);
signal (fork[i]):

}

}

void main ()
{
parbegin (philosopher (0), philosopher (1), philosopher (2),
philosopher (3), philosopher (4)):;
}

Figure 6.12 A First Solution to the Dining Philosophers Problem

Dining Philosophers Problem

/* program diningphilosophers */
semaphore fork [5] = {1};
int i;

void philosopher (int i)

while (true)

{
think () ;
wait (fork[i]l):
wait (fork [(i+1l) mod 5]):;
eat();
signal (fork [(i+1l) mod 5]):
signal (fork[i]) ;

}

void main ()

{
parbegin (philosopher (0), philosopher (1), philosopher (2),

philosopher (3), philosopher (4));

}

Figure 6.12 A First Solution to the Dining Philosophers Problem

All Starve!

Dining Philosophers Problem

Idea: At most 4 are at the table

38

Dining Philosophers Problem

/* program diningphilosophers */
semaphore fork[5] = {1};
semaphore room = {4};

int i;

void philosopher (int I)

{

while (true)

{

think () ;

wait (room);

wait (fork[il]):

wait (fork [(i+1l) mod 5]);
eat () ;

signal (fork [(i+1l) mod 5]);
signal (fork[i]):

signal (room);

}

void main ()

{

parbegin (philosopher (0), philosopher (1), philosopher (2),
philosopher (3), philosopher (4));

Figure 6.13 A Second Solution to the Dining Philosophers Problem

39

