
22

Resource Allocation Denial

•  Referred to as the banker’s algorithm
•  State of the system is the current allocation of

resources to process
•  Safe state is where there is at least one

sequence that does not result in deadlock
•  Unsafe state is a state that is not safe

23

Determination of a Safe State

•  Is there a run that will bring all processes
to completion?

24

Determination of a Safe State

•  Is there a run that will bring all processes to completion?
•  Is there an allocation which can bring 1 process to

completion?

25

Determination of a Safe State
P2 Runs to Completion

26

Determination of a Safe State
P1 Runs to Completion

27

Determination of a Safe State
P3 Runs to Completion

Determining Unsafe State

•  Unsafe but not necessarily deadlock
–  P1 blocked or p1 releases resources it already has in the mean time

29

Deadlock Avoidance Logic

30

Deadlock Avoidance Logic

31

Deadlock Avoidance
•  Maximum resource requirement must be stated

in advance
•  Processes under consideration must be

independent; no synchronization requirements
•  There must be a fixed number of resources to

allocate
•  No process may exit while holding resources

Deadlock Detection Algorithm
•  Matrix Q (requests) and A (allocated)
•  Vector Available
•  Algorithm:

1.  Mark each process that has all 0 in A
2.  Initialize vector W to equal Available vector
3.  Search for Pi unmarked such that Q(i)<=W(i)

1.  If not exists: break;
2.  If exists,

1.  update W(i) = W(i) + A(i);
2.  Mark Pi.
3.  go to 3;

33

Strategies once Deadlock Detected
•  Abort all deadlocked processes
•  Back up each deadlocked process to some

previously defined checkpoint, and restart all
process
– Original deadlock may occur

•  Successively abort deadlocked processes until
deadlock no longer exists

•  Successively preempt resources until deadlock
no longer exists

34

Selection Criteria Deadlocked
Processes

•  Least amount of processor time consumed so far
•  Least number of lines of output produced so far
•  Most estimated time remaining
•  Least total resources allocated so far
•  Lowest priority

35

Dining Philosophers Problem

•  Each philosopher requires 2
forks to eat

•  Build an algorithm that allows
philosophers to eat
– Mutual exclusion (not same fork

by two people)
– No starvation
– No deadlock

Dining Philosophers Problem

37

Dining Philosophers Problem

All Starve!

38

Dining Philosophers Problem

Idea: At most 4 are at the table

39

Dining Philosophers Problem

