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Abstract—The complexity of social mobile networks (networks
of devices carried by humans–e.g. sensors or PDAs–and commu-
nicating with short-range wireless technology) makes protocol
evaluation hard. A simple and efficient mobility model such as
SWIM reflects correctly kernel properties of human movement
and, at the same time, allows to evaluate accurately protocols
in this context. In this paper we investigate the properties of
SWIM, in particular how SWIM is able to generate social
behavior among the nodes and how SWIM is able to model
networks with a power-law exponential decay dichotomy of inter
contact time and with complex sub-structures (communities) as
the ones observed in the real data traces. We simulate three real
scenarios and compare the synthetic data with real world data
in terms of inter-contact, contact duration, number of contacts,
and presence and structure of communities among nodes and
find out a very good matching. By comparing the performance
of BUBBLE, a community-based forwarding protocol for social
mobile networks, on both real and synthetic data traces, we
show that SWIM not only is able to extrapolate key properties
of human mobility but also is very accurate in predicting
performance of protocols based on social human sub-structures.

Index Terms—Mobility model, small world, simulations, for-
warding protocols in mobile networks.

I. INTRODUCTION

Mobile ad-hoc networking has presented many challenges
to the research community, especially in designing suitable,
efficient, and well performing protocols. The practical analysis
and validation of such protocols often depends on synthetic
data, generated by some mobility model. The model has the
goal of simulating real life scenarios [1] that can be used to
tune networking protocols and to evaluate their performance.
Till a few years ago, the model of choice in academic research
was the Random Way-Point model (RWP) [2], simple and very
efficient to use in simulations.

Recently, with the aim of understanding human mobility [3],
[4], [5], [6], [7], many researchers have performed real-life
experiments by distributing wireless devices to people. From
the data gathered during the experiments, they have observed
the typical distribution of metrics such as inter-contact time
(time interval between two successive contacts of the same
people) and contact duration. Inter-contact time, which cor-
responds to how often people see each other, characterizes
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the opportunities of packet forwarding between nodes. Contact
duration, which limits the duration of each meeting between
people in mobile networks, limits the amount of data that can
be transferred. In [4], [5], the authors show that the distribution
of inter-contact time is a power-law. Later, in [6], it has been
observed that the distribution of inter-contact time is best
described as a power law in a first interval on the time scale
(12 hours or 1 day, in the experiments under analysis), then
truncated by an exponential cut-off. Conversely, [8] proves
that RWP yields exponential inter-contact time distribution.
Therefore, it has been established clearly that models like
RWP are not good to simulate human mobility, raising the
need of new, more realistic mobility models for mobile ad-
hoc networking.

In a recent work [9] the authors present small world in
motion (SWIM), a simple mobility model that generates small
worlds. The model is very simple to implement and very effi-
cient in simulations. The mobility pattern of the nodes is based
on a simple intuition on human mobility: People go more often
to places not very far from their home and where they can
meet a lot of other people. By implementing this simple rule,
SWIM is able to raise social behavior among nodes, which
we believe to be the base of human mobility in real life. The
authors validate the model using real traces and compared the
distribution of inter-contact time, contact duration and number
of contact distributions between nodes, showing that synthetic
data that SWIM generates match very well real data traces.
They show experimentally that SWIM generates traces whose
inter-contacts distribution’s head follows a power law, and
proved mathematically the exponential decaying of the tail
of such distribution. Furthermore, they show that SWIM can
predict well the performance of simple forwarding protocols.
They compare the performance of two forwarding protocols—
Epidemic Forwarding [10] and (a simplified version of) Del-
egation Forwarding [11]—on both real traces and synthetic
traces generated with SWIM. The performance of the two
protocols on the synthetic traces accurately approximates their
performance on real traces, supporting the claim that SWIM
is a good model for human mobility.

In this paper we investigate the way SWIM generates social
behavior among nodes and uses it to yield a social mobile
network: A network whose nodes indeed form social clusters
(communities). We describe how to use SWIM to create dif-
ferent target scenarios—conference, university campus, city—



that differ from the number of nodes involved, the shape, the
number and cardinality of the communities therein, the slope
of the power-law head of the inter-contact distribution, and
more. Moreover, we show how to obtain networks with a target
power-law exponential decay dichotomy of inter contact time,
and with a given membership of nodes to communities as
the ones observed in the real data traces. We simulate three
real scenarios and compare the synthetic data with the real
ones in terms of inter-contact, contact duration, number of
contacts, and presence of communities among nodes and find
out a very good matching. With the goal to check how more
sophisticated protocols—the ones that are based on community
sub-structures present on the network—perform on SWIM, we
use BUBBLE [12], the state of the art of the community-
based forwarding protocols for social mobile networks. We
compare BUBBLE’s performance on both real and synthetic
data traces and show that SWIM not only is able to extrapolate
key properties of human mobility but also is very accurate in
predicting performance of protocols based on complex social
human sub-structures.

The rest of the paper is organized as follows: Section II
briefly reports on current work in the field; in Section III we
briefly review the way SWIM operates, whereas in Section IV
we show how to use SWIM in order to generate a target
scenario. In Section V we concretize the findings of Section IV
by comparing three different real world traces with the re-
spective SWIM traces, in terms of creation of complex sub-
structures (communities), and distribution of inter-contacts,
contact duration and number of contacts among the nodes.
Later on, in Section VI we compare the performance of
BUBBLE on the real traces with the SWIM-generated traces,
and conclude with Section VII.

II. RELATED WORK

The problem of defining a mobility model for human
mobility is felt as an important one in the community and
in the literature. In the last few years there have been a
considerable number of papers on this topic. The mobility
model recently presented in [13] generates movement traces
using a model which is similar to a random walk, except
that the flight lengths and the pause times in destinations are
generated based on Levy Walks—with power law distribution.
In the past, Levy Walks have been shown to approximate well
the movements of animals. The model produces inter-contact
time distributions similar to real world traces. However, since
every node moves independently, the model does not generate
any social structure between the nodes. In [14], the authors
present a mobility model based on social network theory which
takes in input a social network and discuss the community
patterns and groups distribution in geographical terms. They
validate their synthetic data with real traces and show a good
matching between them.

The work in [15] presents a new mobility model for
clustered networks. Moreover, a closed-form expression for
the stationary distribution of node position is given. The model
captures the phenomenon of emerging clusters, observed in

real partitioned networks, and correlation between the spatial
speed distribution and the cluster formation.

In [16], the authors present a mobility model that simulates
the every day life of people that go to their work-places in the
morning, spend their day at work and go back to their homes
at evenings. Each one of this scenarios is a simulation per se.
The synthetic data they generate match well the distribution
of inter-contact time and contact durations of real traces.

Recently, in [17] the authors proposed the SLAW mobility
model, which is a modification of the Levy-walk based model,
where the human waypoints are modeled as fractals. The
model seems to match the inter-contact distribution of some
of the real traces, and to predict quite accurately performance
of simple forwarding protocols. Yet, no results are presented
in terms of contact and contact number distributions and in
the structure in communities of the resulting network, and it
seems to be hard to be used in theoretical analysis.

In a very recent work, Barabasi et al. [18] study the
trajectory of a very large (100,000) number of anonymized
mobile phone users whose position is tracked for a six-
months period. They observe that human trajectories show a
high degree of temporal and spatial regularity, each individ-
ual being characterized by a time independent characteristic
travel distance and a significant probability to return to a
few highly frequented locations. They also show that the
probability density function of individual travel distances are
heavy tailed and also are different for different groups of users
and similar inside each group. Furthermore, they plot also the
frequency of visiting different locations and show that it is
well approximated by a power law. All these observations are
in contrast with the random trajectories predicted by Levy
flight and random walk models, and support the intuition
behind SWIM [9], a mobility model recently proposed. This
model is very simple to simulate, matches well the statistical
properties of real traces gained from experiments done with
real devices, and in the same time, predicts well performance
of simple forwarding protocols for ad-hoc wireless networks
where devices are carried by mobile humans.

III. SMALL WORLD IN MOTION: A BRIEF OVERVIEW

A good mobility model should be simple, and, simultane-
ously, predict well the performance of networking protocols
on real mobile networks. Simplicity helps understand and
distill fundamental ingredients of “human” mobility, eases
implementation of the model and makes it a useful tool
in supporting theoretical work. A good model should also
generate traces with the same statistical properties that real
traces have. Statistical distribution of inter-contact time and
number of contacts, among others, are useful to characterize
the behavior of a mobile network. At the same time, the model
should be accurate in predicting protocol performance on real
networks: If a protocol performs well (or bad) in the model,
it should also perform well (or bad) in the real network, as
accurately as possible.

SWIM [9] is the first model to meet all these requirements
simultaneously. It is based on simple observations on our



everyday life: We usually prefer popular and nearby places
to “not frequented” and distant ones. The best supermarket or
the most popular restaurant that are also not far from where we
live, for example. Moreover, usually there are just a few places
where a person spends a long period of time (for example
home and work office or school), whereas there are lots of
places where she stays less, e.g. post office, bank, cafeteria,
etc. Lastly, our movement speed depends on the distance: We
walk to the buss stop, ride to the grocery store, and, fly to
get to another continent. These are the basic intuitions SWIM
is built upon: Trading-off proximity and popularity, adequate
distribution of waiting time and speed proportional to the
distance covered. More in detail, to each node is assigned a
so called home, which is a randomly and uniformly chosen
point over the network area. Then, the node itself assigns
to each possible destination a weight that grows with the
popularity of the place and decreases with the distance from
home. The weight represents the probability for the node to
chose that place as its next destination. The network area
is divided into many small contiguous cells that represent
possible destinations. Each cell has a squared area, and its
size depends on the transmitting range of the nodes: The size
of the cell is such that its diagonal is equal to the transmitting
radius of the nodes—so that a node within a given cell is able
to communicate with all other nodes within that same cell.
Each node builds a map of the network area, also calculates a
weight for each cell in the map, with the following formula:

w(C) = α ·distance(hA,C)+(1−α) · seen(C). (1)

where A is a network node, hA is the home point of A, C is the
given cell, distance(hA,C) is a function that decays as a power
law as the distance between node A and cell C increases, α is
a constant in [0;1], and seen(C) is the fraction of nodes A saw
in C the last time it was there. The value seen(C) is initially
zero, and it is updated each time A reaches C. The weight
represents the probability for the node to chose that place as
its next destination.

Once a node has chosen its next destination, it starts moving
towards it following a straight line and with a constant speed
that equals the movement distance. When reaching destination
the node decides how long to remain there. One of the key
observations is that in real life a person usually stays for a long
time only in a few places, whereas there are many places where
he spends a short period of time. Therefore, the distribution
of the waiting time follows a bounded power law.

The particular choices of the distance and seen function
affect the other parameters, especially α . The distance function
we use is the one proposed in [9]:

distance(x,C) =
1

(1+ k||x− y||)2 , (2)

where x is the position of the home of the current node, and
y is the position of the center of cell C. Moreover, we use as
seen(C) function the fraction of the nodes seen in cell C.

In [9] the parameter k is set to k = .05, which accounts
for the small size of the experiment area of the scenarios

Experimental data set Cambridge Infocom 05 Infocom 06

Device iMote iMote iMote
Network type Bluetooth Bluetooth Bluetooth

Duration (days) 11 3 3
Granularity (sec) 600 120 120
Devices number 36 41 78

Internal contacts number 10,873 22,459 191,336
Average Contacts/pair/day 0.345 4.6 6.7

TABLE I
THE THREE EXPERIMENTAL DATA SETS.

simulated. We have though noticed that in SWIM there are two
different ways of scaling: Either by changing the parameter k
or by changing the communication range of the nodes. Indeed,
the latter determines the size of network area. Moreover, the
parameter k in the distance function affects the probability of
choosing nearby cells. As can be noticed in Equation 2, bigger
values for k yield bigger values for the distance(x,C) function,
by giving more importance to the distance component of the
formula in Equation 1. In this work we aim to generate
simulated scenarios where node movements (contacts) are
highly related to their home-points on the network area. Thus,
we use a bigger value for the k parameter (we set k = 5). Then,
differently from [9], we get the scaling effect by decreasing
the communication range: We set it to be 0.04.

Since the weight that a node assigns to a place represents
the probability that the node chooses it as its next destination,
the value of α has a strong effect on the node’s decisions—the
larger is α , the more the node will tend to go to places near
its home. The smaller is α , the more the node will tend to go
to “popular” places.

Finally, SWIM takes in input the following parameters:
• n: the number of nodes in the network;
• r: the transmitting radius of the nodes;
• the simulation time in seconds;
• coefficient α that appears in Equation 1;
• distribution of the home-points;
• the distribution of the waiting time at destination (slope

of the power-law distribution and upper bound).
The output of the simulator is a text file containing records on
each main event occurrence (meet, depart, start, and, finish).

IV. SWIM MADE SIMPLE TO USE

In a number of research works ([4], [12], and others) it is
shown that the social relationships among the nodes in an ad-
hoc mobile network can efficiently and correctly be detected
by using the k-clique algorithm [19]. Moreover, [20], [21],
[22], [23], [18] show that the distribution of social community
members in cities follows a power law distribution. In this
section we show that SWIM generates synthetic networks that
have all these properties.

The α parameter of Equation 1 determines whether nodes
prefer popular sites (α −→ 0) or nearby ones (α −→ 1). Thus,
if the distribution of the home-points is uniform, small values
of α generates a preferential visiting of sites (sites that are
popular are visited by more and more nodes). Conversely,
big values of α give more preference to sites that are nearby



(a) Home-points uniformly dis-
tributed.

(b) Community membership distribution,
α = 0, home-points uniform.

(c) Home-points distributed with
preferential attachment.

(d) Community membership distribution,
α = 1, home-points with preferential attach-
ment.

Fig. 1. Distributions of home-points and respective community membership number after simulation. Waiting time slope 1.45, waiting time bound 1 day,
network of 1000 nodes, radius 0.01.

nodes’ home-points. Thus, node agglomerations (communi-
ties) with a power law distribution of members should be
obtained through SWIM in the two following different ways:
Either small values of α , and a uniform distribution of home-
points over the network area, or big values of α and a
distribution of home-points that follows a power-law. However,
the properties of the structure in communities are different. We
empirically prove these claims by conducting the following
experiments. In the first one, we set the α value to 0, and
uniformly distribute 1000 home-points that correspond to 1000
nodes over the network area. Then we let the simulation run,
and, at the end, we detect the communities generated using the
k-clique algorithm [19], and plot the cumulative distribution of
the membership number in a log-log scale. The result is exactly
what we expected: The community membership distribution
is very close to a power law (see Figures 1(a)) and 1(b)).
For the second method we operate in the following way: We
first distribute 13 nodes’ home-points in 13 different sites (we
want to generate a network with 13 communities), trying to
keep the mutual distance as big as possible. Then, we let the
other nodes choose their home-point site with a preferential
attachment (that is, in the process the probability of choosing a
cell as home-point depends linearly with the number of home-
points in the cell itself in that moment). The resulting initial
distribution of home-points is shown in Figure 1(c). Then we
run the simulation using α = 1, detect the communities and
plot the cumulative distribution of members number. Even in
this case the result is what we expected: The distribution of
the number of members of the communities detected by the
k-clique algorithm [19] is very close to a power law (see
Figure 1(d)).

Both methods (α = 0 uniform distribution of home-points,
and, α = 1 preferential attachment distribution of home-points)
raise community agglomeration among the nodes and, more-
over, the community membership number follows a power
law distribution. In the first case there is a higher mixing
of nodes in the network. Indeed, when α = 0 nodes prefer
popular sites, no matter where in the network these sites
are. In the second case, the nodes chose only in base of
the distance between home-points and sites. This generates
a “neighborhood effect”: nodes that are neighbors chose to
go to similar sites, and thus, tend to meet more frequently,

and thus, to belong to the same community. Indeed, when we
calculate the correlation between the distance among home
points and the community membership, we have the following
results: For α = 0 and uniform home-point distribution the
correlation is 0, whereas, for α = 1 and preferential attachment
distribution of home-points the correlation is −0.53. This gives
an important hint on how to generate traces with a given
community structure among nodes: Use large values of α and
distribute the home-points in such a way that nodes that should
be in the same community are neighbors. We will use this hint
in the next section, where we will show how SWIM simulates
real-scenario community structures.

As we already mentioned, the distribution of the inter-
contact times—intervals between two consecutive meetings
of the same couple of nodes—is important, not only because
it characterizes statistically the network, but also because it
impacts the design of opportunistic forwarding algorithms [7],
[5]. As shown in [5], the interval within which inter-contacts
follow a power law distribution, and the slope of this distribu-
tion strongly affects the performance of forwarding protocols.
Thus, a model that is able to yield, by simple tuning of a
few parameters, a mobile trace with a required inter-contact
distribution in terms of slope and power-law like head interval,
becomes more than valuable. This is SWIM’s case: From
our experimental testings we observe that the inter-contact
distribution can be controlled by the setting of the waiting
time slope and upper bound. The upper bound determines the
interval within which inter-contacts follow a power law distri-
bution, whereas the slope determines the slope of this distribu-
tion. For the sake of space here we show experimental results
related to the upper bound of the waiting time. As you can
see from Figure 2 the waiting-time upper bound determines
the exact interval within which inter-contacts follow a power-
law distribution. For values beyond the bounds, in all cases
the distribution decays exponentially. This also can be used to
simulate a mobile scenario with a given power-law exponential
dichotomy of inter-contacts among network members. In the
next section we will see how SWIM can be tuned to simulate
real scenarios in terms of communities structuring, community
membership, and distribution of statistical properties.



Fig. 2. Distribution of inter-contacts for different waiting-time upper bounds.
Waiting time slope 1.45, network of 1000 nodes, radius 0.01.

Simualted Scenario Cambridge Infocom 05 Infocom 06

Communication range 0.04 0.04 0.04
Duration (days) 11 3 3
Devices number 36 mobile 41 78 mobile

Value of α .95 .75 .75
Waiting time slope 1.45 1.45 1.45
Waiting time bound 24h 12h 12h

TABLE II
THE THREE SIMULATED DATASETS.

V. SWIM COMMUNITIES VS REAL COMMUNITIES

Here we show how to get a simulation of a mobile network
whose communities are the approximately the same of a
given real scenario. For this, we simulate 3 real scenarios,
whose traces were gathered during experiments done with real
devices carried by people. We will refer to these traces as
Cambridge, Infocom 05 and Infocom 06. Characteristics of
these data sets such as inter-contact and contact distribution
have been observed in several previous works [4], [24], [5]. In
Table I we show the statistical details of each trace, whereas
here below we describe each experiment scenario and provide
details on the communities present therein.

• In Cambridge [25] the authors used Intel iMotes to
collect the data. The iMotes were distributed to two
groups of students (Year1 and Year2) of the University
of Cambridge and were programmed to log contacts of
all visible mobile devices. Also, a number of stationary
nodes were deployed in various locations around the city
of Cambridge UK. The data of the stationary iMotes will
not be used in this paper. The number of mobile devices
used is 36 (plus 18 stationary devices). This data set
covers 11 days.

• In Infocom 05 [26] the same devices as in Cambridge
were distributed to students attending the Infocom 2005
student workshop. Participants belong to different so-
cial communities (depending on their country of origin,
research topic, etc.)The number of devices is 41. This
experiment covers approximately 3 days.

• In Infocom 06 the scenario was similar to Infocom 05

except that the scale is larger, with 78 participants.
Participants were selected so that 34 out of 78 form 4
subgroups by academic affiliation: ParisA with 10 partici-
pants, ParisB with 4 participants, Lausanne 5 participants,
and, Barcelona 15 participants. In addition, 20 long range
iMotes were deployed at several places in the conference
site to act as access points. However, the data from these
fixed nodes is not used in this paper.

The authors in [27] use the k-clique algorithm [19] to
uncover communities from the traces of the real experiments.
In the Cambridge scenario, they detect two main communities
of 11 members each, that correspond respectively to the
students of the first and the second year. In the Infocom 06
scenario they observe that mostly of the participants with the
same academic affiliation (Paris A, Paris B, Lausanne and
Barcelona) do belong to the same communities detected by the
k-clique algorithm. As for the Infocom 05 scenario, the authors
in [27] do not give details on the community detection. How-
ever, they give some information on the participants: There
are four groups based on academic affiliation, of respectively
10, 6, 4, 4 members each.

The next step of our study is to generate with SWIM each of
the real scenarios, and to see how the desired social-grouping
of the nodes can be gained. Let us start with Cambridge 05.
There are 36 students involved, grouped by academic year
in two groups: Year1 and Year2. As we mentioned, in the
real trace only 11 students per group form a community.
Hence, we “associate” 22 nodes to each of the community-
forming students in the real experiment. To each group we
assign a “center point” in the network area: p1 = (.05; .05)
and p2 = (.95; .95) (for respectively groups Year1 and Year2).
The members of each group is given a home point obtained
by perturbing the respective center point with a Gaussian
distribution of standard deviation of 0.01. The remaining 14
nodes is assigned a home point obtained with a uniform
distribution over the network area.

Unlike the Cambridge scenario, in the Infocom 05 scenario
we have no exact information on the communities detected,
but only on the initial affiliation of some of the members.
Hence, we base our experiments on this information: 4 groups
of respectively 10, 6, 4 and 4 members each. Therefore, to
simulate this scenario we divide our nodes in 4 groups of
as much members as in the real case. For each group we
assign a central point as follows: p1 = (.95; .95) for group 1,
p2 = (95; .05) for group 2, p3 = (.05; .95) for group 3, p4 =
(.05; .05) for group 4. The members of each group is given a
home point obtained by perturbing the respective center point
with a Gaussian distribution of standard deviation of 0.01. The
remaining nodes are assigned home-points chosen uniformly
and randomly over the network area.

Infocom 06 is similar to Infocom 05 but with exact
community member information: four communities (ParisA,
ParisB, Lausanne and Barcelona) of respectively 10, 4, 5,
and, 15 members each. Therefore, to simulate this scenario
we divide 34 nodes in 4 groups of as much members as
in the real case. For each group we assign a central point



(a) Simulated Cambridge 06. (b) Simulated Infocom 05. (c) Simulated Infocom 06.

Fig. 3. Communities detected in the synthetic traces.

as follows: p1 = (.01; .01) for Paris A, p2 = (.013; .013) for
Paris B, p3 = (.95; .01) for Lausanne, and, p4 = (.5; .95) for
Barcelona. Note that the members of the two Paris groups are
initially placed close, in order to simulate social connection
among them. The members of each group is given a home
point obtained by perturbing the respective center point with
a Gaussian distribution of standard deviation of 0.01. The
remaining nodes are assigned home-points chosen uniformly
and randomly over the network area.

The rest of the simulation input is showed in Table II. In
particular, the choice of the α value is done based on the
grade of relationship people typically have in conferences vs
university. We follow the suggestions of the authors in [9] and
use the same values of α for each scenario: .95 and .75 for
respectively the Cambridge and the Infocom’s scenarios. Also,
the choice of the waiting time bound is done based on the real
traces inter-contact time distribution’s head. In the Cambridge
case it follows a power law for up to 24 hours, whereas in
both Infocom scenarios it decays as power law for up to 12
hours.

In Figure 3 are shown the communities detected from the
synthetic traces. As can be seen, in each simulated scenario
the community-detection reflects very well the real scenario:
Nodes whose affiliation was emulated by assigning adjacent
home-points result being members of the same community
detected after the simulation. This means that SWIM preserves
initial “social relationships” among nodes in the same way as
a real social mobile network does.

In [9] the authors advocate SWIM’s merits by plotting
the cumulative distributions of inter-contacts, contact duration
and contact number among nodes. The matching between the
simulated and the real distributions is very good. In their work
they use a uniform distribution for the nodes’ home-points over
the network area. Here we changed this distribution in order
to be able to obtain a desired target social scenario. Therefore,
we still need to compare inter- contacts, contact-number and
contact-duration of the so modified SWIM traces with the real
ones. We present the relative results in Figures 4, 5, and 6.

As can be seen from the figures, even by changing the way
with which the home-points are assigned to nodes, SWIM still
yields synthetic traces with similar statistical properties to the

real ones. Moreover, as it can be seen from Figures 4(a), 5(a),
and 6(a), the head’s length of the inter-contacts distributions
is determined by the waiting-time upper bound used in each
of the simulations: 24h in the Cambridge case, and 12h in
both Infocom’s cases. In all of the three experiments, SWIM
proves to be an excellent way to generate synthetic traces
that approximate real traces in both community raising and
statistical properties. It is particularly interesting that the same
choice of parameters gets goods results for all the metrics
under consideration at the same time.

VI. PERFORMANCE OF COMPLEX PROTOCOLS ON SWIM
AND REAL TRACES

Generating synthetic traces that look real from a statistical
point of view and that have a community structure similar to
the one we can experience in the real experiments is definitely
important, but not enough. Our model has the ultimate goal
of being used to validate networking protocols. One important
parameter is how nodes in the same community interact
and, even more importantly, how communities overlap and
interplay. To evaluate the quality of SWIM to this respect,
we believe that the best is to see how it performs when
doing the job this model was created for—to give reliable
information on the performance of non-trivial, social based
protocols. SWIM has already been shown to be adequate in
predicting performance of Epidemic [10] and a simplified
version of Delegation Forwarding [11]. Both these protocols
are based on flooding techniques, and do not make use of
any social component of the network. Since we want to test
the adequacy of SWIM in predicting the performance of more
complex forwarding protocols, we use BUBBLE [12], whose
forwarding technique totally relies upon relationship among
network nodes, their belonging to communities, and upon
the overlapping nature of communities. BUBBLE works as
follows: Each node is assigned a global rank, that determines
the centrality of the node in the network, and a local rank for
each community it belongs to. When a message is generated
for a given destination, say D, then the message is first
forwarded towards nodes with higher and higher global rank,
till it reaches a relay that belongs to D′s community. Then, it



(a) Distribution of the inter-contact time in Cam-
bridge and in SWIM.

(b) Distribution of the contact duration for each pair
of nodes in Cambridge and in SWIM.

(c) Distribution of the number of contacts for each
pair of nodes in Cambridge and in SWIM.

Fig. 4. SWIM and Cambridge.

(a) Distribution of the inter-contact time in Info-
com 05 and in SWIM.

(b) Distribution of the contact duration for each pair
of nodes in Infocom 05 and in SWIM.

(c) Distribution of the number of contacts for each
pair of nodes in Infocom 05 and in SWIM.

Fig. 5. SWIM and Infocom 05.

(a) Distribution of the inter-contact time in Info-
com 06 and in SWIM.

(b) Distribution of the contact duration for each pair
of nodes in Infocom 06 and in SWIM.

(c) Distribution of the number of contacts for each
pair of nodes in Infocom 06 and in SWIM.

Fig. 6. SWIM and Infocom 06.

is forwarded towards nodes with higher and higher local rank
within D′s community, till it reaches D.

We computed the local/global ranks of nodes exactly as the
authors in [12]. For the global rank we generated a uniform
traffic set of 1000 messages, forwarded them with flooding
technique, and, counted for each node, the number of times
it belonged to the path of a delivered message. Similarly,
for the local ranks, the messages were generated to have
source/destination within a given community. The experiment
was repeated 10 times and the resulting global/local ranking
values were normalized and averaged.

We then run BUBBLE on both real and synthetic traces

generated with SWIM, and measure its performance in terms
of cost (total of replicas for delivered messages), and success
ratio, for different values of time to live (TTL) of messages.
The results are shown respectively in Figures 7 and 8. As you
can see, the results are more than satisfying. Most importantly,
this is not due to a customized tuning that has been optimized
for these forwarding protocols, it is just the same tuning of the
previous section that has been used to compute the statistical
properties of SWIM. This can be important methodologically:
To tune SWIM on a particular scenario with a given number
of communities, you can concentrate on a few well known and
important statistical properties like inter-contact time, number



(a) Cambridge and SWIM. (b) Infocom 05 and SWIM. (c) Infocom 06 and SWIM.

Fig. 7. Cost of BUBBLE on real traces and SWIM.

(a) Cambridge and SWIM. (b) Infocom 05 and SWIM. (c) Infocom 06 and SWIM.

Fig. 8. Success ratio of BUBBLE on real traces and SWIM.

of contacts, and duration of contacts. Then, you can have a
good confidence that the model is properly tuned and usable
to get meaningful estimation of the performance of complex
protocols for social mobile networks.

VII. CONCLUSIONS

In this paper we show how SWIM, a mobility model for ad
hoc networking that has been recently introduced, can generate
networks with a community structure. SWIM is simple, proves
to generate traces that look real, and, moreover, provides
an accurate estimation of the performance of sophisticated
forwarding protocols based on the community structure of the
network. SWIM can be used to improve our understanding
of human mobility, it can support theoretical work and it
can be very useful to evaluate the performance of networking
protocols in scenarios where the structure in communities of
the network is important and where the number of nodes can
scale up to very large mobile systems, for which we don’t
have real traces.
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