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The recent boost up of mobile data consumption is straining cellular networks in metropol-
itan areas and is the main reason for the ending of unlimited data plans by many providers.
To address this problem, we propose the use of series opportunistic delegation as a data
traffic offload solution by investigating two main questions: (i) ‘‘Can we characterize a
given social mobile scenario by observing only a small portion of it?’’. (ii) ‘‘How to exploit
this characterization so to design solutions that alleviate overloaded cellular networks?’’. In
our solution we build a social-graph of the given scenario by observing it for a period as
short as 1-week, and then leverage a few, socially important users in the social-graph—
the VIPs—to offload the network. The proposed VIP selection strategies are based on social
network properties and are compared to the optimal (offline) solution. Through extensive
evaluations with real and synthetic traces we show the effectiveness of VIP delegation both
in terms of coverage and required number of VIPs – down to 7% in average of VIPs are
needed in campus-like scenarios to offload about 90% of the traffic.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Since the modern smartphones have been introduced
worldwide, more and more users have become eager to en-
gage with mobile applications and connected services. This
eagerness has boosted up sales in the market – more than
64% up annually worldwide in Q2 2010 [1]. Simulta-
neously, smartphone owners are using an increasing num-
ber of applications requiring the transfer of large amounts
of data to/from mobile devices. Opportunistic applications
[2], crowd-source based ones [3], global sensing [4,5], and
content distribution [6] are just a few of the examples. As a
consequence, the traffic generated by such devices has
caused many problems to cellular network providers.
AT&T’s subscribers in USA were getting extremely slow
or no service at all because of network straining to meet
iPhone users’ demand [7]. The company switched from
unlimited traffic plans to tiered pricing for cellular data
users in summer 2010. Similarly, Dutch T-Mobile’s infra-
structure has not been able to cope with intense mobile
traffic, by thus forcing the company to issue refunds for
affected users [8]. All these issues are bringing new technical
challenges to the networking and telecommunication com-
munity. In fact, finding new ways to manage such increased
data usage is essential to improve the level of service
required by the new wave of smartphones applications.
One of the most promising solutions to avoid overwhelm-
ing the cellular network infrastructure is to offload part of
the traffic onto direct communication between wireless de-
vices whenever possible. The offloading process targets at
the part of the data that tolerates some delay before
delivery. This means that data is stored and transferred
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Fig. 1. Network without and with opportunistic offloading.
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directly between nodes in an ad hoc fashion until the dead-
line arrives and, if necessary, nodes access the cellular
infrastructure to download or upload the data. Note that
in the case of redundant data (e.g., measurement of pollu-
tion levels), the traffic on the cellular infrastructure can be
drastically reduced through opportunistic offloading (see
Fig. 1(a and b) for an example in the data gathering case).1

In this paper, we propose VIP delegation, a solution to
this problem based solely on the inherent social aspects
of user mobility. Our idea is to exploit a few, important sub-
scribers (users) that with their movement and interactions
are able to possibly contact regularly all the rest of the net-
work users. These VIP devices would act as a bridge be-
tween the network infrastructure and the remaining of
the network, each time large amount of data has to be
transferred. Because nodes move and meet each other, it
suffices to contact a subset of them to reach a large number
of nodes (possibly all of them). In the example of the figure,
nodes fx; yg can serve as VIPs on behalf of the others, as
they meet by themselves the rest of the network.

VIP delegation can help alleviate the network traffic in
different delay-tolerant scenarios. Distribution of content
to users by service providers, free updates of mobile soft-
ware, system patches and so on, are just some examples
that show how the network can exploit VIPs. However,
their role for upload traffic (from the nodes to the network)
is even more prominent: VIPs drastically reduce the num-
ber of competing upload network flows. As a direct conse-
quence, also the number of collisions, and most
importantly, of retransmissions decreases drastically. This
becomes very valuable for users in overloaded networks.
That said, we believe that VIPs can be even more valuable
when involved in collection of urban-sensing related data
[4,5]. In these cases data can be aggregated under the con-
trol of a central entity (e.g., government institutions) so to
give feedback to the users on the environment they are liv-
ing in (e.g. average noise pollution, smog, and so on). This
aggregation could happen at the VIPs, as they collect the
data sensed by the users. At the end of the coverage period,
the VIPs would only send the aggregated value through the
cellular network, by thus actually reducing the traffic
flowing through the cellular network.
1 There are several other offloading alternatives (through Wi-Fi access
points for example, as discussed in Section 2.1). In this paper, we focus only
on the case of opportunistic offloading.
The question here is how to compute an appropriate VIP
set given some requirements. For this, we present, formalize,
and evaluate two methods of VIPs selection: global and
neighborhood VIP delegation (see Section 3). While the for-
mer focuses on users that are globally important in the net-
work (namely, global VIPs), the latter selects users that are
important within their social communities. The importance
of a user within the network is given in terms of well-
known attributes such as centrality (betweenness, degree,
and closeness) and PageRank. In both cases, we observe
that a short observation period (one week) is enough to
detect users that keep their importance during long
periods (several months). Selected nodes are then used to
cover the network during a certain time window, through
solely direct wireless contacts with the remaining nodes
(see Section 4). In this paper, we provide significant
extension over a companion work by deeply investigating
coverage aspects [9].

Through extensive evaluations on real-life and syn-
thetic traces, we evaluate the performance of the global
and neighborhood VIP delegation methods in terms of net-
work coverage, by varying the number of VIPs chosen (see
Section 6). We compare our solution with an optimal
benchmark computed from the full knowledge of the sys-
tem. The results reveal that our strategies get very close
to the performance of the benchmark VIPs: Only 5.93%
page-rank VIPs against almost 4% of the benchmark VIPs
are required to offload about 90% of the network in cam-
pus-like scenarios. Additionally we discuss on possible
VIP incentives, the way VIPs offload the traffic accumulated
to the network, and leveraged applications in Section 8.
Finally, we conclude with Section 9.

2. Related works

We go through the related work in the area, discussing
the most representative results on both data offloading and
user-aided networking services.

2.1. Data offloading

Consumption of mobile data by the pervasive usage of
smartphones is forcing carriers to find ways to offload
the network. So far the most reasonable solution to the
problem is offloading to alternate networks, such as femto-
cells and Wi-Fi. Femtocells exploit broadband connection
to the service provider’s network and leverage the licensed
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spectrum of cellular macro-cells to offer better indoor cov-
erage to subscribers [10]. As a side effect, automatic
switching of devices from cellular network to femtocells
reduces the load of the network. Besides from being local-
ized (indoors only), such solution suffers from the non-
proliferation of femtocells to subscribers’ homes. Moreover,
charging users for the necessary equipment as the network
providers are currently doing (150 USD for AT&T’s micro-
cell) will not help in this direction. On the other hand,
the proliferation of modern Wi-Fi enabled smartphones,
together with the network providers’ tendency towards
already existing technologies has turn Wi-Fi offloading
into a reality. More and more carriers worldwide are
investing in this direction [11], by installing access points
and hot-spots close to overloaded cellular towers, and by
providing to clients Wi-Fi access within tiered monthly
subscription. In this direction, Balasubramanian et al. pro-
pose a system to augment access to cellular network
through Wi-Fi offloading [12]. This system, called Wiffler
focuses only on Internet access from moving vehicles. It
leverages delay tolerance and fast switching of devices to
overcome the poor availability and performance of Wi-Fi.

Even though offloading to Wi-Fi seems to be the best
solution so far to cellular network overloading [13], the
continuous increasing of mobile data-traffic demand sug-
gests for integration of Wi-Fi with other offloading meth-
ods. Indeed, according to a CISCO report,2 the mobile data
traffic will increase 18-fold within 2016, in front of a mere
9-fold increase in connection speeds. This huge traffic
increase is very likely to pose problems also to public
Wi-Fi access points. Most importantly, this forecast in
mobile traffic demand outgrows the capabilities of planned
cellular technology advances like 4G and LTE. According to
Ericsson’s CTO, there is strong scepticism about possible
further improvements brought by 5G technology.3 As we
will show in this paper, our solution is essentially different
from Wi-Fi and femtocell-based offloading; nevertheless, it
can be integrated to these methods to further help alleviate
mobile data overloads.

2.2. User-aided networking

Polat et al. suggest some sort of network members’ pro-
motion to enhance network functionalities [14]. They focus
on providing multi-hop connectivity in a mobile ad hoc
network. Their solution makes use of the concept of
connected message ferry dominating set (CMFDS), where
ferry-members of the network are connected over
space–time paths. Besides from the difference in both
problematic and application scenario with our work, no so-
cial aspect/importance of the network members is consid-
ered in promotion.

Many research works targeting social mobile networks
make use of social ties between users to leverage network
services. To the best of our knowledge, Han et al. were the
first to exploit opportunistic communication to alleviate
2 Cisco visual networking index: Global mobile data traffic forecast,
2011–2016.

3 http://www.dnaindia.com/money/interview_there-will-be-no-5g-we-
have-reached-the-channel-limits-ericsson-cto_1546408.
data traffic in cellular networks [15]. Later on, they
extended their work in [16]. However, conversely from
ours, their solutions only apply to information dissemina-
tion problems such as broadcasting. They focus on select-
ing k target users to which the information is first sent
through cellular network. These target users will then,
through multi-hop opportunistic forwarding, disseminate
the information to all users in the network. We believe that
multi-hop forwarding can be applicable to broadcasting,
since users might willingly volunteer to share with others
the same data they are interested in (data that they would
anyway pull from other people). But, if the user is not
directly interested in the data, collecting (disseminating)
and eventually multi-hop forwarding data generated from
other users becomes a burden without any gain for her
(e.g., scenarios where different data is being distributed
for different users, or collection and aggregation of sensing
data [4,5]). In these cases, it would be very costly to stim-
ulate all the users in the network to cooperate. Rather, our
solution relies on upgrading a crucial small set of users’
devices (down to 5.93% according to experiments with real
campus-like data traces) that, through direct contact with
network members, help alleviate the data traffic in both
upload and download directions, assuring that no packet
is lost. That said, while we believe that multi-hop forward-
ing is not applicable in our setting, for the sake of com-
pleteness we have compared the coverage performance
of the sets obtained by the Heuristic strategy [16] with
our VIP sets on the Dartmouth real trace.

Finally, also Push-and-Track, presented in [17] is rele-
vant, though different to our work in various aspects:
Firstly, it focuses on the dissemination scenario only. Sec-
ond, in Push-and-Track the infrastructure relies on some
performance targets to determine how many copies should
be injected. Thirdly, and most importantly, Push-and-Track
only makes use of the time a node enters the network, its
geographic position, or its connectivity degree. It does
not investigate the node interactions so to derive reliable
future communication possibilities, as we do in this work.
3. VIP delegation in a nutshell

In view of the scenario presented in the introduction,
we propose an offload method based solely on the social
aspects of user mobility. Our idea is to detect subscribers
(users) that, with their inherent mobility, are able to
encounter a large number of users (possibly all them) in a
regular fashion. These VIPs would act as a bridge between
the network infrastructure and the remaining of the net-
work, each time large amount of data has to be transferred.

The movement of smartphone users is not random;
rather, it is a manifestation of their social behavior
[18–21]. This movement, along with contact-based interac-
tions among users, generates a social mobile network. The
analysis of these mobility patterns and the understanding
of how mobile users meet play a critical role at the design
of solutions/services for such kind of networks. In particu-
lar, though the number of network users can be very high,
just a few of them have an ‘‘important’’ role within the so-
cial graph induced by the encounters. The natural behavior
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of these VIP nodes, which are considerably fewer than the
rest of the network, can be a valuable resource in both
information dissemination and collection to/from the rest
of the network. Motivated by the fact that opportunities
for users to exchange data depend on their habits and
mobility patterns, our idea is the following: turn those
few VIP nodes into bridges between regular users and the
Internet, each time large amount of data is to be up-
loaded/downloaded by these latter ones. In a word, VIPs
would act as delegates of the network infrastructure
builder. As a side effect, this would immediately drop down
the cellular network usage. That said, in the following of
this manuscript we will denote as covered a user that is vis-
ited by a VIP node. Similarly, we will denote as a covered
network a network whose every user has been covered.

In our scenario, we assume that users download/upload
large amount of data. This would demand a lot of network-
ing resources and thus, makes the use of multi-hop proto-
cols unfeasible. Indeed, it is quite hard to convince the
average user to act as a relay for others, even though to
the closest access point, of such an overloading traffic.
Rather, our solution relies on the upgrade of the devices,
or payment, of a small, crucial set of VIP nodes that regu-
larly visit network users and collect (disseminate) data to
them on behalf of the network infrastructure. Such upgrade
would serve as incentive to users to play the role of VIPs
(see Section 8 for discussions on possible VIP incentives).

Now the problem becomes: How to choose the smallest
VIP set that with their natural movement in the network cover
all users in a certain time window? More formally, the prob-
lem is defined as follows: Let N ¼ fn1; . . . ;nng be the net-
work nodes and let Gi ¼ ðVi; EiÞ be the graph whose set of
vertexes Vi � N are the network nodes that have at least a
meeting during the time window i, whereas the set of edges
Ei represents those meetings, i.e. fu1; u2g 2 Ei iff u1 and u2

meet in the time window i. We are looking for S � N such
that S¼ argminS�N j [i½ðVi n ðS[ fujfu; sg 2 Ei; s 2 SgÞ� j. Note
that set S can be seen as the smallest set of vertexes from
N that dominates the nodes in each Gi according to the
respective Ei. Though it has a dominating set flavor, this
problem is different from it: Indeed, here we deal with a
series of graphs instead of a singular one.

As previously mentioned, we solve this problem by
presenting two VIP selection methods that rely on either
a global or a local view of the network (the methods are
detailed in Section 4). We also present a benchmark
solution for VIP delegation. The benchmark provides an
optimal selection method that (i) requires the complete
pre-knowledge of users’ behavior and (ii) is based on an
adaptation of the well known NP-hard problem of the
Minimum Dominating Set [22]. Such a method is clearly
not feasible in real-life applications, but useful to evaluate
the performance of our social-based VIP selection methods.
4. VIP selection methods

The selection of VIPs in a social mobile network is based
on the ranking of nodes according to their social structural
attributes and requires knowledge on their mobility. For
this, a social graph describing the tightness of links in the
network has to be designed. As the authors of [23] show,
the performance of network protocols is strictly related
to the accuracy of the mapping between the mobility pro-
cess and the network social graph. They propose an online
algorithm that uses concepts from unsupervised learning
and spectral graph theory to infer the ‘‘correct’’ graph
structure. However, this approach is not applicable in our
case, where VIPs are to be predicted. We thus decide to fol-
low a simpler method in detecting the network’s social
graph, based on the following intuition: The movement
of users guided by their interests generates repeatability
in their behaviors (e.g., go to work/school every day, hang
out with the same group of friends) [18–21]. Intuitively, by
observing meeting patterns for a certain monitoring period
reveals enough information to characterize the tightness of
the social links in the network graph.

In a real-life application, we could imagine the network
infrastructure builder asking participating users to log their
meetings for a certain time, called here as monitoring period.
These logs serve then to build the networks’ social graph on
which the VIPs selection is made. More specifically, from
mobility patterns and wireless interactions of users in a net-
work, we establish a social undirected graph GðV ; EÞ, where
V is the set of users and E is the set of social ties (encounters)
among them. Note that such social graph is different from
each of the Gi ¼ ðVi; EiÞ we mentioned in the previous sec-
tion. Indeed, Gi represents exactly who meets who in a cer-
tain time window i; whereas G is only a representation of
the tightest friendship relations among network nodes that
appears during the monitoring period, which is composed
of a set of time windows i. Here, by friendship we mean
some sort of mobility tie among users in the network. The
details of the construction of the social graph will be given
in Section 6.4. However, we anticipate that social ties
(edges) in the graph GðV ; EÞ are strictly related to users’ con-
tact frequency: A link exists between two users if the num-
ber of times they meet is larger than a certain threshold,
which depends on the considered networking scenario.

At the following, we present our global and local VIPs
selection methods as well as the social structural attributes
used at nodes ranking.

4.1. VIPs selection methods

4.1.1. Global VIP selection
In the global selection, all network nodes are first

ordered according to their importance in the network,
determined by their social structural attributes (see
Section 4.3). Afterwards, the smallest VIP set over the
global social graph that covers the network during a certain
time window through direct contacts is chosen, by
applying one of the following VIP promotion methods:

� Blind global promotion. It selects the top-ranked nodes
not yet promoted, until the network is covered.
� Greedy global promotion. This is a set-cover flavored

solution. In particular, it starts with promoting to VIP
the top-ranked node. After this promotion, the nodes
covered by this VIP are dumped and ranking on the
remaining nodes are re-computed. Again, the procedure
is repeated until the network is covered.
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4.2. Hood VIP selection

The second strategy, neighborhood VIP delegation, is
based on the intuition that repetitive meetings among peo-
ple happen usually in the same places. The mobile social
network generated by this behavior encompasses, besides
contact locality, well tight social-community sub-struc-
tures. With this in mind, the hood strategy aims to cover
each community at a time, independently from other com-
munities. It selects hood VIPs by their importance within
the communities they belong to. Before doing so, we first
detect social-communities using the k-clique community
algorithm [18]. The reason behind this choice is that the
k-clique algorithm can detect overlapping communities,
i.e., nodes may appear to belong to more than one commu-
nity. This characteristic of the k-clique algorithm makes it
well suited for a scenario like ours in which people belong
to more than one social community (e.g. gym members
that are also computer science students, etc.). This is also
the reason why the k-clique algorithm is widely used in
the area of social mobile networking [19,24,25,27]. Finally,
to study the overlapping between communities, we use the
Jaccard similarity index [26]. For two sets A and B is com-
puted as: JA;B ¼ jA\Bj

jA[Bj.

Afterwards, we rank members of each community
according to their importance in the network (see
Section 4.3). Then, we start covering each community by
promoting its members to VIPs similarly to the global VIPs
methods:

� Blind hood promotion. It continuously selects the top-
ranked nodes not yet promoted in the community, until
the network is covered.
� Greedy hood promotion. The highest-ranked member in

the community is promoted, nodes it covers within
the community are dropped, and rankings are com-
puted again in the remaining graph.

In both promoting ways, when the whole community is
covered, the procedure continues with another one, until
all the communities are covered.

4.3. Social structural attributes of nodes

We define the importance of a node in the network by
applying to the network social graph several structural
attributes: betweenness centrality, closeness centrality,
degree centrality, and PageRank. All these are well-known
attributes in social network theory [28,29]:

4.4. Betweenness centrality

Measures the number of occurrences of a node in the
shortest-path between pairs of others nodes. It thus deter-
mines ‘‘bridge nodes’’ that, with their movement, act as
connectors between node groups (communities). For a
given node k it is calculated as:

CBðkÞ ¼
XN

j¼1
j–k

XN

i¼1
i–k

gi;jðkÞ
gi;j

;

where N is the number of nodes in the network, gi;j is the
total number of shortest paths linking i and j, and gi;jðkÞ
is the number of those shortest paths that include k.

4.5. Degree centrality

Ranks nodes based on the number of their direct ties
(i.e., neighbors) in the graph. It identifies the most popular
nodes, also called hubs in social network theory, possible
conduits for information exchange. Degree centrality is cal-
culated as: CDðkÞ ¼

PN
i¼1aðk; iÞ, where aðk; iÞ ¼ 1 if k and i

are linked, and aðk; iÞ ¼ 0 otherwise.

4.6. Closeness centrality

Ranks higher nodes with lower multi-hop distance to
other nodes of the graph. It describes ‘‘independent nodes’’
that do not dependent upon others as intermediaries or
relayers of messages due to their closeness to other nodes.
The closeness centrality for a node k is calculated as
CCðkÞ ¼ N�1PN

i¼1
dðk;iÞ

, where dðk; iÞ is the length of the shortest

path between nodes k and i. To deal with disconnections
it is computed within the subgraph induced by the ele-
ments of the connected component to which k belongs.

4.7. PageRank

The well known Google’s ranking algorithm, measures
the likelihood of nodes in having important friends in a
social graph [29]. In particular, PageRank of a node i
in the social graph is given by the equation
PRðkÞ ¼ 1�d

N þ d
P

i2FðkÞ
PRðiÞ
jFðiÞj, where d (0 6 d 6 1) is the damp-

ing factor and FðkÞ is the set of neighbors of k in the social
graph (the graph is undirected). The damping factor d con-
trols the amount of randomness in page ranking: Values
close to 1 will give high PageRank to socially best-con-
nected nodes.

Finally, note that, though betweenness centrality and
closeness centrality are metrics defined for multi-hop
applications, they do capture somehow the node popular-
ity within the network: E.g., a very high-degree node is
very likely to have also a high closeness and a high
betweenness. This is why we considered also these metrics
in our strategies.

5. Benchmark approach

To evaluate the efficiency of our strategies, we propose a
benchmark approach that gives the optimal solution: 100%
of user coverage in a time window of one day, with mini-
mum number of VIPs. It is important to underline that the
benchmark serves only for comparison purposes, as it re-
quires knowing the future to compute the exact set of VIPs.

5.1. Application scenario’s abstraction

Suppose the network has to be covered daily (i.e., the
time window i is of one day) by VIP delegates, for a period
P during which the activity of all network users is known.



Fig. 2. (a) Meeting between u; v , and w during days 1 and 2. (b–d) Rules for the construction of graph G. (e) Final representation of graph G.
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Let also P be n days long. We construct a directed graph
G ¼ ðV ; EÞ through the following rules (a step-by-step gen-
eration of graph G is illustrated in Fig. 2):

Rule 1. Graph G has a vertex ui for each day i in which user
u is active (i.e., u has at least one contact during the day).
This vertex impersonates u during day i in G and is referred
to as the clone of u during that day (see Fig. 2(a and b)). The
set of clones representing user u in G is denoted as Cu.
Rule 2. For every user u; Cu forms a clique in G, i.e., each
pair of clones ui; uj of user u in G is connected by two
directed edges, namely, ðui;ujÞ and ðuj;uiÞ (see Fig. 2(c)).
Rule 3. If users u and v meet on day i, then every member
ut of Cu is connected to v i through an edge ðut ;v iÞ. Simi-
larly, every member v t of Cv is connected to ui through
an edge ðv t ;uiÞ. In particular, G also contains edges ðv i;uiÞ
and ðui;v iÞ representing that u and v met on day i (see
Fig. 2(c)).

The graph G constructed with the above rules repre-
sents users’ behavior in the network during the whole per-
iod P. Take for example a certain user u. According to Rules
1 and 2, user u is ‘‘expanded’’ in G into a clique Cu, contain-
ing clones of u only for the days u is active (see Fig. 2(b and
c)). Moreover, if u meets v in day i, Rule 3 guarantees that
all members of Cu point to v i (see Fig. 2(d)). The intuition
behind this rule is that outgoing edges from u0s clique indi-
cate that ‘‘u can be a delegate for v on day i’’.

Rule 3 is applied to every day on which user u is active.
As a consequence, all members of the u0s clique in G point
to the same members of other users’ cliques. Thus, any clone
of user u in G (any member of Cu) is enough to determine
the set of users v for which u can be a delegate, and on
which days.

5.2. Benchmark delegates selection

Intuitively, in order to cover all the network day by day,
it is enough to select as delegates the members of a
minimum out-dominating set of graph G. Moreover, such
a set of delegates is the smallest set that can achieve full
coverage. The following theorems prove such intuition.

Theorem 1. Let MDS be a minimum out-dominating set of G.
The set MDS can cover 100% of the active users for each day
i 2 P.
Proof. First recall that according to Rule 2, the set Cu of
clones of a same user u form a clique in G. Since MDS is
minimum, it contains at most one clone for every user u.
When members of such a set are promoted to delegates,
we get at most one delegate-instance per user.

Suppose, without loss of generality, that user v is active
during day i, i.e., v i 2 G. As MDS is a dominating set, either
of the following cases might happen: (i) some clone v t of v
is in MDS or (ii) there is at least one other node u’s clone
ul 2 MDS such that the edge ðul; v iÞ is in G. In case (i), since
v t 2 MDS;v is promoted to a delegate and is covered by
itself. Case (ii) can only happen if edge ðul;v iÞwas added by
Rule 3, i.e., u and v met during day i. Given that ul 2 MDS;u
is promoted to a delegate. Thus, v is necessarily covered on
day i. h
Theorem 2. Let MDS be a minimum out-dominating set of G.
Let also S be the smallest set of VIP delegates able to cover, for
every day i 2 P, 100% of the active network users on day i.
Then, jMDSj 6 jSj.
Proof. Suppose, on the contrary, that jSj < jMDSj. By con-
struction, and with a similar reasoning used in the proof
of Theorem 1 it is easy to see that S is an out-dominating
set of G. Then, by the minimum cardinality of MDS, we
are done. h

The above theorems indicate how to proceed to find the
best possible solution to our problem: after constructing
graph G according to Rules 1–3, find a minimum out-
dominating set of G and use the members of such set as
benchmark VIP delegates.
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The minimum dominating set is notably a NP-hard
problem. Thus, to individuate our benchmark VIP dele-
gates, we reduce our problem to Set Cover (equivalent to
MDS under L-reductions [22]) for which a simple greedy
algorithm is known to be only a logarithmic approximation
factor away from the optimum [22]. Moreover, the inap-
proximability result for this problem shows that no
polynomial algorithm can approximate better than
ð1� oð1ÞÞ log n unless NP has quasi-polynomial algorithms.
Thus, there is no polynomial-time algorithm with a smaller
approximation factor. The delegates obtained by this heu-
ristic are then used as benchmark VIPs in our experiments.
6. Experimental setting: from data-sets to social graphs

We now give detailed information on the data-sets (real
and synthetic) we use in the evaluation of our strategies.

6.1. Real data-sets

Two real data-sets are used: Dartmouth [30] (move-
ment of students and staff in a college campus) and Taxis
[31] (movement of taxi cabs in San Francisco). The vehicu-
lar mobility of the cabs is different from human mobility
(Dartmouth). However, the purpose of using the taxis trace
is to test our solution’s extendibility to different contexts.

6.2. Dartmouth

Dartmouth includes SNMP logs from the access points
across the Dartmouth College campus from April 2001 to
June 2004. To generate user-to-user contacts from the
dataset, we follow the popular consideration in the litera-
ture that devices associated to the same AP at the same
time are assumed to be in contact [32]. We consider activ-
ities from the 5th of January to the 6th of March 2004, cor-
responding to a 2-month period during which the
academic campus life is reasonably consistent. We chose
to work with the set of nodes that have a fairly stable activ-
ity in time: at least 500 contacts per week with any other
device. This results in a set of 1146 nodes with an average
of 1060 daily active devices and 292 daily contacts in aver-
age per device.

6.2.1. Taxis
The Taxi dataset contains GPS coordinates of 536 cabs

collected over 24 days in San Francisco. Here, we assume
that two cabs are in contact when their geographical dis-
tance is smaller than 250 m (following suggestions of
Table 1
Details on the real datasets and respective monitoring period. The term monitorin
whereas trace, for the whole trace duration.

Data set Taxi Dartmouth

Total nodes 536 1142
AVG active nodes/day (trace) 491 1060
AVG active nodes/day (monitoring) 429 1061.5
AVG contacts/node/day (trace) 7804 292
AVG contacts/node/day (monitoring) 7656 284
Piorkowski et al. [31]). This yields an average of 491 active
nodes per day and 7804 daily contacts per node.

6.3. Synthetic data-sets

Synthetic traces are generated using the SWIM model
[33–35], shown to simulate well human mobility from sta-
tistical and social points of view. We use SWIM [35] to sim-
ulate a 500-node version of the Cambridge Campus dataset
(of only 36 Bluetooth enabled iMotes, 11 days long)
according to the Phoenix Model (scaling by keeping the
density constant). We call this trace SWIM-500. It simu-
lates user activity during 2 months, yielding 128 daily con-
tacts per node in average. Then, we scale up to 1500 nodes
in two ways: (i) by keeping density constant (D-SWIM-
1500) and (2) by keeping the area constant (A-SWIM-
1500). The purpose of the two different scalings is to study
the behavior of our strategies in two scenarios: D-SWIM-
1500 simulates an urban growing in both area and popula-
tion and A-SWIM-1500 refers to a sudden over-population
of a given city with people that are there to stay for a long
time-period (e.g. students returning to the campus after
summer holidays).

Table 1 summarizes the details of the data-sets. Note
that, although both data-sets represent campus scenarios,
they yield different activity per node per day as they used
distinct technologies (Wi-Fi capable APs in Dartmouth and
Bluetooth-like characteristics in SWIM) in the two data-
sets.

6.4. Monitoring period and social graph

As we have already discussed in Section 4, we observe
nodes encounters during an observation/monitoring peri-
od and exploit repeatability of users’ movement patterns
and recurrence of contacts among them. The used length
of the monitoring period is not casual: It is as short as 1
week and divided in time windows of 1 day. Usually, our
life and the activities we conduct are organized on a
week-base, mostly having a common routine repeated
day by day (e.g., go to work/school or have lunch in the
same place). Such repetition also infers the common meet-
ings generated by those activities.

In the case of the Taxi dataset, the repeatability of con-
tacts is due to several factors including the popularity of
geographical zones in the city (e.g., center, stations, and
airports), the fixed tracks leading to such zones, and the
common city areas covered by groups of taxis. As shown
by Piorkowski et al., popularity of areas generates clusters
of connectivity among cabs [31]. Taxis’ movements are
g indicates that the parameters are shown for the monitoring-period only,

SWIM-500 D-SWIM-1500 A-SWIM-1500

500 1500 1500
499.98 1500 1500
500 1500 1500
128 130 380
131 129 378
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guided by clients’ (humans) necessity to reach a specific
geographic location. Thus, one week observation is again
enough to predict future meetings.

Our intuition on the length of the monitoring period is
also confirmed by the results shown in Table 1. Indeed,
the properties of the monitoring period are very close to
the whole trace, for each considered scenario. Hence, this
makes prediction of future meetings easy: the monitoring
period we have chosen allows us characterizing social rela-
tionships. We are then able to generate a social graph,
where two users are connected only if they have met with
a certain frequency – that we call social connectivity thresh-
old – during the monitoring period. The social connectivity
threshold depends on the scenario considered:

� In the Dartmouth dataset, social connectivity in mostly
due to the frequentation of the same classes, or study-
ing in the same library, or living in the same dormitory.
All these activities generate lots of meetings among
people. We thus set the social connectivity threshold
in this case to be at least 1 contact per day, for at least
5 days during a week.
� The social connectivity threshold in the Taxi dataset is

higher due to higher speeds: at least 8 contacts per
day during the monitoring period were considered.
� As the SWIM-500 trace also represents a University

campus, we use the same social connectivity threshold
of the Dartmouth trace: at least 1 contact per day for at
least 5 days of the monitored week. This leads to a set of
498 nodes. When scaling up with constant density (D-
SWIM-1500) the social connectivity threshold remains
constant. It increases to at least 8 contacts per day for
at least 5 days of the monitored week when scaling up
with constant area (A-SWIM-1500).

The social graphs generated by the social connectivity
thresholds are then used to individuate the VIP delegates,
according to each of the strategies of Section 4.

6.5. Community detection

Our hood VIPs selection strategies operate on a commu-
nity basis and aim at covering single communities by
selecting members that are important within each com-
munity. After applying the k-clique algorithm [18] to
determine the communities and with respect to the cam-
pus-like scenarios, we have the following parameters: the
Dartmouth dataset has 24 communities of 41 members
in average, the SWIM-500 trace has 16 communities with
32 members in average, the D-SWIM-1500 trace has 39
communities with 39.6 members in average, and the A-
SWIM-1500 has 35 communities with 44 members in
average. Note that constant-area scaling yields less, bigger
communities.

The communities are well-knit and do not show much
intersection between them. Indeed, the average Jaccard
similarity index [26] between intersecting communities
is 0.038 in the Dartmouth case and about 0.025 in SWIM-
500 and D-SWIM-1500 case. This result supports recent
findings on universities’ communities detected with the
k-clique algorithm [19]. Conversely, in the constant-area
scaling of A-SWIM-1500, the communities have a higher
overlapping: the Jaccard similarity index in this case is
0.045.

The Taxi dataset, due to the large number of contacts
and the high mobility of nodes, does not present any com-
munity sub-structuring. When applying the k-clique algo-
rithm, we observe one huge community containing
almost 80% of the nodes, whereas the remaining 20% do
not belong to any community. Thus, we decided to apply
only the global VIP selection strategies to this trace.
7. Experimental results

We analyze the performance of all our strategies in
terms of coverage when applied to real and synthetic
traces. For better understanding the quality of the VIPs
selected by each strategy, we investigate the coverage
trend with regard to an increasing number of the VIPs.
The set used for coverage is updated from time to time
following the order in which each strategy selects VIPs.
For the sake of comparison, the results for the benchmark
(‘‘Bn’’) are included in the plots. We use the same tech-
nique as above to build the benchmark’s trend: updating
the VIPs set and the corresponding network coverage,
following the order in which the benchmark promotes
nodes to VIPs. For the PageRank attribute, we noted that,
varying the damping factor in the interval ½0:51; 0:99�
does not change the performance of PageRank VIPs with
respect to the VIPs selected according to other centralities.
However, we decided to use d ¼ 0:85, since, for PageRank,
it results in the best performance in terms of network
coverage.
7.1. Results with real data-sets: Dartmouth case

7.1.1. Blind promotion
We show in Fig. 3 the coverage obtained by each of the

promotion strategies. The blind promotion in the global
and hood VIP selection strategies yields the results pre-
sented in Fig. 3(a and b). Notice that there is a coverage
efficiency gap between PageRank VIPs (referred as ‘‘PR’’
in the figure) and those of other centralities (referred as
‘‘BW’’, ‘‘DG’’, and ‘‘CL’’). In addition, PageRank is very close
to the benchmark, even for small percentages of delegates
considered. For instance, in the global blind strategy, to get
to 90% of coverage, PageRank only requires the promotion
of 5.93% of nodes as delegates against 3.92% with the
benchmark approach (see Table 2). Another consideration
to be made is that hood selection is more effective than
global selection. Hence, aiming to cover the network by
forcing VIP selection within different communities seems
to be a very good strategy. Nevertheless, there exist social
attributes such as PageRank that do not gain much from
the hood selection. Indeed, global and hood PageRank VIPs
perform very similarly in both data-sets. This is because,
on the one hand, PageRank VIPs already target different
communities, even in the global case. On the other hand,
betweenness, degree, and closeness centrality tend to
over-select VIPs from a few network communities, and
consequently, leave uncovered many marginal ones. The



Fig. 3. Performance of the selection strategies on the Dartmouth dataset. ‘‘Bn’’ refers to the benchmark, ‘‘PR’’ to the page-rank, ‘‘BW’’ to betweenness
centrality, ‘‘DG’’ to degree centrality, and ‘‘CL’’ to closeness centrality. ‘‘H–1’’ refers to the Heuristic strategy of [16].

Table 2
VIP sets cardinality to get 90% coverage on Dartmouth. The benchmark
needs 3.92% of nodes.

G-blind (%) H-blind (%) G-greedy (%) H-greedy (%)

PR 8.98 6.89 5.93 6.19
BW 15.96 9.16 8.98 6.19
DG 26.96 15.09 5.93 6.19
CL 47.993 26.0035 5.93 6.19
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tendency of these social attributes to target only a few
communities is attenuated with the hood selection that
boosts their efficiency in covering the network. In Fig. 4,
we show how the global strategy distributes VIPs among
communities of different centralities.
7.1.2. Greedy promotion
When applying the greedy promotion, the performance

of all strategies improves considerably (see Fig. 3(c and
d)). In addition, VIPs obtained with each social attribute
perform very similarly to each other, in both hood and
global selections. This is due to the capacity of the greedy
approach to not promote as VIPs nodes that are too close
to each other in the social graph. Indeed, after every node’s
promotion to VIP, all its neighbors in the social graph and
their links are removed. Since communities are very well
tight, the promotion of one member can remove a large
part of the community (if not all of it). Thus, attributes such
as betweenness and closeness do not concentrate their
selection on a few communities as in the global selection.
This is also confirmed by Fig. 5, where we show how the
greedy strategy distributes VIPs among communities for
different social attributes.
Finally, we have compared our strategies with the tar-
get-sets selected by the best-performing strategy in [16]
which does not rely on knowledge on the future: the
Heuristic strategy. As suggested in [16], for Heuristic we
exploit a History period of 1-day before the day to be cov-
ered. The results are included in Fig. 3. We notice that, be-
sides Closeness in the Global Blind case (Fig. 3(a)), all our
other strategies outperform Heuristic independently on
the selection methodology (either Blind/Greedy, or Glo-
bal/Hood). In addition, Heuristic is very close to the perfor-
mance of Global Blind Degree for VIP sets larger than 40%,
though never outperforming it. These results are some-
what expected: Heuristic target-sets are not to be used in
a scenario like ours, but they are to be exploited in scenar-
ios with multi-hop forwarding. Heuristic selects as target-
set members nodes that have a peak of popularity during
some previous day, but that, on average, are not the most
popular ones. While this is more than enough if other net-
work nodes help with multi-hop forwarding, in scenarios
like ours where network coverage relies on the VIPs only,
the performance is much more sensible to the behavioral
changes of the nodes. Here we believe our training-period
comes to help: it gives the strategies more information on
the behavior of the nodes in the network. In addition, it
simplifies the system (the set of VIPs is fixed and not
re-computed daily as in Heuristic) and helps filtering-out
potentially misleading perturbations in the data. Secondly,
even when the percentage of VIPs (Heuristic target-sets) is
high enough to smooth out the first inefficiency, Heuristic
is not able to distribute very well the VIPs across the differ-
ent communities, which we have shown to be the reason
why the Pagerank and Betweenness Centrality based



Fig. 4. Distribution of VIPs per social attribute on the Dartmouth dataset with the blind global promotion strategy. The x-axis represents different
communities detected.

Fig. 5. Distribution of VIPs per social attribute on the Dartmouth dataset with the greedy global promotion strategy. The x-axis represents different
communities detected.
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selection strategies significantly outperform all the other
ones in the Global-Blind and Global-Greedy case.

7.2. Results with real data-sets: Taxi case

As discussed in Section 6.5, the community sub-struc-
turing of the Taxi dataset is flat. This means that, due to
the high mobility of nodes, a huge unique community con-
taining 80% of nodes is detected and the 20% remaining
nodes do not belong to any community. Thus, only the glo-
bal selection strategy is applicable to this dataset. Fig. 6
shows the performance of blind and greedy global selec-
tion strategies in terms of coverage for the Taxi dataset.
As we can see, due to the high mobility of nodes, all



Fig. 6. Performance of blind global and greedy global selection strategies on the Taxi dataset. ‘‘Bn’’ refers to the benchmark, ‘‘PR’’ to the page-rank, ‘‘BW’’ to
betweenness centrality,‘‘DG’’ to degree centrality, and ‘‘CL’’ to closeness centrality.
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strategies perform very well in this scenario. Moreover, the
sets selected by each strategy to guarantee up to 90% of
coverage are exactly of the same (small) size: Only 0.93%
of network nodes. The benchmark guarantees the same
coverage with 0.2% of network nodes selected.
7.3. Results with synthetic data-sets: SWIM

As discussed in Section 6.3, starting from SWIM-500 (a
500-node simulation of a University scenario [36]), we
generate two scaled versions with 1500 nodes: D-SWIM-
1500 (constant density scaling) and A-SWIM-1500 (con-
stant area scaling). Our purpose is to study the reaction
of the different strategies in two cases: an urban growing
in both area and population (constant density) and a sud-
den over-population of a city (constant area).
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Fig. 7. Performance of (a–c) blind global and (d–f) blind hood selection on
betweenness centrality, ‘‘DG’’ to degree centrality, and ‘‘CL’’ to closeness central
We start from blind promotion (see Fig. 7). Again, like in
the Dartmouth scenario, PageRank VIPs are more efficient
than VIPs of other centralities. The reason is the same as
discussed in the previous section, i.e., PageRank global VIPs
are better distributed within communities with respect to
VIPs obtained with other centralities. This is also con-
firmed by Fig. 9 where such distribution is shown for the
trace D-SWIM-1500 (the relative figures for traces
SWIM-500 and A-SWIM-1500 are omitted due to space
constraints). Once again, aiming to cover the network by
forcing VIPs to fall in different communities (hood selec-
tion) is a winning strategy.

Results related to greedy promotion are presented in
Fig. 8. As in the Dartmouth case, the performance of all
strategies is boosted up by the greedy selection of VIPs,
yielding a better distribution of delegates within commu-
nities (see Fig. 10) and thus, much better coverage results
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Fig. 8. Performance of (a–c) greedy global and (d–f) greedy hood selection on SWIM. ‘‘Bn’’ refers to the benchmark, ‘‘PR’’ to the page-rank, ‘‘BW’’ to
betweenness centrality, ‘‘DG’’ to degree centrality, and ‘‘CL’’ to closeness centrality.

Fig. 9. Distribution of VIPs per social attribute on the D-SWIM-1500 dataset with the blind global promotion strategy. The x-axis represents different
communities detected.
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with respect to the blind promotion. What is interesting to
notice here is the impact of the way of scaling in our strat-
egies. When passing from SWIM-500 to D-SWIM-1500
(constant density), all strategies perform very similarly in
both blind and greedy promotions. Conversely, in an emer-
gency situation where the network is suddenly much more
overloaded as a result of the over-population of the net-
work area (A-SWIM-1500), our strategies perform even



Fig. 10. Distribution of VIPs per social attribute on the D-SWIM-1500 dataset with the greedy global promotion strategy. The x-axis represents different
communities detected.

Table 3
Delegates given by each strategy to get 90% coverage on SWIM-500. The
benchmark approach needs 7.4%.

G-blind (%) H-blind (%) G-greedy (%) H-greedy (%)

BW 21 14 9 10.6
CL 48 25.4 12.8 11.6
DG 23 13.6 8 8.8
PR 10.8 10.2 9.8 9.6

Table 4
VIP sets cardinality to get 90% coverage on D-SWIM-1500. The benchmark
approach needs 7.06%.

G-blind (%) H-blind (%) G-greedy (%) H-greedy (%)

BW 22 17.26 9 9.93
CL 59 42.06 12.93 11.6
DG 24 17.2 8 9.06
PR 10.9333 10.06 9 9.93

Table 5
VIP sets cardinality to get 90% coverage on A-SWIM-1500. The benchmark
approach needs 2.53%.

G-blind (%) H-blind (%) G-greedy (%) H-greedy (%)

BW 10 6.73 4 4.4
CL 30 11.6 9 6.06

DG 7 5.13 4 3.53
PR 5 4.33 6 4.4

Table 6
Coverage potential for each strategy on Dartmouth. The benchmark’s
potential is 0.91.

G-blind H-blind G-greedy H-greedy

PR 0.830 0.069 1.0 0.831
BW 0.657 0.067 1.0 0.969
DG 0.530 0.061 1.0 0.890
CL 0.144 0.059 1.0 0.886

Table 7
Coverage potential for each strategy on TAXI. The benchmark’s potential is
0.96.

G-blind G-greedy

PR 0.760 1.0
BW 0.758 1.0
DG 0.742 1.0
CL 0.745 1.0

Table 8
Coverage potential for each strategy on D-SWIM-1500. The benchmark’s
potential is 0.99.

G-blind H-blind G-greedy H-greedy

PR 0.888 0.558 1.0 0.992
BW 0.688 0.451 1.0 0.993
DG 0.607 0.288 1.0 0.994
CL 0.180 0.094 1.0 0.993
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better (see Figs. 7(c), (f), 8(c), and (f)). This is also con-
firmed by the results shown in Tables 3–5 that contain,
for each dataset, the percentage of delegates needed by
the different strategies to cover 90% of the network.
7.4. Coverage potential

To complete our study, we investigate the coverage po-
tential of the first 10% of nodes promoted to delegates
according to each strategy. To this end, we measure, for
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each delegate, the ratio of non-delegates neighbors on the
social graph (i.e., the number of non-delegates neighbors of
delegate i over the total number of neighbors in the social
graph). We average then the result over the set of all dele-
gates chosen by the corresponding strategy. Intuitively, the
bigger this value, the larger the coverage potential of
the strategy, and vice versa. In Tables 6–8 we present the
results for every strategy/social attribute for respectively
the Dartmouth, Taxi and the D-SWIM-1500 trace. Because
of space constraints we omit the tables related to SWIM-
500 and A-SWIM-1500.

Note that in the global blind selection, page-rank is the
one with the highest value, followed by betweenness,
degree, and finally closeness. This again supports the re-
sults of Fig. 3(a). The potential falls drastically when con-
sidering the hood blind selection (second column of
Table 6): delegates are forced to be in the same commu-
nity, in a blind way. Thus, with high probability, they are
socially connected with each other. However, PageRank
remains the attribute with the highest value, supporting
the results of Fig. 3(b).

The global greedy selection naturally yields the highest
coverage potential for every attribute: after each node pro-
motion, its neighbors are eliminated from the graph; thus,
the ratio of non-delegate neighbors of a node is 1. The hood
greedy selection (fourth column of Tables 6–8) leads to
smaller values. This is because selection is done on a com-
munity basis and only community neighbors are elimi-
nated after promotion. Since communities are not totally
distinct, it might happen that two VIP neighbors in the
social graph belong to different communities and, conse-
quently, are eliminated after the promotion, decreasing
thus the coverage potential of the strategy. This effect is
smaller for high betweenness nodes: they tend to belong
Fig. 11. Coverage stability in time for a
to the same group of communities (the ones that they con-
nect). Closeness/degree attributes suffer less from this
effect, as they select nodes that are central to communities.
Finally, PageRank is the one that suffers most: high Page-
Rank nodes are well distributed within the community to
which they belong (being communities well-knit). Thus,
they are more likely to have high PageRank neighbors
belonging to other communities (that the hood greedy
selection does not eliminate).

It is worth to note that the coverage potential just gives
a hint on the real coverage power of a method: It does
not affect the real ability of the selection method/attribute
in covering the network. Indeed, for all traces (see
Tables 6–8) the coverage power of the benchmark in all
traces is less than all the values related to the global greedy
selection. Regardless of the coverage potential, the bench-
mark performs better with respect to every strategy. In
addition, the results with 90% coverage presented in Tables
2–5, confirm page ranks’s high performance ability when
combined with every strategy.

7.5. Coverage stability

Finally, we investigate the stability of coverage of our
strategies in time. We focus on the delegates set needed
to reach, in average, 90% coverage for each strategy on all
traces. In Figs. 11 and 12, we plot the coverage per day.
Due to the lack of space, we only present results related
to the Dartmouth and D-SWIM-1500 data sets. We stress
however that the results are similar also for the omitted
traces. We observe that coverage is quite constant in time
for every strategy. This reinforces our intuition on both the
monitoring period and the way the social graph is gener-
ated. With minimal information on the scenario and a very
ll strategies (Dartmouth dataset).



Fig. 12. Coverage stability in time for all strategies (D-SWIM-1500 dataset).

Table 9
VIP sets cardinality to get 90% coverage on D-SWIM-1500. The benchmark
approach needs 13%. Half-day coverage interval.

G-blind (%) H-blind (%) G-greedy (%) H-greedy (%)

BW 30 25.53 15 15.63
CL 70 56.33 15 15.69
DG 34 28.66 15 15.65
PR 18 17.46 15 15.6
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short observation of the network, our strategies are able to
compute VIP sets that are small, efficient, and stable in
time.

7.6. Coverage intervals vs. VIPs

The VIPs selected by our strategies are expected to cov-
er all nodes every day of the data-trace by carrying data
traffic from/to the users. All our target applications (e.g.,
urban-sensing related data, software updates) are delay-
tolerant and would not suffer from the 1-day latency of
the daily coverage of VIPs. But what happens for applica-
tions that require coverage intervals different from
1-day? How does the length of the coverage interval im-
pact the selection of VIPs? Clearly, if the coverage interval
is longer, the 1-day coverage VIPs are a superset of the
required number of delegates. Indeed, for a coverage inter-
val long e.g. 2 days, the 1-day coverage VIPs would perform
as good as in the 2-day coverage case. However, if the
coverage interval required is smaller, the VIP set required
to cover the network is likely to change. To quantify such
change we have also studied the half-day network
coverage for all the traces. For both the Taxi and the
A-SWIM-1500 traces we noted absolutely no difference
from the 1-day coverage case. We believe this is due to
the high mixing and speed of movement of cabs in the Taxi
case, and due to the high node density in the A-SWIM-1500
trace. Recall that A-SWIM-1500 is obtained scaling
SWIM-500 with constant area.

In Dartmouth, SWIM-500 and D-SWIM-1500 we ob-
served a growth in the VIPs number required to assure
90% of network coverage (due to lack of space here we only
show results related to the largest trace: D-SWIM-1500.
However, we stress that both the Dartmouth and
SWIM-500 traces yield similar results). Intuitively, this is
because the meeting patterns of the first half of the day
are different from those of the second half. The growth
on the number of delegates required to cover 90% of the
network in the half-day coverage case is also reflected in
the benchmark’s VIPs, which are almost doubled with
respect to the 1-day coverage interval case (see Table 9).
Hence, one would expect that the same should happen also
with the VIP sets selected by our strategies. However, from
the comparison of the 1-day coverage interval results of
Table 4 with the half-day coverage interval results of
Table 9 we note that the VIP sets have increased of about
60%. This again means that selecting VIPs according to
their ‘‘importance’’ in the network is a good strategy:
Indeed, most of the important people during the morning
remain so also during evening. However, the coverage
interval length indeed does impact the cardinality of VIPs.
This suggests for application developers or network infra-
structure builders to trade off between data transfer fre-
quency and number of VIPs.

To conclude, Figs. 13 and 14 show respectively, the cov-
erage trend, and the performance of the different selection
strategies for the case of half-day interval coverage. Again



Fig. 13. Performance of the selection strategies on the D-SWIM-1500 dataset. ‘‘Bn’’ refers to the benchmark, ‘‘PR’’ to the page-rank, ‘‘BW’’ to betweenness
centrality, ‘‘DG’’ to degree centrality, and ‘‘CL’’ to closeness centrality. Half-day coverage interval.

Fig. 14. Coverage stability in time for all strategies (D-SWIM-1500 dataset). Half-day coverage interval.

M.V. Barbera et al. / Ad Hoc Networks 19 (2014) 92–110 107
we note that page-rank wins over the other centralities,
and the hood selection strategy wins over the global
selection one. Finally, Fig. 14 confirms the stability in time
of our VIPs, regardless of the length of the coverage
interval.
8. Incentivizing VIPs, data transfer and monitoring
period

The VIP selection strategies that we presented in this
work achieve very good results in terms of network
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coverage. Nonetheless, there are aspects of the VIP ap-
proach that we deem important to discuss, starting with
user cooperation: The human nature is undoubtedly inher-
ently selfish. So, it is very likely that no user, without being
stimulated somehow, would accept the promotion to VIP.
Luckily, the number of VIPs selected by our strategies to
guarantee 90% coverage is quite low (8% in SWIM, 5.93%
in Dartmouth, less than 1% in Taxi). In view of this, it
becomes reasonable and convenient, from a network oper-
ator point of view, to either upgrade the devices of VIP user
to more fancy, recent ones, or to actually pay VIP nodes for
their service. Considering the amount of funding that
Governments worldwide are putting into global-sensing
research [37–39], these incentives become feasible. An-
other possibility involves considering users’ traffic load at
the delegates selection and use it to establish a maximum
load threshold per delegate. Accordingly, combine it with
the social attributes for delegate selection considering
fairness and resource constraint among delegates.

Another issue to be considered is that network opera-
tors cannot handle the data-traffic from/to VIPs in the clas-
sic way (whenever VIPs like), as it would not be of any
benefit to offloading. A potential solution to this issue is
to make VIPs use the cellular network for the data transfer
in different moments of the day. This way, the network
load would result distributed in time rather than concen-
trated in highly congested hours. Another possibility is to
transfer the data through wired networks, whenever a VIPs
device gets connected to a broadband network during the
day. After all, if VIPs are being paid to perform such task,
this becomes a reasonable assumption.

A further aspect to be taken into account is the follow-
ing: ‘‘How to handle the traffic of 10% of network users that
remain uncovered by our delegates?’’. As discussed above,
the coverage of 90% of nodes requires the promotion as
delegates of very few and constant in time network mem-
bers. This confirms the advantage of our opportunistic del-
egation approach for covering a high percentage of nodes
in a daily basis. Additionally, we claim that the impact of
the few 10% non-covered nodes on the cellular network
will be small and typically generated by nodes that are
marginal to the network (e.g., people frequenting periphe-
ral areas of a city). Usually, nodes having a high activity or
mostly visiting central areas in the network will be repre-
sented in the constructed social graph, stressing their fre-
quent encounters. In this way, we believe that such more
active nodes will be mostly responsible for the traffic over-
loading previously mentioned and will be covered by the
selected delegates, with high probability. Therefore, to an-
swer the previous consideration, the few remaining uncov-
ered nodes could directly transfer their data using cellular
networks, at the end of the day, once no delegate visit was
detected.

Additionally, an important question to be asked is how
does the monitoring period impact the VIP performance. As
we already discussed, we believe that the monitoring per-
iod length should be defined on a week-base—the week is
intuitively the smallest amount of time that regularly gen-
erates recurrent patterns in our lives. That said, it is impor-
tant to point out that the length of the monitoring period
might change from scenario to scenario. For the scenarios
considered in this work, a 1-week long monitoring period
turned out to work well. But, we acknowledge that for
other scenarios might either be sufficient shorter monitor-
ing periods, or might require longer monitoring periods.
Nonetheless, the important take-away is that, social-
related solutions for networking can safely rely on short
observations of the social-properties of the society, as the
people do preserve their movement patters in time.

That said, we acknowledge that if sudden (but perma-
nent) changes happen in the network, e.g. students leaving
the campus for summer holidays, the VIPs selected a priory
probably will lose their efficiency. In these cases, the mon-
itoring period should start again to let the VIP sets adapt to
the new network conditions. Differently, we believe that
this is not true for short-lasting (say, one day) sudden
changes in the network, like, e.g., public holidays. Intui-
tively, the behavior of the people during a public holiday
in the middle of the week is likely to be very similar to
their behavior during weekends: stay with family, see
friends, and so on. Because the monitoring period includes
also weekends, it is thus very likely that the VIPs selected a
priory perform as good as during any weekend days in our
traces. Nonetheless, we believe that, introducing more
complex and adaptive techniques that monitor recurrently
the network dynamics, like for example machine learning
mechanisms, could impact positively the performance of
VIP sets. It would allow a smoother and faster adaptation
of the VIPs to the changing conditions of the network itself,
and to the new opportunities of communication that it
brings. Such adaptive learning approach will be considered
in a future work.
9. Conclusions

Dense metropolitan areas are suffering network over-
loading due to the data-traffic generated by the prolifera-
tion of smartphone devices. In this paper, we describe
VIP delegation, a mechanism to alleviate such traffic based
on opportunistic contacts. Our solution relies on the up-
grade of a small, crucial set of VIP nodes that regularly visit
network users and collect (disseminate) data to them on
behalf of the network infrastructure.

VIPs are defined according to well known social net-
work attributes (betweenness, closeness, degree centrality
and page-rank), and are selected according to two meth-
ods: global (network-based) and hood (community-based)
selection. Our observations reveals that 1 week of monitor-
ing period is enough to characterize the tightness of the
social links in the network graph. Hence, all methods rely
on this network monitoring period and select VIP sets that
result small, efficient, and stable in time. Extensive
experiments with several real and synthetic data-sets
show the effectiveness of our methods in offloading: VIP
sets of about 7% and 1% of network nodes in respectively
campus-like and vehicular mobility scenarios are enough
to guarantee about 90% of network offload. Additionally,
the performance of the VIPs selected by our methods is
very close to an optimal benchmark VIPs set computed
from the full knowledge of the system (i.e., based on past,
present, and future contacts among nodes).
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