
Mobile Offloading in the Wild: Findings and
Lessons Learned Through a Real-life Experiment

with a New Cloud-aware System

Marco V. Barbera, Sokol Kosta, Alessandro Mei, Vasile C. Perta, and Julinda Stefa
Department of Computer Science, Sapienza University of Rome, Italy

Email: {barbera, kosta, mei, perta, stefa}@di.uniroma1.it

Abstract—Mobile-cloud offloading mechanisms delegate heavy
mobile computation to the cloud. In real life use, the energy
tradeoff of computing the task locally or sending the input
data and the code of the task to the cloud is often negative,
especially with popular communication intensive jobs like social-
networking, gaming, and emailing.

We design and build a working implementation of CDroid, a
system that tightly couples the device OS to its cloud counterpart.
The cloud-side handles data traffic through the device efficiently
and, at the same time, caches code and data optimally for possible
future offloading. In our system, when offloading decision takes
place, input and code are likely to be already on the cloud.
CDroid makes mobile cloud offloading more practical enabling
offloading of lightweight jobs and communication intensive apps.
Our experiments with real users in everyday life show excellent
results in terms of energy savings and user experience.

I. MOTIVATION, VISION, AND GOALS
In our thinking, a smartphone represents the “whole pack-

age”, the all-in-one gadget that has made our life much easier,
almost substituting our computers. Almost. Not because of
the computation or storage limits—nowadays smartphones are
more powerful than the desktop computers of a few years ago.
Not because of the networking limits—smartphones come with
built-in 3G/WiFi technology. But because of the limited energy.
The battery cannot even cope with the multitude of mobile
purpose-built apps that we like to use everyday, that make us
exploit our smartphones to the fullest.

To overcome the hard limits imposed by the battery du-
ration of smartphones researchers have focused on building
frameworks that enable offloading of mobile computation to
the cloud [1], [2], [3]. On a high level, offloading techniques
operate as follows: Whenever a piece of code is to be offloaded
they trade-off between the energy saved on the device by
not computing the code locally, and the energy consumed
by the network interfaces to send to the cloud the code and
the input needed for the remote execution. Put shortly, they
are useful only as far as computation-intensive applications
that involve little data transfer to offload are concerned. They
often take decisions to execute locally, even though the task
is heavy, just because the networking costs to send the input
necessary to run it on the cloud would induce huge overheads
to the device. In addition, when it comes to apps that involve
heavy communication, rather than computation, like Facebook
mobile, WhatsApp, Email, Twitter, online gaming and so on,

This work has been performed in the framework of the FP7 project TROPIC
IST-318784 STP, which is funded by the European Community. The Authors
would like to acknowledge the contributions of their colleagues from TROPIC
Consortium (http://www.ict-tropic.eu).

current offloading techniques cannot do much. Unluckily, these
apps are the ones that drain most of our devices’ battery [4],
[5]. For these reasons, researchers are becoming skeptic on the
actual benefits of offloading. This feeling is strengthened by
the fact that no offloading framework built so far is publicly
available, nor has it been tested with real users (only in labs).

At this point, the following questions come naturally:
“Can users in real life profit from cloud offloading?”, and
“Is it possible to design a cloud-aware system that makes
computation offloading much more efficient and allows for
offloading of communication-intensive tasks?”. Our goal in
this work is to give an answer to the above questions. For this
reason we build CDroid (Cloud-anDroid), an offloading-aware
system transparent to the user, and distribute it to real-users to
assess its performance. We design CDroid so that it enables
offloading of communication-intensive apps, and increases the
gain of offloading of computation-intensive apps. In CDroid
every device comes with its own cloud counterpart, seen as just
another resource of the real device, only a 3G/LTE Advanced
connection away from it. So, it brings the device and the cloud
closer, towards fully integrating them.

The cloud-side of CDroid is made of different components.
One of them is the communication handler, which handles
all the mobile data traffic. Together with the caching and
prefetching and traffic compression components they optimize
the usage of the network interface of the device. Similarly
to [6], [7], but residing on the cloud-side of the device. Most
importantly, by having all the data traffic handled by the
cloud counterpart, CDroid allows us to boost the gain from
offloading: The code of applications installed and most of the
data reside on the cloud, except for user-generated data (e.g.
notes, pictures and so on) that are efficiently synchronized with
the cloud-side through the CDroid syncronization module. This
lowers the traffic the device needs to send for remote execution,
by thus allowing for more battery savings.

These are not the only benefits of a CDroid-like system: It
allows us to envision and build new security and privacy mech-
anisms that go far beyond code offloading. In the prototype we
built we included components that provide anti-phishing and
spam notification filtering, and pre-screening of new installed
apps for malware prior downloading them to the real device.

We deployed CDroid on 5 real devices (primary smart-
phones of 5 participants in our experiment) for two weeks,
and compared its performance with that of plain Android OS.
The testbed results show that, with CDroid, we achieve: (1)
improvement of the device’s usability and responsiveness; (2)
a boost in the security and privacy of both the device and our

2

data; (3) a significant reduction on the battery consumption; (4)
remarkable savings in cellular data traffic that directly traduces
in monetary savings for the users.

II. RELATED WORK
Here we summarize relevant contributions to mobile cloud

offloading and works dealing with mobile spamming, that is
becoming one of the major user concerns.

A. Cloud-aided mobile applications
Cloudlets [8], is one of the first works that suggests remote

execution of mobile code. Its authors make use of resource-rich
nearby computers to which smartphones connect over wireless
LAN to instantiate customized service software. MAUI [1]
provides method level code offloading for Microsoft .NET
applications. The framework decides during runtime whether
to offload a running method. Conversely, CloneCloud [2] uses
an offline static analyzer and a dynamic profiler to partition the
bytecode of an application. After the partitioning, an optimizer
solver determines the portions to offload so to minimize the
expected cost of the app as a whole. The optimizer solver is
fed with a set of running conditions, and an offloading profile
is generated for each of them, and pre-loaded on the device.
But, the bounded number of offloading profiles generated this
way limits the framework’s usability. ThinkAir [3] provides on-
demand resource allocation and parallel execution on the cloud
operating at method level. In [9] the authors study, through
a testbed of 11 Android phones and relative software clones
running on Amazon EC2, the offloading costs in terms of
bandwidth and energy consumption.

Our mobile devices are used not only to store data that are
important to us (pictures, media files, credit card codes, and
so on), but also for economic transactions (internet shopping,
online banking, payphone systems, etc.). Thus, mechanisms
that protect our data and our wallet from the imminent security
threats [10] have become more than valuable in mobile sys-
tems. Unfortunately, excellent techniques like TaintDroid [11]
can be unfeasible for our battery limited smartphones. This
is also confirmed by [12], that pursues a mobile security
versus energy tradeoff. The authors conclude that protecting
against code-driven attack can be affordable, while protecting
against all data-driven attacks is prohibitively expensive. The
first cloud-based approaches [13], [14], [15], [16] assume a
single entity to which the information from all the mobiles
in the system conveys to, and that takes decisions regarding
the presence of viruses or malwares in the single devices.
But, these approaches have scalability problems. When the
number of smartphones in the system becomes very large, the
load induced to the security server increases enormously. In
Paranoid Android [17] and [18] the approach is different: The
systems use replicas of smartphones on the cloud to provide
security services for mobile devices. A recording/replaying
technique is used in [17] to synchronize the replica with the
phone. The overhead introduced by the recorder on the phone
accounts for 30% of extra energy spent. Lastly, in [19], [20],
[21], [22], the authors show how to exploit virtual peer-to-peer
network of smartphones on the cloud so to increase the security
of our devices. In addition, SociableSense [23] shows how also
social related applications can benefit from cloud offloading
and [24], [25] exploit sociality among smartphone clones to
secure mobile devices. Similarly, also systems like [26], [27],
[28], [29] might benefit from offloading computation to the
cloud.

Recently, Google considered introducing a data compres-
sion proxy in Chrome browser for Android1. They notice
that, for an average page, over 60% of the transferred bytes
are images. Works like [30], [31] show the benefits of local
or cloud-base proxies to mobile traffic optimization. In [5]
the authors observe that, in terms of energy consumption,
rendering of JPEG encoding is the most efficient.

B. Mobile Notification Spamming
The notification status bar, coupled with the Android no-

tification service notifies the user about system-related issues
(e.g. through the Google Cloud messaging2, the Android push
service), and about the app related events (e.g. a new email and
so on). Its utility is unquestionable. This might be the reason
why it has become the favorite target exploited to launch
vicious phishing or spamming attacks [32], [33]. The work
in [34] shows the smap side of ads: The way developers trick
the users to click on them is very intrusive and annoying. The
authors in [35] present an Android app profiler. They study
the behavior of 27 famous applications and observe that many
of them communicate with way more servers than expected
(as many as 13). They show that the free versions of the apps
could end up costing more than the paid counterparts, due to
an order of magnitude increase in network traffic.

That said, it is important to notice that, in all of the current
offloading or cloud-based security mechanisms, the device and
the cloud are two different entities, limiting the possibilities
offered by the mobile cloud paradigm. In addition, they are
designed to be app-based, rather than system based. Thus, if
put together as they are on a single device, it is very likely
that the energy-efficiency benefits would be shadowed by the
enormous overload they would incur to the system.

Our approach here is inspired by [6], [7]. These works
aim at using the wireless network links more efficiently by
respectively exploiting local proxies [6] or integrating efficient
prefetching systems on the device [7]. But, our goal is differ-
ent: To build a user-friendly cloud-aware system that optimizes
networking of the real device through the cloud, makes of-
floading of computation-intensive applications more effective,
achieves offloading for communication-intensive applications,
and increases the security of our smartphones. All this with
minimum energy costs (just for the sync between the device
and its cloud-counterpart) of 2.5% of daily battery, that bring
enormous benefits: 62% of cellular traffic reduction, 4–times
less energy spent for web-surfing, 10–times less energy for
offloading of computation-intensive apps, and 2.5–times less
energy waisted by a more parsimonious use of the 3G radio.

III. ARCHITECTURE
The CDroid system (depicted in Figure 1) consists of two

parts: The device-side, residing on the smartphone, and the
cloud-side, residing on the cloud and coupled with the device.
The cloud-side is an instance of Android-x86 OS3, the porting
of the Android OS to the x86 platform. During the set-up phase
the user sets an account password that allows her to access the
features of CDroid. Here we describe the components of the
system that we implemented.

1https://developers.google.com/chrome/mobile/docs/data-compression
2http://developer.android.com/guide/google/gcm/index.html
3www.android-x86.org

3

1) CDroid-Device: Is the device-side of the system. It
executes on the phone as a background service. It collects
informations about user activities and behavior like phone
calls, SMS sender and receiver information, GPS coordinates,
emails, Bluetooth devices and WiFi hotspots discovered or
connected to, and 3G networks. This information is recurrently
saved in a log file on the device. The logs are sent in batches
to the cloud-side of the system as a piggyback to user traffic.

2) CDroid-Server: Is the first cloud-side component of the
system. It collects the information sent by the CDroid-Device
and passes it to the other components. In addition, it handles
the various user connections by invoking the proper handlers
(described later in this work) that allow user commands to
enable or disable specific system features.

3) Connection handler: This component is responsible for
the http traffic tunneling of the real device through the CDroid-
Server. To make this possible, we implemented it as a http
proxy. The Connection handler is the first component to receive
the connections from/towards the phone. It analyzes separately
the header and the data of the connection, and, depending on
them, delegates the connection to the responsible component.

4) Secure connection handler: Our CDroid system also
features a handler for secure connections, that takes care
of https connections. The choice of handling http and https
connections separately by using two different components has
two advantages: (1) The user can decide to tunnel the http con-
nections only (e.g. the user might not want the cloud-resource
to handle its online banking). (2) The user can enable the
CDroid-Server to decrypt the secure connections and analyze
the header and the data for other reasons, e.g., compressing
https traffic to reduce cellular bandwidth through the Content
Compression handler, described later in this section.

5) App handler: At the beginning of 2012 Google in-
troduced Bouncer4, a system that scans all apps on Google
Play store for malware. Unfortunately, third party markets,
becoming more and more popular, are not using any system
to protect users from malware code. Recently, after acquiring
VirusTotal company, Google announced that will introduce the
anti malware feature in all the new Android phones5. Besides
from suggesting that the risk of malware apps is still present
and cannot be stopped only by pre-scanning apps uploaded
on the Google Play store, this solution will certainly induce
energy overhead to our devices.

The App handler component of our CDroid system serves
as a security screen of new apps downloaded, prior the
installation on the real device. When the CDroid-Server detects
a request for a new app download, the App handler installs the
apk in a sandbox on the cloud-side, and puts it in quarantine
state. Then, one or more anti-malware softwares are run to scan
the app for malicious behavior. In addition, the App handler
blocks and logs all Internet connections that start from the
quarantined app. If the app passes successfully the quarantine
phase, the apk is sent to the user device for installation.
Otherwise, the app is flagged as potentially malicious and the
apk is not sent to the device unless the user decides to install
the flagged app regardless. The quarantine time can be set and
changed by the user in any moment.

6) Synchronization module: In CDroid he cellular traffic
is tunneled through the cloud-side of the device. This allows

4http://googlemobile.blogspot.it/2012/02/android-and-security.html
5http://tinyurl.com/c7n6g5o

the cloud-side to be up to date with the smartphone, as
far as the uploaded/downloaded data are concerned (pictures
uploaded to Facebook, files downloaded from the Internet,
code of newly installed apps etc.). But, it is not so for user-
generated data (notes, pictures taken with the camera, and so
on). The synchronization module fills this sync gap: It makes
sure that the data generated by the user on the phone is sent
to the cloud-side. For efficiency reasons, the synchronization
module exploits a mechanism similar to the rollback hashes
technique used in [9] to send only newly generated files, or
changes of existing files to the CDroid-Server. It handles all
the preparation (on the device side) of the data to be sent, and
takes care of copying the data on the CDroid-Server side within
the same path the files were created on the CDroid-Device.
This module enables the user to set different synchronization
frequencies for her data and her apps backup, according to
her needs. As we will see from the results achieved by our
testbed, the sync module makes the device spend 2-times less
energy with respect to [9] for the sync with the cloud-side for
offloading purposes.

7) Remote Code Executor: We integrate the ThinkAir
framework [3] to the CDroid architecture to enable remote
code execution. When the user decides to include an app
in those usable through the ThinkAir framework for better
battery performance, the CDroid-Server is notified, and the
app is installed also on the cloud resource. The Remote Code
Executor is then, from that moment on, responsible for the
execution of the offloaded methods and for handling the neces-
sary data transfer from the device. The ThinkAir framework is
modified so to communicate with the synchronization module:
Only files that are not on the cloud-side yet are sent after an
offloading decision is taken. Our experimental results show
that this aspect, together with the lightweight sync module,
increase the energy-gain from the offloading of heavy tasks
up to 10-times.

8) Remote wiper: It can be used when the user loses the
phone and wants to delete everything remotely. It operates as
follows: The user, after deciding to do a remote wipe, connects
and authenticates herself to the CDroid-Server from a third
terminal. Then, the user asks for the remote wiper procedure
to be started. This procedure triggers a command sent to the
CDroid-Client that immediately executes a phone wipe and
delete all user data and installed applications from the device.

9) Cookie handler: It protects the user from cookie theft
and enables the unification of cookies for all applications.
When enabled, it intercepts the cookies received from servers
the user connects to, removes them from the response header
prior sending the response to the user device, and stores
them on the cloud-side of the system only. On consecutive
connections the Cookie handler puts back the correct cookies
on request headers coming from the phone.

Another feature of the Cookie handler component is to
safeguard users’ privacy and accounts enabled on the smart-
phone in case of theft: The user can trigger the component from
a third terminal to block all cookies towards the device. So, the
thief cannot access to any of user accounts unless he breaks
the password and re-authenticates with the CDroid-Server.

10) Sensitive information blocker: It analyzes the traffic
generated by the device to detect leakage of (unaware) users’
sensitive data. If an anomaly is detected the Sensitive infor-
mation blocker alerts the CDroid-Server which notifies the
CDroid-Device to inform the user, and blocks the transmission

4

Cloud-side

CDroid-Server

Application Framework

Kernel

Libraries Android Runtime

Home Contacts Browser Games

A
nd

ro
id

 O
S

.......

CDroid-Device

Connection and Secure connection handlers

Ad-Blocker Compression Remote Wiper

Caching &
Prefetching

Remote
Executor

CookieHandler

Push handlerSensitive info blocker

AppHandler

AntiPhishing

SyncHandler

Fig. 1: The CDroid architecture.

if necessary. Sensitive informations are passwords, credit card
or cellphone numbers, etc., and are selectable by the user.
Finally, this component features an Anti-phishing handler that
checks the urls in the user request headers to detect if there
are links to phishing websites.

11) Mobile Advertisement blocker: App developers often
display intentionally ads over areas where the user would
normally tap during the app usage. This is to maximize the
chances for the user to click on the ad, so to increase their
revenue. Once accidentally clicked, the ad opens the browser
by interrupting the user and sending her to a web-page related
to the ad. While this results in a very annoying user experience,
it is a very commonly used technique [34]. In addition, ads
generate data traffic unwanted by the user. This traffic can
severely impact on the costs of the mobile Internet plans for
many user categories: The “tricky” ads are being introduced
in every type of app—from mobile gaming, free messaging,
horoscope apps (more popular to younger generations), to
health and aging related apps (more popular among older
generations). These unwanted costs can raise up to 10 euro
per day for travelers: Roaming Mobile Internet with Italian
carriers for example, costs about 5 euro daily for fixed amounts
of traffic (typically of 50-100 MB per day). When the mobile
traffic exceeds this limit, the cost raises up to 2 euro per MB.

What is worse, the traffic generated by these ads can
be a threat to the privacy: Many ad companies send ads
customized to the user profile, which suggests that sensitive
user information is leaked when retrieving new ads.

The Mobile Advertisement blocker component frees the
user from the unwanted ad traffic. It is user-enabled and on
a per application bases. It operates as follows: When an app
or a web-page sends a request for an ad, the CDroid-Server
is alerted to not satisfy the request, and simply reply with
a denied message. Ad requests are easily detectable—they
are directed to servers publicly known as dedicated to ad
distribution. Enabling this component results in less traffic
generated, better user experience, and more privacy.

12) Content compression: This module aims at improving
user experience when navigating or accessing client-server
based platforms, like e.g., Facebook. It compresses text pages
in gzip streams, and converts all images in JPEG, the most effi-
cient encoding format supported by Android [5]. In addition, it

enables the user to setup a target image quality, and reduces the
image size accordingly. As we will see from our experimental
results, the downloads result faster and the cellular traffic is
dramatically reduced. Consequently, the battery consumption
for networking is considerably lower (up to 4–times less).

13) Caching and pre-fetching: The cache size of Android
devices is quite small [31], and does not allow for much
content to be cached for long time. This puts limits to the
usability and responsiveness of the device. The Caching and
pre-fetching component on the cloud resource aims at fixing
this shortage: We set a bigger cache on the cloud resource,
which enables the possibility for more information to be
cached and for a longer period of time. The component features
also a predicting mechanism for the navigation patterns of
the user. The pre-fetching module makes the connections
according to the prediction, and loads and caches the content.
So, the device fetches the content readily from the CDroid-
Server, without needing to wait to connect to the respective
(and possibly slow or overloaded) remote server from which
it was pre-fetched by the Caching and pre-fetching component.

14) Push notifications handler: Many apps that we use
(Gmail, Facebook, Twitter, WhatsAapp, and so on) feature
push notifications that require the device to keep persistent
connections with the server of the specific application. There
are several reasons for users to control and filter push notifi-
cations. Here we list some of them:
• Energy consumption: Keeping many active connec-

tions with multiple push servers impacts severely the
already limited battery of the smartphone.

• Privacy concerns: Push notifications are achieved
through two main techniques: Either the phone keeps a
persistent TCP connection towards the server (e.g. Go-
ogle Cloud Messaging (GCM)) or connects at regular
intervals to the server and asks for new notifications
(e.g. Airpush ad network). In both cases the push
server will be able to estimate the phone’s location,
by thus threatening the user’s privacy.

• Avoid spam: Many Mobile Ad network companies—
Airpush6 being the most famous—are exploiting app
notifications to inject ads in Android phones. This
way, victim users receive ads at any time, even when
non using the apps. What’s worse, the user cannot
detect the app responsible for these spam ad notifica-
tions. The problem is becoming so severe that apps
like Airpush detector have achieved more than 1 M
downloads in Android play store. These apps can only
help the user identify the app responsible for the ad
spam, but cannot block it. Recently, in Android 4.1,
Google introduced a feature that allows to disable push
notifications on a per-app basis. This solution however,
together with spam notification, prevent the user from
getting the real push notifications. In addition, it is not
available to users with older versions of Android OS.

The push notification handler manages the device’s persistent
connections on the cloud-side, and shrinks them to 1: That
with the cloud resource. It is this latter that keeps the many
connections with the respective remote servers on the devices’
behalf. It features a mechanism similar to Airpush detector, that
detects the apps generating the notifications. The handler fea-
tures also a spam report mechanism, that collects notifications

6http://www.airpush.com

5

TABLE I: Specifics of the testbed mobile devices.

Number, type & OS CPU RAM (MB)

3×Samsung Galaxy S+ (Android 2.3) 1.4 GHz 512
2×Samsung Galaxy S (Android 2.3) 1 GHz 512
2×Nexus S (Android 4.0.1) 1 GHz 512

marked as spam by the user, and uses them as a filter for future
notifications. In addition, the user can decide: (1) To disable
notifications on an app-bases; (2) the frequency of receiving
notifications of any kind; (3) to store notifications on the cloud-
side and to retrieve them in a consecutive moment. This has
many benefits. First, delegating all the persistent connections
to the cloud resource helps reducing the energy consumption
on the real device. Second, it is the cloud resource, not the
device, that is interfacing with the push servers. So, this
completely hides the real device from the push servers, and
makes it impossible to localize the user. Third, the per-app
bases notification disabler allows even old fashioned devices
not running Android 4.1 to use this feature. Last, but not least,
the anti-spam notification filter dramatically reduces the spam
notification received by the user. What’s more, its detection
mechanism that resides on the cloud side eliminates the need
for the user to install and run, on her battery-limited device,
remedy apps like Airpush detector.

15) Handling connection failures: Another benefit of
CDroid comes from the way it handles failures due to sud-
den connection interruption (e.g. the smartphone enters in
areas with no signal). When this happens, the communication
between CDroid-Device and CDroid-Server is frozen, and
it restarts from where it was left before the interruption
occurred. In the mean time, the components of the CDroid-
Server keep possible connections with remote servers up and
running, and store locally the data directed to the device:
The caching and prefetching component takes care of the
data comming from possible opened connections (e.g. the
user was checking her Facebook profile when the interruption
happened), whereas the push-notification handler stores locally
the possible notifications arriving in the mean-time. As soon
as the device reconnects again, these components are notified
from the Connection handler component. The data downloaded
is then passed to it and sent to the device following a FIFO
politic based on the download time. This is very beneficial
from the devices’ point of view: Instead of reconnecting to
the many servers it would have to connect to to pull possible
notifications (e.g. Facebook, Tweeter, Gmail, and so on), the
device only connects to its cloud-side.

IV. EVALUATION
To evaluate our CDroid system we used the devices

whose technical specifications are detailed in Table I. The
CDroid-Servers resided on Amazon EC2 platform’s High-CPU
Medium Instances–1.7 GiB of memory 5 EC2 Compute Units
(2 virtual cores with 2.5 EC2 Compute Units each). To measure
the energy consumed by the devices in our experiments we
exploited the Mobile Device Power Monitor7, used by many
works in the area [1], [3]. It samples the smartphone battery
with high frequency (5000 Hz) to yield accurate results on the
battery’s power, current, and voltage.

7http://www.msoon.com/LabEquipment/PowerMonitor/

Towards assessing the performance of CDroid we per-
formed two types of experiments. For the first one we deployed
the system among three university students, a professor, and
a teenager, installing the CDroid-Device on their personal
phones. The experiment lasted 2 weeks. During the first
week the system did not enable CDroid features—It behaved
like plain Android OS. During the second week it switched
to CDroid automatically, without notifying the users. This
allowed us to conduct an unbiased study with the two systems
at the end of the experiment, whose findings we report later in
this section. The second experiment was carried out in our lab.
It aimed at measuring the energy spent and the time taken by
a Samsung Galaxy S phone to load HTTP and HTTPS pages
with Android and CDroid.

A. First experiment: CDroid and regular users
1) Setup and methodology: As we already mentioned,

for the first experiment we installed the CDroid system to
5 participants (a teenager, three university students, and a
professor) and let the system run for 2 weeks. The system was
set-up so that it behaved like plain Android OS during the first
week of the experiment, and switched to CDroid only during
the second week. The users were not notified about this change,
and the phone logged all user activity during both weeks (we
used the logcat generated by the system). The sync-interval of
CDroid was set to 2h, and the push-notification interval was
set to 5 minutes.

2) Experimental results: This long experiment shed light
on many insightful phenomena and aspects that allow CDroid-
enabled smartphones to save battery and cellular data traffic.
First, from our logs it resulted that during the first week of the
experiment, when Android OS was enabled, there were many
short background connections (not triggered by the user). This
was true also for the 2 users with Android 4.x OS: Though
Google introduced in Android 4 the possibility for the user to
disable the background data for specific applications8, none of
them had actually disabled it. To investigate the characteristics
of the background communications we plotted, for all the 3G
connections, the distribution of their duration of the time-
span between two successive 3G connections (inter-connecting
time), and the cumulative distribution of data transferred. The
results are shown in Figures 2(a) and 2(b). We note that more
than 50% of all the 3G connections happen in the background,
not being triggered by the user. These connections last less than
3 seconds (see Figure 2(a)) and the amount of data transferred
is below 1KB per connection (See Figure 2(b)).

The fact that more than 50% of connections are short and
in the background (active even when the user is not using the
device) is not good from an energy standpoint. The reason is
the following: After a transmission, the 3G radio passes from
the DCH energy mode (full power, about 800 mW) to FACH
mode (the half-power state, about 460 mW), that allows with
less effort to go back to DCH mode in case of need [36].
If for a certain time-span (from 12 to up to 30 seconds
for some devices) there is no connection request, it switches
to the IDLE mode—the one that allows for lowest energy
consumption. Therefore, short and very frequent background
connections increase enormously the amount of time the 3G
interface spends in the energy-costly half-power FACH mode.
This directly impacts negatively the battery duration. To have

8http://support.google.com/android/bin/answer.py?hl=en&answer=1638168

6

0.1

0.25

0.5

0.75
1.0

1 3 10 30 120

P
r[

x
 >

 T
]

Time (s)

ICN
Duration

(a) 3G connect duration and inter-
connecting times (ICN).

0.01

0.1

0.5
1.0

40B 1KB 128KB

P
[x

 >
 D

]

Data recevied

(b) Data downloaded size.

 20

 40

 60

 80

 100

 120

A 2 3 4 5 10 15

T
im

e
 (

m
in

)

Push notification interval (min)

3G in half-power state

(c) Average time per user per day of the
half-power FACH state for the 3G radio in
dependence of the push-notification sync
interval.

Fig. 2: Cumulative distributions of (a) 3G connect duration and inter-connecting times between successive connections, (b) incoming connections
data size, and (c) the time spent by the 3G radio in half-power state (A-is with Android OS (no sync). With CDroid we used 5-minutes long
intervals. The other values are simulated according to the logs.).

an indication on how much, we measured the average 3G
half-power time per user per day during the first week of the
experiment. The result is surprising (see the first column in
Figure 2(c)): more than 1h and 50 min per day the 3G radio
power is in FACH mode. Speaking in terms of energy, this
translates in 2962.6 J—about 13.52 % of the battery capacity.
(The smartphones of the participants in the experiment were all
powered by Lithium–Ion batteries (1.650 mAh, 3.7 V). These
batteries, if fully charged, contain 21.9 KJ of energy.)

During the second week of the experiment, the one in
which the users had CDroid enabled, we set the push-
notification interval to be of 5 minutes (fifth column in
Figure 2(c)). This drastically reduced the energy waisted due to
the 3G radio to 1165.66 J (only 5.3% of the battery, 2.54 times
less). For completion, we simulated what would have happened
if the push-notification sync interval was longer (up to 15
min) or shorter (down to 2 min). The remaining columns of
Figure 2(c) show the simulated results, according to our testbed
logs. Recall that this interval is user-settable. The results are as
expected: The longer the push-notification interval, the shorter
the time in FACH mode of the 3G radio (which means less
energy waisted). This suggests that the user should trade-off
between freshness of notifications and battery duration.

Through our testbed, we are also able to investigate the
amount of traffic handled per day with both Android and
CDroid. The results are shown in Figure 3. Thanks to the
Content compression component of the CDroid system, we
gain more than 80% of cellular data traffic from ad blocking
and image compressing, and more than 50% from text com-
pression. Over all, the traffic saved is 62%. So, with CDroid,
a user can save 62% of her data-plan per day. This becomes
very valuable in roaming situations, when the cost of cellular
traffic is already very high: As we already mentioned, Italian
Network operators charge several euro per day (up to 5) for
a few MB of traffic (around 50 per day). Not to mention the
high charges when the user exceeds the limit.

Another aspect of CDroid that makes the user save battery
is the caching and prefetching component and the optimized
sync component. Recall that, thanks to the former, the files
that are downloaded from the Internet are stored locally on
the cloud-side, before sending them to the device. The same
is valid for files that the user uploads on remote servers
intentionally (e,g. pictures uploaded on Facebook). So, the
optimized sync component, only takes care of sending to
the cloud-side files that the user generates locally, and has
not yet (before the sync interval) sent remotely. Thanks to a

 0

 5

 10

 15

 20

 25

 30

 35

Images+Ads Data Sum

D
a
ta

 r
e
c
e
iv

e
d
 (

M
B

)

Android CDroid

Fig. 3: Adds, images and text downloaded per day. The graphics
include the average, minimum and maximum values per user.

 0

 100

 200

 300

 400

 500

 600

user1 user2 user3 user4 user5

E
n

e
rg

y
 (

J
)

(a) Energy gained with the optimized sync in
CDroid.

 0

 50

 100

 150

 200

 250

Phone CDroid

E
n

e
rg

y
(J

)

(b) Energy saved by offlad-
ing with CDroid.

Fig. 4: Energy savings with CDroid: Optimized sync with the cloud-
side and boost of computation-intensive apps offloading.

combination of these two components, we gain about 50% of
the energy to sync daily the devices with the cloud, as studied
in [9] (see Figure 4(a)). This is a very important result—
CDroid reduces the energy costs to keep the cloud-side up-
to-date for offloading purposes to 2.5% of the battery.

The sync component of CDroid has another important
benefit: It distributes the sync costs, even for user-generated
files, overtime. Thus, the cost of sending the input do not im-
pact negatively possible offloading decisions for computation-
intensive apps. Actually, it makes so that energy gains are
increased. To verify this we did the following: We individuated
one particular user in our testbed (user 5—a grad student in
our lab) that, during the experiment, was continuously using
the camera to take pictures, and downloading images from
Facebook. At the end of the experiment, we installed on her
device a third party Face Detection app for Android9. It counts
the number of faces in a picture and computes, for each
detected face, simple metrics like distance between eyes. Then,
we run the app over 100 images saved on user’s phone (50

9http://www.anddev.org/quick and easy facedetector demo–t3856.html

7

generated by the user, and 50 downloaded from the Internet).
First, we disabled CDroid, and installed on the device the
ThinkAir offloading framework. The result is shown on the
left column of Figure 4(b): ThinkAir decided to executed the
task directly on the phone, due to the high predicted energy
costs to send the pictures and the code remotely (more than
double). Then, we enabled CDroid, and re-run the task again,
on the same images. The result, also depicted in Figure 4(b),
is very promising: Due to the optimized and lightweight sync
mechanism of CDroid, which synchronizes the cloud-side
continuously without impacting much on the battery (only
about 2.5% of it daily), both the files and the code are already
residing on the cloud-side. Therefore, the offloading costs drop
down to 10% of the costs of running the task locally. This is
again a very important result: CDroid not only increases the
gains from computation-intensive apps, but it actually enables
offloading in extreme cases, when the input necessary to run
the task remotely is very large, and when other offloading
frameworks decide (correctly in their case) that offloading is
not going to reduce battery consumption. All this at the cost
of 2.5% of the battery per day.

B. Second experiment: Loading HTTP and HTTPS pages with
CDroid

1) Setup and methodology: The second experiment was
carried out in our lab. It aimed at assessing the performance
of CDroid with communication-intensive apps. We chose to
target the Browser, one of the most used app in Android. To
increase the accuracy of our results we modified and rebuilt
the native Android browser so to log the internal activities.
Then, we measured the following: (1) the number of bytes
sent and received by the smartphone; (2) the time to load
a given web-page; (3) the energy spent during the process.
The pages involved in the experiment were the m.9gag.com
page, and the m.facebook.com page. This choice was done on
purpose: 9gag is a HTTP page that opens occasionally HTTPS
connections for user comments to social sites; m.facebook.com
is an HTTPS page. In addition, we chose m.facebook.com
since Facebook is one of the mostly used apps on smartphones.
The reason for not using the native apps is that they are not
open source. Thus, they cannot be modified so to output log
information as the native browser. The phone used for this
experiment is the Samsung Galaxy S (see Table I).

We define the startLoadingPage as the moment the browser
receives the command to start loading the webpage, and the
endLoadingPage as the moment the browser finishes loading
all the content for the current page (the loading bar has reached
100%). The time to load the page is given by the difference
between these two moments, and the number of bytes RX/TX
by the browser during this interval defines the quantity of data
received/transmitted by the device to load the given page. The
pages were loaded 10 times with a pause of 300s among two
consecutive loads. The loading was carried out in automatic,
exploiting Android input injection. Before reloading for the
next measurement, the browser’s cache was cleared in order
to avoid biased results due to caching. The experiment was
repeated with both Android and CDroid 3 times a day, during
three different time-intervals: Morning (9am-1pm), Afternoon
(1pm-5pm) and Evening (5pm-9pm).

2) Experimental results: Let us first comment on the results
related to the bandwidth consumed (bytes received and sent),
and the loading time, presented in Figures 5 and 6 for 9gag

and Facebook, respectively. The first observation to make is
that in both cases CDroid wins over Android in terms of both
loading time and cellular data traffic generated. Especially in
the 9gag case, the loading time with CDroid decreases by 5
times in the 9am-1pm time interval. The gap between the two
systems shrinks as the time-interval approaches the evening.
This is expected: We conducted this experiment in our lab,
in a university campus. The campus is more frequented in
the first half of the day due to students going to classes.
As a result, more devices enter the campus area, and the
cellular network starts suffering from the traffic generated.
With CDroid, however, this effect is mitigated: By compressing
both images and text, the CDroid system makes the device
suffer less from the high-latency of the network bandwidth
during the morning hours. Indeed, the data downloaded with
CDroid is considerably less—down to 300% less on 9gag,
and 36% less on Facebook according to the all-day average
value (see Figures 5(b) and 6(b)). What is more, CDroid
features the ad blocker component, which, by blocking the
incoming ads, decreases also the out-going traffic: Ads often
contain java-script code that opens connections towards other
servers without user intervention. This is clearly reflected by
Figures 5(c) and 6(c), where we show the amount of out-going
data traffic with both systems. CDroid reduces the amount
of bytes received to 33% less for 9gag, and to around 10%
less for Facebook, according to the all-day average value. It is
important to note that the gain is more evident with 9gag as
it includes more images and more ads.

Finally, both the loading time and the usage of the network
data traffic impact the energy spent on the device to load the
pages. As expected, with CDroid it is much less—around 4
times less for 9gag, and 2.3 times less for Facebook according
to the all-day average value (see Figure 7).

V. FINDINGS, DIFFICULTIES, AND LESSONS LEARNED
Though the current implementation of CDroid already

achieves very good results, we acknowledge that there are
aspects of the system that can be improved. Here we discuss
some of them that we deem as important. In addition, we
review some of the difficulties we faced while building the
system and describe how we overcame them.

The various components of CDroid handle and modify both
HTTP and HTTPS traffic, so to analyze their content and detect
e.g. user information leakage, and to compress the content in
order to improve rendering and reduce cellular network traffic.
HTTPS traffic, however, has to be firstly decrypted before
operating on it. In order to do so, in the current implementation
of CDroid, the Secure connection component performs the
well known man-in-the-middle attack: The Secure connection
component generates on the fly a fake certificate of the targeted
server. In addition, it acts as a Certificate Authority (CA) and
signs this certificate with its own certificate, that we pre-load
on the user device (we include it within the database of trusted
CA provided by Android). It is worth noting that, though this
technique works with most of the mobile apps, there exists
specific apps (e.g. Twitter), that do not accept other certificates
besides those signed by a trusted (to Twitter) CA. Even so,
these apps are very limited.

That said, we applied the man-in-the-middle attack to
empirically prove the benefits that can come from HTTPS
mobile traffic handling. We do recognize though that this
is certainly not the right way to handle HTTPS traffic on

8

 0

 50

 100

 150

 200

 250

9am-1pm 1pm-5pm 5pm-9pm All day

L
o

a
d

 t
im

e
 (

s
)

Android CDroid

(a) Page loading time.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

9am-1pm 1pm-5pm 5pm-9pm All day

D
a

ta
 r

e
c
e

v
ie

d
 (

K
B

)

Android CDroid

(b) Bytes received per page.

 16

 18

 20

 22

 24

 26

 28

 30

 32

9am-1pm 1pm-5pm 5pm-9pm All day

D
a

ta
 s

e
n

t
(K

B
)

Android CDroid

(c) Bytes sent per page.

Fig. 5: Load time and cellular bandwidth vs the day-time interval: The 9gag case. The graphics include the average, minimum and maximum
values, as well as the 25th, and 75th quartile.

 0

 50

 100

 150

 200

 250

 300

9am-1pm 1pm-5pm 5pm-9pm All day

L
o

a
d

 t
im

e
 (

s
)

Android CDroid

(a) Page loading time.

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

9am-1pm 1pm-5pm 5pm-9pm All day

D
a

ta
 r

e
c
e

v
ie

d
 (

K
B

)

Android CDroid

(b) Bytes received per page.

 24

 26

 28

 30

 32

 34

 36

 38

 40

 42

9am-1pm 1pm-5pm 5pm-9pm All day

D
a

ta
 s

e
n

t
(K

B
)

Android CDroid

(c) Bytes sent per page.

Fig. 6: Load time and cellular bandwidth vs the day-time interval: The Facebook case. The graphics include the average, minimum and
maximum values, as well as the 25th, and 75th quartile.

real and large-scale deployments of a CDroid-like system. A
legitimate way to deal with it could be by exploiting proxy re-
encryption techniques [37], based on the user’s passwords for
each platform that generates the HTTPS traffic (e.g. Facebook
or GMail). However, this would require that the CDroid system
is equipped with a legitimate certificate and public/private key
pairs (both belonging to the user), and recognized by the
servers of the apps as a legitimate entity that can re-encrypt
the traffic from/to the user device.

The current implementation of the sensitive information
blocker component, analyzes only HTTP and HTTPS traffic
in search of leakage of user information. We are conscious
though, that the malware builders might encrypt the sensitive
data with a symmetric key known only to the corresponding
server, so to overcome our blocker. This would make it more
difficult to detect the information leakage. A possible solution
to this problem is to enhance the sensitive information blocker
component by including complex tried and tested IT security
mechanisms10. This component runs on the CDroid-Server,
and not on the CDroid-Device. So, it does not matter how
computation intensive these techniques are. The responsiveness
of the device would not be impacted at all.

The Push notification handler component of the CDroid
system in its current state, blocks spam notifications directed
towards the device by applying IP-based filters according
to a database of well-known mobile spamming server IPs.
However, it is known that at times, it is the apps themselves
that generate locally on the device the notifications. As soon
as the user taps on them, they start connecting to spam servers.
While the CDroid-Server will catch these connections and
possibly block them (as they target IPs of spam servers), for
now, these connections are not stopped on the device. As future
work we plan to add a lightweight component on the device
side, that blocks directly these types of connections. It would

10http://www.infosecurity-magazine.com/view/21342/fortinet-expert-warns-
on-mobile-malware-that-encrypts-its-data-streams/

filter according to a small local database recurrently updated
by the CDroid-Server.

Lastly, Android does not have a standard way for setting
a global proxy. The issue opened in code.google.com11 re-
garding this problem is starred by 4329 people, and Google
has not provided a real solution yet. Approaches that rely
on the hidden activity com.android.settings/.Pro-
xySelector provided by Android, or on setting the proxy in
the APN Mobile Network settings (for 3G connections only)
do not work. In our implementation we solve the problem
by including in the CDroid-Device component the redsocks
transparent proxy12. We then make use of iptables to forward
the cellular traffic to the redsocks proxy, that, in sequence,
tunnels the connections towards CDroid-Server. However, we
recognize that this solution, depending on user activity, might
induce overhead on the device—for example bottlenecks due
to many connections going through redsocks. Nonetheless, we
did not observe this from our experimental results. In addition,
we believe that by solving this problem by natively including a
way to set a global proxy for Android OS, CDroid-like systems
would benefit even more from the mobile-cloud paradigm.

VI. CONCLUSIONS
In this work we design, build and implement CDroid, a

system that aims at increasing the energy gains of offloading
of computation-intensive apps, and making it possible to save
energy for communication-intensive apps. CDroid tunnels all
the mobile Internet data traffic through the cloud-side of the
system so to handle it more parsimoniously and to provide
new and innovative security features like mobile advertisement
blocking, anti-phishing filtering, and privacy protection. We
evaluate CDroid through a real testbed, lasted 2 weeks, of 5
Android phones (primary phones of 5 participants in the exper-
iment) and relative Amazon EC2 cloud-side components, and

11https://code.google.com/p/android/issues/detail?id=1273
12http://darkk.net.ru/redsocks/

9

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

9am-1pm 1pm-5pm 5pm-9pm All day

E
n

e
rg

y
 (

J
)

Android CDroid

(a) 9gag.

 0

 50

 100

 150

 200

 250

9am-1pm 1pm-5pm 5pm-9pm All day

E
n

e
rg

y
 (

J
)

Android CDroid

(b) Facebook.

Fig. 7: Energy spent vs day-time interval. The graphics include the
average, minimum and maximum values, as well as the 25th, and
75th quartile.

through experiments done, ad-hoc, in our lab. Our experiments
show that, with CDroid, the phones consume less cellular data
traffic (62% less), as well as less energy (2 times less to sync
with the cloud-side for offloading purposes, and 2.54 times less
energy waisted to keep the 3G radio in he FACH half-power
mode). This enhances the usability of the device by making
it load faster heavy pages and suffering less low-latency 3G
network bandwidth due to peak-hours. Most importantly, the
optimized sync component of CDroid enables, at the cost of
2.5% of the daily battery, offloading of computation-intensive
apps when all other offloading frameworks fail to do so. Our
experiment with a Face Detection app showed that the energy
consumption can be as low as 10–times less.

REFERENCES

[1] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in Proc. MobiSys ’10.

[2] B. G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
elastic execution between mobile device and cloud,” in Proc. EuroSys
’11.

[3] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading.” in Proc. IEEE INFOCOM 2012.

[4] A. Saarinen, M. Siekkinen, Y. Xiao, J. Nurminen, M. Kemppainen, and
P. Hui, “Can offloading save energy for popular apps?” in Proc. ACM
MobiArch ’12.

[5] N. Thiagarajan, G. Aggarwal, A. Nicoara, D. Boneh, and J. Singh, “Who
killed my battery?: analyzing mobile browser energy consumption,” in
Proc. WWW ’12.

[6] T. Watson, “Application design for wireless computing,” in Proc.
HotMobile ’94.

[7] B. D. Higgins, J. Flinn, T. J. Giuli, B. Noble, C. Peplin, and D. Watson,
“Informed mobile prefetching,” in Proc. ACM MobiSys ’12.

[8] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” Pervasive Computing, IEEE,
vol. 8, no. 4, 2009.

[9] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa, “To Offload or
Not to Offload? The Bandwidth and Energy Costs of Mobile Cloud
Computing,” in Proc. IEEE INFOCOM 2013.

[10] R. Singh, P. Bhargava, and S. S. Kain, “Cell phone cloning: a perspec-
tive on gsm security,” Ubiquity, vol. 2007, no. July, Jul. 2007.

[11] W. Enck, P. Gilbert, B. G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “Taintdroid: an information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proc. OSDI ’10.

[12] J. Bickford, H. A. L.-Cavilla, A. Varshavsky, V. Ganapathy, and
L. Iftode, “Security versus energy tradeoffs in host-based mobile
malware detection,” in Proc. ACM MobiSys ’11.

[13] J. Cheng, S. Wong, H. Yang, and S. Lu, “Smartsiren: virus detection
and alert for smartphones,” in Proc. ACM MobiSys ’07.

[14] J. Oberheide, K. Veeraraghavan, E. Cooke, J. Flinn, and F. Jahanian,
“Virtualized in-cloud security services for mobile devices,” in Proc.
MobiVirt ’08.

[15] C. Jarabek, D. Barrera, and J. Aycock, “Thinav: Truly lightweight
mobile cloud-based anti-malware,” in Proc. ACSAC ’12.

[16] I. Burguera, U. Zurutuza, and S. N.-Tehrani, “Crowdroid: behavior-
based malware detection system for android,” in Proc. ACM SPSM ’11.

[17] G. Portokalidis, P. Homburg, K. Anagnostakis, and H.Bos, “Para-
noidAndroid: versatile protection for smartphones,” in Proc. ACSAC
’10.

[18] L. Subramanian, G. Q. M. Jr, and P. Stephanow, “An architecture to
provide cloud based security services for smartphones,” in WWRF ’11.

[19] M. V. Barbera, S. Kosta, A. Mei, V. C. Perta, and J. Stefa, “CDroid:
Towards a Cloud-Integrated Mobile Operating System,” in Proc. IEEE
INFOCOM 2013.

[20] S. Kosta, V. C. Perta, J. Stefa, P. Hui, and A. Mei, “Clone2Clone (C2C):
Peer-to-Peer Networking of Smartphones on the Cloud,” in Proc. of
USENIX HotCloud 2013.

[21] A. Gaeta, S. Kosta, J. Stefa, and A. Mei, “StreamSmart: P2P Video
Streaming for Smartphones Through The Cloud,” in Proc. IEEE SECON
2013.

[22] S. Kosta, V. C. Perta, J. Stefa, P. Hui, and A. Mei, “CloneDoc: Exploit-
ing the Cloud to Leverage Secure Group Collaboration Mechanisms for
Smartphones,” in Proc. IEEE INFOCOM 2013.

[23] K. K. Rachuri, C. Mascolo, M. Musolesi, and P. J. Rentfrow, “Sociable-
sense: Exploring the trade-offs of adaptive sampling and computation
offloading for social sensing,” in Proc. Mobicom ’11.

[24] M. V. Barbera, S. Kosta, J. Stefa, P. Hui, and A. Mei, “CloudShield:
Efficient anti-malware smartphone patching with a P2P network on the
cloud,” in Proc. IEEE P2P 2012.

[25] C. A. Ardagna, M. Conti, M. Leone, and J. Stefa, “Preserving smart-
phone users’ anonymity in cloudy days,” in 22nd International Confer-
ence on Computer Communications and Networks (ICCCN), 2013.

[26] A. Mei and J. Stefa, “Give2Get: Forwarding in Social Mobile Wireless
Networks of Selfish Individuals,” in Proc. of The 30th IEEE Interna-
tional Conference on Distributed Computing Systems (ICDCS ’10), June
2010.

[27] A. Mei, G. Morabito, P. Santi, and J. Stefa, “Social-Aware Stateless
Forwarding in Pocket Switched Networks,” in Proc. of The 30th IEEE
Conference on Computer Communications (INFOCOM ’11), April
2011.

[28] A. Mei and J. Stefa, “Give2Get: Forwarding in Social Mobile Wireless
Networks of Selfish Individuals,” IEEE Transactions on Dependable
and Secure Computing, vol. 9, no. 4, pp. 569–582, 2012.

[29] M. Barbera, J. Stefa, A. Viana, M. D. Amorim, and M. Boc, “VIP
Delegation: Enabling VIPs to Offload Data in Wireless Social Mobile
Networks,” in Proc. of the 7th IEEE International Conference on
Distributed Computing in Sensor Systems (DCOSS ’11), June 2011.

[30] B. Aggarwal, P. Chitnis, A. Dey, K. Jain, V. Navda, N. V. Padmanabhan,
R. Ramjee, A. Schulman, and N. Spring, “Stratus: energy-efficient mo-
bile communication using cloud support,” ACM SIGCOMM Computer
Communication Review, vol. 41, no. 4, 2011.

[31] I. Papapanagiotou, E. M. Nahum, and V. Pappas, “Smartphones vs.
laptops: comparing web browsing behavior and the implications for
caching,” in Proc. ACM SIGMETRICS/PERFORMANCE ’12.

[32] Z. Xu and S. Zhu, “Abusing notification services on smartphones for
phishing and spamming,” in Proc. WOOT ’12.

[33] A. P. Felt and D. Wagner, “Phishing on mobile devices,” in Proc. W2SP
’11.

[34] V. Dave, S. Guha, and Y. Zhang, “Measuring and fingerprinting click-
spam in ad networks,” in Proc. ACM SIGCOMM ’12.

[35] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Profiledroid: multi-
layer profiling of android applications,” in Proc. ACM MobiCom ’12.

[36] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck,
“Characterizing radio resource allocation for 3G networks,” in Proc.
ACM IMC ’10.

[37] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved proxy
re-encryption schemes with applications to secure distributed storage,”
ACM Trans. Inf. Syst. Secur., vol. 9, no. 1, Feb. 2006.

