
Show me your friends and I’ll tell you
what you like

Alessandro Mei
Computer Science Dept.

Sapienza Univ. of Rome, Italy
mei@di.uniroma1.it

Giacomo Morabito
School of Telematic

Engineering
University of Catania, Italy
morabito@diit.unict.it

Paolo Santi
Istituto di Informatica e

Telematica
CNR Pisa, Italy

paolo.santi@iit.cnr.it
Julinda Stefa

Computer Science Dept.
Sapienza Univ. of Rome, Italy

stefa@di.uniroma1.it

ABSTRACT
Pocket Switched Networks (PSN), where humans carry short
range communicating devices such as PDAs, lap-tops, or
smart phones, have attracted the attention of many resear-
chers in recent years. These networks, whose main feature
is the social-guided movements of users/devices, are consid-
ered to be a key technology to provide innovative services
to the users without the need of any fixed infrastructure.
Even though many forwarding protocols (statefull social-
aware–e.g. PROPHET, BUBBLE–and stateless ones–e.g.
Epidemic, BinarySW) have been proposed, there’s still a
need for efficient killer application, possibly both stateless
and social-aware, that would transform the PSNs in a useful
living reality.

Here we discuss on the advantages/disadvantages/scala-
bility of already existing stateful social-aware and simple
stateless forwarding protocols for PSNs and introduce a sta-
teless interest-based forwarding mechanism that combines
the advantages of both forwarding approaches.

Categories and Subject Descriptors
C.2.1 [Computer-Communications Networks]: Network
Architecture and Design—Distributed networks, Network com-
munications, Wireless Communication; C.2.2 [Computer-
Communications Networks]: Network Protocols—Rout-
ing Protocols

Keywords
DTNs, pocket switched networks, forwarding protocols.

1. INTRODUCTION
The Pocket Switched Network (PSN) [13], where powerful,
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short-range communicating devices such as PDAs, smart-
phones, etc., are carried around by humans, has attracted
more and more researchers recently. In such networks the
social-based node mobility coupled with a store-and-forward
mechanism is the fundamental mean of communication be-
tween users. Thus, characterization of social ties between
nodes has been used to optimize performance of both uni-
cast and multicast communication [5, 11, 16, 8], as far as
publish-subscribe mechanisms [1, 4, 14].

While social-aware routing protocols have been shown to
have superior performance to social-oblivious routing ones
such as, e.g., BinarySW [21], this performance improvement
comes at the expense of storing a significant amount of state
information (e.g., history of past encounters, portion of the
“social network” graph, etc.) at the local memory of the
nodes. In other words, a common feature of the social-aware
routing approaches introduced so far is that they heavily
build upon a notion of state. Given that existing routing
approaches for PSNs have both pros and cons, it would be
interesting to design a routing approach aimed at combining
the advantages of both approaches, while reducing the cons
as much as possible.

In order to exploit both approaches benefits, while keeping
out their drawbacks, we base our work on the observation,
qualitatively well-known in sociology [17], that individuals
with similar interests tend to meet more often. Indeed, a
first significant contribution of this paper is a quantitative
validation of this observation, based on the only real-world
mobility trace enriched with user profiles information we are
aware of [11, 12]. Upon such observation we build the first
stateless and social-aware routing protocol for PSNs called
UN-SANE (UNicast Social Aware NEtworking).

Moreover, we believe that PSNs can create innovative ser-
vices realized within the PSN itself, without the need of
resorting to pre-existing communication facilities. Interest-
cast is an example of such services in which a user wants to
communicate a certain information (for instance, a movie
at a local theater about opera composer Puccini) to the
maximum possible number of interested users, within a cer-
tain time (e.g., the time of the last movie show). Inter-
ested users might have an interest in opera, or cinema, or
both, and should be located in the “neighborhood” of the
theater, so to be able to reach the theater if interested. This
type of communication paradigm matches very well with the



localized nature of PSN communications: the information
is spread relatively fast in the neighborhood of the sender,
while it takes longer to propagate to remote areas (which are
typically less interested in the information, though). Thus,
along with UN-SANE, in this paper we also present the first
social-aware and stateless interest-cast protocol for Pocket
Switched Networks called SANE (Social Aware NEtwork-
ing). We believe such interest-cast primitive, convenient in
many real-world scenarios, to be one of the killer apps that
will transform the Pocket Switched Network in a useful re-
ality.

The rest of the paper is organized as follows: Section 2
reports on on current work in the field. In Sections 3 and 4
we respectively validate our intuition on the real-world data
trace, and present our unicast and interest-cast approaches
to forwarding in PSNs. Section 5 presents experimental re-
sults of the comparison of our SANE approaches to existing
well known forwarding protocols such as Epidemic [22], Bi-
narySW [21], and BUBBLE [11]. We finally conclude with
section 6.

2. RELATED WORK
The idea of exploiting information regarding social ties

between network nodes in PSNs is not new. For instance,
in [5] the authors propose using the notions of “ego-centric
betweenness” and “social similarity” to improve end-to-end
routing performance. In [11], the authors propose the use of
a social “centrality” metric to achieve the same purpose. In
[16], the authors use a “social similarity” metric locally com-
puted from the history of past encounters to route messages
within the network. Recently, a social-based approach based
on a notion of “ego-centric betwenness” has been proposed
also to optimize multicast performance [8].

The above approaches have shown how the social structure
underlying a PSN can be successfully exploited to improve
communication performance with respect to traditional, so-
cial oblivious approaches. However, existing social-aware
approaches heavily build upon the ability of storing a large
amount of information at the nodes (typically, to keep trace
of past encounters), i.e., their are stateful approaches. This
fact has important implications for what concerns i) scala-
bility and ii) effects of memory size on routing performance.
As for i), we observe that relying on a rich state (in some
cases, O(n2) storage capacity is required at the nodes, where
n is the number of network nodes) might impose severe lim-
its to the ability of these approaches to scale up to net-
works of even medium size. As for ii), to the best of our
knowledge, the effect of limited memory size on social-aware
routing performance has not been investigated so far. Con-
sidering limited memory size when comparing performance
of stateful approaches (such as, e.g., [5, 11, 16]) to that of
stateless, social-oblivious approaches such as Epidemic [22]
and Binary SW [21] is very important, since using mem-
ory to store state information clearly reduces the amount of
memory that can be used to store the messages circulating in
the network, with a negative effect on routing performance.
Hence, comparing routing performance without taking the
effect of limited memory size into account gives an unfair
advantage to stateful approaches over stateless one. Given
i) and ii), whether social-aware approaches are actually ef-
fective in improving routing performance is still not clear,
as well as their scalability properties.

The line of research closer to the ideas presented in this

paper is the design of social-based publish-subscribe mech-
anisms for PSNs. For instance, the authors of [14] consider
a network in which a service provider (e.g., a cell phone op-
erator) selectively sends dynamic content updates to users,
updates that can be shared with other users when a com-
munication opportunity arises. The authors show that per-
formance can be considerably improved if the relative fre-
quency of updates sent to users from the service provider
takes into account the strength of social ties between net-
work users. In [1], the authors approach the problem of shar-
ing data within an opportunistic network from a social-based
perspective, with the goal of optimizing content availability
through careful, social-aware data placement.

The work that is most closely related to ours is [4], in
which the authors present the design of a mechanism whose
underlying routing framework, called SocialCast, exploits
predictions based on metrics of social interactions to drive
the forwarding process. While similar in spirit to our ap-
proach, SocialCast implicitly assumes that an individual
implicitly or explicitly subscribes to one or more “inter-
ests”. On the contrary, our approach builds on the notion
of interest profile, in which a PSN member compactly en-
codes not only the degree (not necessarily binary) of inter-
est in different topics, but also his/her habits (e.g., where
he/she lives, works, etc.), etc. Thus, our approach allows a
more complete characterization of a PSN member’s habits
and social relationships. Finally, SocialCast still remains a
publish-subscribe scheme and requires storing of a consider-
able amount of state information at the nodes, which should
be contrasted with the stateless approach taken herein.

3. INTEREST-SIMILARITY AMONG FRI-
ENDS IN REAL LIFE

In our everyday life our movements are guided in a large
part by our interests. As a matter of fact, we go to cinemas
because we are interested in movies, we go to the library
because we are interested in reading, and so on. As a con-
sequence, we often meet people that have similar interests,
hobbies, and habits to ours. To validate this intuition in
a quantitative fashion, we use traces built during an ex-
periment done with real Bluetooth communicating devices
distributed to part of the participants of the Infocom 2006
conference [11, 12]. The devices were configured to perform
a Bluetooth baseband layer “inquiry” discovering the MAC
addresses of other blue-tooth nodes in range of communica-
tion. The results of the inquiry were written to flash RAM,
recording contact periods between devices, in the form of
{MAC, start time, end time}. Along with this informa-
tion, the data trace includes also reports on participants’
nationality, residence, languages spoken, affiliation, scien-
tific interests, etc.; from which we can easily generate an
interests profile vector of 0/1 coordinates: We count all the
possible nationalities, countries and cities of residence, lan-
guages spoken, affiliations, possible scientific interest topics,
declared by the participants. Then, we build, for each par-
ticipant, a profile vector that has as many coordinates as the
sum of all these possibilities put together. A 1 in the i-th
coordinate of a given participant’s profile vector corresponds
to the fact that that participant is either interested in the
scientific topic, or speaks that particular language, or comes
from that particular country (depending on what interest
dimension i represents). In the process, we discard partic-



Experimental data set Infocom 06
Device iMote (Bluetooth)
Duration (days) 3
Granularity (sec) 120
Participants number 78
Participants with profile 61
Internal contacts number 191,336
Average Contacts/pair/day 6.7

Table 1: Detailed information on the Infocom 06
trace.

ipants that have not declared any of the above interests,
in order to remove erroneous profiles. The number of the
participants involved after this cut reduces to 61. Although
there are other data-traces available on line describing con-
tact among participants in different experimental settings
([7, 11, 12, 13]), they do not include any information on
participants’ profiles. To the best of our knowledge, Info-
com 06 is the only available data-trace that includes also
these type of information, thus in this paper we focus on
this data-trace. More details about the data-trace can be
found in Table 1.

To support our intuition, we first measure the profile-
similarity among node-couples. For this we use the well
known cosine similarity metric [6], which measures similar-
ity between two points A and B in a certain vectorial space
as the cosine of the angle ∠AB between the vectors corre-
sponding to A and B. Formally:

Definition 1. Given two m-dimensional vectors A and
B, the cosine similarity metric, denoted Θ(A,B), is defined
as follows:

Θ(A,B) = cos(∠AB) =
A ·B

‖ A ‖‖ B ‖ ,

where ‖ X ‖ represent the length of vector X.

Then, we compute the Pearson correlation among this
value and the total meeting duration/meeting frequency for
every couple. These values result to be .28 and .08, re-
spectively. The second correlation coefficient is small: This
is more than reasonable, being this trace the result of the
mobility pattern in a big conference, where there is a high
“mixing” of people and thus a high number of short-casual
meetings, for example, almost all the attendees meet during
the coffee break. Yet, the first correlation coefficient (the
one related to the duration of the contacts between people)
shows that even in the presence of a high number of casual
meetings, people with similar profile tend to meet for longer
times. To confirm this observation, we then compute the
correlation coefficients among profile similarities and meet-
ing duration/meeting frequency, only for pairs of individu-
als who spend, on the average, more than a certain amount
of time together. This way the effect of the casual short
meetings is attenuated and, at the same time, the number
of participants that satisfy this condition decreases signifi-
cantly. The results are presented in Table 2. As can be seen,
the higher the average meeting time used to filter out casual
meetings, the higher the correlation among interest profiles
and meeting duration/frequency. These results support the
conclusion that our intuition is sound and that it can be used

AVG meet time Cd Cf Nodes
> 0 (min) .28 .08 61
> 5 (min) .55 .57 53
> 10 (min) .67 .67 26

Table 2: Correlation between interests profiles and
participants’ encounters. Cd and Cf indicate the
Pearson correlation coefficient between participants’
couples profiles and respectively total meeting du-
rations and meeting rates.

as the basic mechanism of social-aware, stateless forwarding
protocols.

4. SOCIAL AWARE AND STATELESS NET-
WORKING

In order to at least partially address the issues with cur-
rent social-aware routing approaches, in this paper we ad-
vocate a different perspective on how information related
to the user social behavior is used to optimize PSN rout-
ing performance. In particular, we propose to characterize
each individual belonging to the network with an interest
profile belonging to the network’s interest space, and to base
the forwarding strategy of the routing protocol upon a sim-
ilarity metric between individual interest profiles. When in-
dividual A carrying a message M destined to individual D
meets another individual B, he/she compare D and B inter-
est profiles, and, based on the outcome of this comparison,
he/she decides whether to forward M to B. It is important
to observe that this forwarding approach is stateless, since
A discards B’s profile after the forwarding decision has been
taken. Furthermore, forwarding decision is based on a notion
of similarity between individual interests, somewhat taking
the social ties between individuals into account. Thus, ours
is, to the best of our knowledge, the first social-aware, state-
less routing approach for PSN introduced so far.

Each message M ’s header contains a target interest pro-
file that we call message relevance profile, an integer value
Nreplicas representing the number of replicas of the message
that the node is allowed to forward to other relays, and a
time-to-live value TTL utilized to remove obsolete messages.
Furthermore, the header of unicast messages contains the
destination user identifier, whereas, the header of interest-
cast messages contains a threshold value α that is used to
select the relevant destinations as explained in Section 4.2.
The treatment of each message depends on its type, (i.e.,
unicast or interest-cast), and will be described respectively
in Sections 4.1 and 4.2. After all messages in the buffer have
been analyzed, the node updates the buffer. This is achieved
by

• removing messages that are obsolete: To this aim a
deadline instant, tdead, is assigned to each message in
the buffer.

• handling the messages relayed by the other node: More
specifically, if the node is a destination then the mes-
sage will be forwarded to the application; if the node is
a relay then it will insert the message in the buffer. As
described above, a deadline instant tdead is assigned to
the message which is calculated as the value of the cur-



rent time plus the TTL value reported in the message
header.

4.1 Unicast
In the unicast case we aim at the best tradeoff between

communication overhead and the probability of delivery suc-
cess (i.e., the probability that the packet reaches the desti-
nation before it elapses), as well as the delivery delay. Ac-
cording to our interest-based approach, a message M should
preferably be forwarded to individuals whose interest profile
closely resembles the one of the destination.

More specifically, as in [21], we assume that in order to
keep the communication overhead under control, the same
message can be relayed at most for N∗

replicas times. Mes-
sage relaying obey the following rules: Message M should
be relayed to a node B if an only if both the two following
conditions hold:

– the current value of Nreplicas is higher than 1.

– the cosine similarity metric between the relevance of
message M , denoted as R(M), and the IP of B, de-
noted IP (B), is higher than a given threshold ρ that
we call relaying threshold, that is

Θ(R(M), IP (B)) ≥ ρ (1)

The values of Nreplicas and TTL contained in the mes-
sage header are updated as follows: The value of Nreplicas

is halved, whereas the value of TTL is set equal to the dif-
ference between the deadline instant and the current time.
Then, a copy of the message is sent to B. Note that, since
Nreplicas is equal to half the initial number of replicas at the
sender node A, this is equivalent to handling node B half of
the copies of M currently in node A’s buffer, as done in Bi-
narySW [21]. Obviously the message is transmitted to node
B regardless of the value of Nreplicas if B the destination of
the message. In this case, node A will remove the message
from the buffer after this is relayed to B.

The source is responsible of initializing, for every message,
the values of Nreplicas, which must be a power of 2 and rep-
resents the maximum values of replicas of the message in the
network, and the value of TTL, which represents the maxi-
mum delay acceptable for the delivery of the message. The
message relevance profile is set equal to the interest profile
of the destination.

Note that, as the threshold ρ decreases, the forwarding
strategy becomes more aggressive. This results in the de-
crease of the delivery delay, and an increase of both the de-
livery success probability and the communication overhead
(cost) incurred for the delivery of the message M , that we
denote as c(M). Observe that the cost c(M) is proportional
to the number of copies of the message M spread in the
network. Note that a few extreme cases can be considered:

• N∗
replicas = ∞: in this case there is no bound on the

number of copies of the message circulating in the
network. We call the resulting version of our pro-
tocol suite epidemic SANE, and we denote it with
SANE EP. The SANE version corresponding to the
case N∗

replicas <∞ is instead called spray & wait SANE
and denoted SANE SW.

• ρ = 0: in this case, the relay threshold is not used, and
the proposed forwarding strategy becomes the same as

BinarySW [21]. Furthermore, if N∗
replicas is set equal

to∞ then our protocol behaves like epidemic forward-
ing [22], which is the policy achieving the lowest deliv-
ery delay (but also the highest cost).

• ρ = 1: in this case, only direct message delivery from
source to destination is possible: Message delivery cost
is minimized, but message delivery delay is very high.

4.2 Interest-cast
Assume individual C wants to send a message M to all

or the largest possible number of potentially interested indi-
viduals within the network. First, C must set the message
relevance profile of M , which can be done assigning for each
of the m interest dimensions a “relevance” value in the [0, 1]
interval. Such m-dimensional vector associated with a mes-
sage is used (coupled with the individuals’ interest profiles)
to drive information propagation within the PSN. Note that
the notion of message relevance profile allows to represent
message M–similarly to individuals–as a point in the inter-
est space. In the following, the relevance profile of message
M is denoted R(M). The set of relevant destinations for M ,
denoted RD(M), is the set of individuals within the PSN
for which message M is deemed relevant. As a consequence,
RD(M) is the set of nodes to which message M should be
delivered, subject to an upper bound on the delivery time
that we have called TTL∗. Whether a message M is rele-
vant for a certain individual B is determined using a certain
relevance metric. As we already explained, in this paper we
use the well-know cosine similarity metric [6] to determine
whether message M is relevant for individual B.

Note that, since both individuals’ interests and message
relevance profiles take values in the same m-dimensional in-
terest space, we have that, for any individual B and message
M , the angle between IP (B) and R(M) is in [0, π/2], im-
plying that Θ(B,M) is indeed in [0, 1]. In this paper, we use
the following simple rule to determine whether message M
is relevant to individual B: The message is relevant if and
only if Θ(IP (B), R(M)) ≥ α, where α is a suitably chosen
relevance threshold.

We want to stress the difference between the notion of
interest-casting defined herein and more traditional commu-
nication paradigms and services such as multi-casting and
publish-subscribe. In interest-casting, the only action taken
by a “content provider” (an individual generating a mes-
sage) is determining the message relevance profile. After
that, the message is injected in the network, and informa-
tion propagation is driven by the notions of relevance and
interest profile. As we shall see, these notions are used not
only to dynamically determine the set of relevant destina-
tions, but also to govern the forwarding process. Thus, in
interest-casting the content-provider is not aware of the set
of destinations the content should be delivered to, which is in
sharp contrast with the traditional notion of multi-casting in
which multi-cast groups are explicitly defined and typically
known to the content provider. Furthermore, in interest-
cast destinations must not explicitly subscribe to a specific
“topic”, as an individual is able to dynamically “capture” all
(or most) relevant messages circulating in the PSN. This is
also in sharp contrast with publish-subscribe mechanisms,
which typically requires explicit subscription to one or more
“topics” to be able to receive relevant information.

The forwarding discipline of interest-cast is similar in phi-
losophy to the unicast case. In fact, if the two conditions



given in Section 4.1 for the unicast case hold then the mes-
sage is relayed to B in the same way. If the above two
conditions are not met but B is a relevant destination, then
the message is transmitted with Nreplicas set to one and TTL
evaluated as explained in Section 4.1. Note that the above
transmission does not have impact on the communication
overhead.

5. EXPERIMENTAL RESULTS
In this section, we present some experimental results in

order to show the performance of SANE, in both its unicast
and interest-cast version, as compared to that of well known
opportunistic routing protocols. Performance will be evalu-
ated implementing the protocols in a trace-driven simulator
feed by the Infocom 06 trace.

To this end, we average the results of the following ex-
periment, repeated 100 times: We generate a message with
a source and destination chosen uniformly at random (uni-
form traffic pattern), and we set message’s relevance profile
to be equal to the destination’s interest profile. Then, we
let the message to be forwarded in the network according
to the different forwarding schemes. As already discussed in
Section 3, the correlation between node interest profiles and
their meeting frequencies is low (see first row of Table 2)
without filtering out short meetings; on the other hand, fil-
tering out short meetings to increase correlation would con-
siderably reduce the size of the data set, making simulation
results scarcely significant. In view of this, we have decided
to keep the user population as large as possible (61 users,
with a 0.08 meeting frequency correlation); consequently,
reasonably low values for the relay and relevance thresholds
ρ and α should be chosen. In this experiment, we have set
them to ρ = .25 and, for the interest case, α = .45, respec-
tively.

5.1 Unicast
In a first set of experiments, we compare the unicast ver-

sion of SANE (UN-SANE) to that of well known state-
less forwarding protocols such as BinarySW [21] and Epi-
demic [22], as well as with a state-of-the-art of social-aware
forwarding protocol, namely BUBBLE [11]. In implement-
ing BUBBLE, we took care of putting the protocol in the
best possible conditions, i.e., complete knowledge of the so-
cial graph and of the local/global ranking metrics. We con-
sider both the SW and the uncontrolled version of UN-SANE
in our experiments, denoted UN-SANE SW and UN-SANE
EP, respectively. Being the network considered of only 61
nodes, parameter N∗

replicas (number of message copies) of
BinarySW and UN-SANE SW is set to 4. The experiments
are repeated for various values of the TTL’s, and in each
case, we measure the average delay (average delivery time
for successfully delivered messages), the cost (average num-
ber of message copies in the network per delivered message,
computed only for successfully delivered messages), and suc-
cess percentage. The results are presented in Figure 1.

As can be seen, both versions of UN-SANE provide sig-
nificantly higher success percentage than that of compet-
ing protocols (excluding, of course, Epidemic); also, the
delay provided by the two versions of UN-SANE is better
than that of both BinarySW and BUBBLE. In a sense, the
two versions of UN-SANE provide different routing perfor-
mance/cost trade-offs, with the SW version providing re-
duced success percentage with respect to the EP version

(around 60% instead of about 68%), but with a much lower
cost (factor 4 reduction in cost with respect to UN-SANE).
Note also that the cost of UN-SANE SW is about the same
as that of BinarySW, and lower than that of BUBBLE.

5.2 Interest-cast
Here, we show results related to the two interest-cast ver-

sions of our protocol: SANE SW, and SANE EP. Since there
is no immediate way of extending BUBBLE into an interest-
cast protocol, we compare SANE protocols only to Epidemic
and BinarySW, whose interest-cast versions are straightfor-
ward (simply delivers a copy of the message to all relevant
destinations). The way we generate messages and the input
tuning parameters of BinarySW and SANE SW are the same
as in the previous section. The results are shown in Figure 2.
In this case, coverage refers to the percentage of relevant
destinations holding a copy of the message when the TTL
expires. As seen from the figures, SANE protocols perform
very well, providing comparable coverage of relevant desti-
nations to that of Epidemic (for TTLs values large than 30
min), but with a much reduced cost (as much as 10-fold cost
reduction with respect to Epidemic, in case of SANE SW).
The benefits of social-aware forwarding are evident compar-
ing the relative performance of BinarySW and SANE SW:
with a comparable cost, SANE SW provides higher coverage
and lower delay as compared to BinarySW.

6. CONCLUSIONS
In this paper, we have first validated the intuition that

individuals with similar interests tend to meet more often
than individuals with diverse interests, and then used this
intuition to design the first social-aware, stateless forwarding
mechanism for opportunistic networks, called SANE. A nice
feature of the SANE forwarding approach is that it can be
used not only for traditional unicast communication, but
also for realizing innovative networking services for PSNs,
such as interest-casting. The results of simulations based on
real-world mobility traces have shown a clear superiority of
our SANE approach over existing competitors.
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