
StreamSmart: P2P Video Streaming for Smartphones
Through The Cloud

Alessandro Gaeta, Sokol Kosta, Julinda Stefa, and Alessandro Mei
Department of Computer Science, Sapienza University of Rome, Italy

Email: surname@di.uniroma1.it

Abstract—Thanks to their power, the many sensors they embed,
and their inherent connectivity to Internet, smartphones are
certainly becoming the primary source of multimedia content and
the main tool for content sharing.

In this demo, we analyze the complexity of real-time video
streaming among smartphone users. Firstly, we show that the
traditional solution—a unique server receiving and dispatching
all devices’ content—suffers from scalability issues. Then, we
present StreamSmart, a distributed system for real-time video
streaming of smartphones, that leverages a virtual P2P network
of smartphone software clones on the cloud. In StreamSmart, the
captured content is forwarded from the sharing device to its own
cloud clone, that in turn forwards it to the clones of other users.
These latter transmit the content to the respective devices and, at
the same time, contribute to further spread it to other possible
clones in the network. We show that the StreamSmart system is
highly scalable, responsive, and fault tolerant.

I. INTRODUCTION

Sharing multimedia content has become a crucial feature
of our digital social life. Platforms like Facebook, Instagram,
Dropbox, Picasa, and so on, all feature a share button in
their system. Mobile devices like tablets, but most importantly,
smartphones, are undeniably playing a main role in all this.

In this scenario we consider the following setting: Alice is
at a concert, capturing a video with her smartphone, and wants
to share it in real-time with some of her friends. Clearly there
are many ways to achieve this. The first and most obvious
one, is to use a central server that takes care of managing
all users and distributes the video to all of Alice’s friends.
This traditional solution suffers from the obvious limitations
of a single-server platform when managing multiple users
(scalability, single point of failure, etc.). For example, recently,
the famous streaming software Ustream1, had to refund many
boxing fans because their server was overloaded and the users
could not watch the match2. An alternative solution is to
build a smartphone P2P network, similarly to Skype [1], that
uses NAT and firewall traversal techniques to interconnect
the traditional computers. This solution is not feasible for
two reasons: First, creating a P2P network of smartphones is
very hard to get; second, Alice’s smartphone would be highly
overloaded. Recently in [2], the authors propose MicroCast,
a system where a group of smartphone users in proximity of
each other, and interested to watch the same video, cooperate to

1https://play.google.com/store/apps/details?id=tv.ustream.ustream
2http://www.mmajunkie.com/news/2013/01/ustream-exec-apologizes\

-for-invicta-fc-failure-blames-record-demand-for-issues

Phone 4

Phone 4Phone 4

Phone 4

Phone 4
Phone 4

Phone 1

Phone 3Phone 2

Phone 4

Phone 5
Phone 6

Clone 1

Clone 2

Clone 4 Clone 5

Clone 3

Clone 6

Cloud platform

Fig. 1. The C2C architecture used for video streaming.

improve the video streaming experience. In this system, every
smartphone uses simultaneously two network interfaces: the
cellular interface to connect to the video server and the WiFi
interface to connect to the other phones. Through a scheduling
algorithm, each phone decides which parts of the video to
download, and through a P2P connection distributes them to
the others. Even though this is an improvement with respect to
previous solutions, the assumption that users are in proximity
of each other is very strong.

In this demo we propose to leverage the cloud so to achieve
StreamSmart, an efficient and fault tolerant real-time P2P
streaming system for smartphones. StreamSmart makes use
of the C2C platform [3], [4], [5]. In this platform, every
smartphone is associated with its own personal clone on the
cloud, that can be used for computation offloading [6], [7], or
data backup [8]. In addition, C2C interconnects the smartphone
clones in a P2P fashion exploiting the high-speed network of the
cloud. This allows the C2C platform to enable, not only com-
putation offloading, but also communication offloading between
smartphones: A large file that is to be sent from smartphone A
to many other smartphones can be uploaded to clone A on the
cloud. Then, any other smartphone will seamlessly download
the file through clone A, without involving the real device A
in the process.

StreamSmart leverages this last aspect of the C2C platform—
communication offloading—to efficiently spread a videostream.



When Alice wants to stream a video and share it with her
friends, she firstly uploads it to her cloud clone (see Figure 1).
Then, Alice’s clone informs the clones of the users authorized
to watch the stream, that in turn forward the notification to
the respective real devices. Each authorized user can decide
to watch the video immediately, to watch it later by mak-
ing his clone register the stream, or to simply ignore this
streaming. Towards achieving an efficient and real-time system
we consider different interconnection configurations among the
clones. Our experiments show that by using a balanced tree the
StreamSmart system yields very good performance in terms of
both scalability and responsiveness.

II. DISTRIBUTED VIDEO STREAMING FOR SMARTPHONES

The StreamSmart system consists of two sub-systems: The
first, that resides on the smartphones, and the second sub-
system that resides on the clones. A smartphone either captures
a video (if it is the source of the stream) or shows it on the
screen. The clones, from the other side, help in distributing
it in real-time to the authorized users. We use the H2643

video format to encode the data, the Real Time Streaming
Protocol (RTSP4) as network control protocol, and the Real
Time Protocol (RTP5) with UDP for data transmission.

The sender phone i) captures the video frames from the
camera, ii) encodes them to H264 format, iii) encapsulates
the encoded data in RTP packets, and finally, iv) sends the
data through UDP to its own clone. This clone then, using the
C2C connections, distributes the data to the other clones on the
cloud, which in turn forward it to the respective real devices.
Upon getting the RTP packets from the clone, a receiving phone
decodes the H264 data and visualizes the video on the screen.

The heart of StreamSmart is undoubtedly the C2C network.
The way the clones interconnect with each other can improve
or degrade the overall performance of the system. We imple-
mented and tested two strategies. The first one is a straight-
forward solution: The clones of the receiving smartphones
connect to the clone of the source device, creating, in this
way, a star graph. This configuration is analog to the traditional
implementation of real-time single server streaming services.
As expected, we observed that the clone in the center of the
star was highly overloaded: Its CPU utilization exceeds 60%
with as less receiving clones as 16.

In the second strategy, the clones create and maintain a
balanced tree using a distributed algorithm. Figure 1 depicts
an example of the resulting interconnections on a system with
6 clones. The nodes of the tree represent the clones, with the
radix being the clone connected to the phone sharing the video
streaming. Every clone interested to participate will join the
system trying to maintain the tree balanced. Here we distinguish
three types of clones based on their behavior: i) The radix,
that gets the data from the phone and distributes them to
its children; ii) The leaf clone, which gets the data from its

3http://en.wikipedia.org/wiki/H.264/MPEG-4 AVC
4http://tools.ietf.org/html/rfc2326
5http://tools.ietf.org/html/rfc1889

parent and forwards them to the phone connected to it, and
iii) The internal clone, which gets the data from its parent and
distributes them to its children and to the phone connected to
it. The CPU utilization of the radix node in this configuration
drops down to less than 20% (as opposed to 60% for the star
graph configuration), for the internal nodes is lower than 10%,
and for the leaf nodes is lower than 5%.

An important factor to consider when building real-time
video steaming systems is the user perceived video quality. In
StreamSmart, this is strictly correlated to the interconnection
architecture of the cloud clones: It determines the number of
hops between the source of the stream and the “spectator”
users. The bigger the number of hops, the higher the probability
of packet loss and transmission delay. When the clones are
connected as a star graph, the distance between the sender
smartphone and every other phone is minimal, while in a
balanced tree configuration the distance is variable, depending
on the tree level that a clone belongs to.

We estimate the goodness of our system according to the
standards proposed in [9]. According to these standards, the
packet loss should be no more than 5%, and video latency
no more than 4-5 seconds. Our experiments show that the
StreamSmart system fully complies with the required standards
for tree depth of up to 6 levels. Adding a 7th level makes
the users connected to the leaf clones experience a poor video
quality. To avoid this, once the tree is full, we force it to grow
in width, making the clones stay closer to the radix. In this
case, the system starts experiencing problems only when the
degree of the nodes becomes very high, that translates in a
high overload of the relay clones.

III. DISCUSSION

StreamSmart is a distributed and participatory system. It
becomes thus very important that the clones within the system
help in spreading the video-stream throughout the network.
In this scenario, the following two questions raise naturally:
1) “Should the clones of non interested users be involved in
distributing a certain content?”, and 2) “Can we ensure that the
clones participating in the system will behave correctly?”.

To answer the first question, there are several things to
be taken into consideration: (a) Privacy requirements of the
source—the higher it is, the less likely the source wants the
video to be spread through clones of unknown people; (b)
Constraints for the link creation among clones—If they are
bootstrapped by, e.g., a user’s social network, it certainly be-
comes very hard for clones of non-friend users to interconnect
to each other.

To answer the second question, the selfishness of the users,
and the respective clones, has to be considered. In this case,
mechanisms like [10], or Nash Equilibrium protocols like [11]
can be exploited to incentive users and respective clones to
behave correctly.

As future work we are exploiting other interconnection
architectures within the C2C network, with the aim to improve
the overall quality of the system. Recent studies show that the
degree of separation between nodes within social networks is



roughly 4 [12], making the social graph a perfect candidate for
our real-time video streaming architecture. In this configuration,
with high probability every pair of phones would be close to
each other. In addition, each clone would not only send data
to multiple clones, as in the tree configuration, but would also
receive data from multiple clones. These two simple improve-
ments could alleviate the transmission delay and help mitigate
the packet loss effect. Nonetheless, we are aware that the social-
network has its own pitfalls. Probably, the most worthy to
mention is the one deriving from the so called hubs—popular
nodes that present a high degree within the network. These
nodes would have to handle many users, and as a consequence,
would be highly overloaded. A possible way-around is to limit
the number of clones served by a hub to a maximum number
of neighbors. When selecting the clones to serve, it is more
preferred that a hub gives precedence to neighbors with low
degree—those with high degree will eventually find another
path from which to get the video.

IV. DEMO SETUP

We demonstrate our StreamSmart prototype using four Sam-
sung Galaxy S Plus devices and 32 Android-X86 software
clones deployed on Amazon’s EC2 public cloud. The first
group of 16 Android clones will be connected as a star
graph, while the second group of 16 Android clones will be
connected following the balanced tree algorithm. To each C2C
configuration we associate two Samsung phones.

The user (the demo presenter or a possible volunteer) will
use one of the phones (per each configuration) to stream a
video through the C2C system. Meanwhile, all the clones
will automatically participate to the video streaming, getting
the video and waiting for phone connections. The user will
use the other phone (per each configuration) to watch the
video, alternating the clones the phone connects to. During the
demonstration we will show, in real time, the CPU overload of
the clones as well as the video quality of the receiving phone.

ACKNOWLEDGMENTS

This work has been performed in the framework of the
FP7 project TROPIC IST-318784 STP, which is funded by the
European Community. The Authors would like to acknowledge
the contributions of their colleagues from TROPIC Consortium
(http://www.ict-tropic.eu).

REFERENCES

[1] S. A. Baset and H. Schulzrinne, “An analysis of the skype peer-to-peer
internet telephony protocol,” in IEEE infocom, vol. 6, 2006, pp. 23–29.

[2] L. Keller, A. Le, B. Cici, H. Seferoglu, C. Fragouli, and A. Markopoulou,
“Microcast: Cooperative video streaming on smartphones,” in Proceed-
ings of the 10th international conference on Mobile systems, applications,
and services. ACM, 2012.

[3] S. Kosta, V. C. Perta, J. Stefa, P. Hui, and A. Mei, “Clone2Clone (C2C):
Peer-to-Peer Networking of Smartphones on the Cloud,” in 5th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud ’13), 2013.

[4] S. Kosta, V. C. Perta, J. Stefa, P. Hui, and A. Mei, “CloneDoc: Exploiting
the Cloud to Leverage Secure Group Collaboration Mechanisms for
Smartphones,” in Proc. of IEEE INFOCOM 2013, 2013.

[5] M. V. Barbera, S. Kosta, J. Stefa, P. Hui, and A. Mei, “CloudShield:
Efficient anti-malware smartphone patching with a P2P network on the
cloud,” in Proc. of IEEE P2P 2012, 2012.

[6] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading.” in Proc. IEEE INFOCOM 2012, 2012.

[7] M. V. Barbera, S. Kosta, A. Mei, V. C. Perta, and J. Stefa, “CDroid:
Towards a Cloud-Integrated Mobile Operating System,” in Proc. of IEEE
INFOCOM 2013, 2013.

[8] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa, “To Offload or Not to
Offload? The Bandwidth and Energy Costs of Mobile Cloud Computing,”
in Proc. IEEE INFOCOM 2013, 2013.

[9] T. Szigeti and C. Hatting, End-to-end qos network design. Cisco Systems,
2005.

[10] W. S. Lin, H. V. Zhao, and K. R. Liu, “Incentive cooperation strategies
for peer-to-peer live multimedia streaming social networks,” Multimedia,
IEEE Transactions on, vol. 11, no. 3, pp. 396–412, 2009.

[11] H. C. Li, A. Clement, E. L. Wong, J. Napper, I. Roy, L. Alvisi, and
M. Dahlin, “Bar gossip,” in Proceedings of the 7th symposium on
Operating systems design and implementation. USENIX Association,
2006, pp. 191–204.

[12] L. Backstrom, P. Boldi, M. Rosa, J. Ugander, and S. Vigna, “Four degrees
of separation,” in Proceedings of the 3rd Annual ACM Web Science
Conference. ACM, 2012, pp. 33–42.


