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Abstract—This paper presents small world in motion (SWIM), a new mobility model for ad hoc networking. SWIM is relatively simple,

is easily tuned by setting just a few parameters, and generates traces that look real—synthetic traces have the same statistical

properties of real traces in terms of intercontact times, contact duration, and frequency among node couples. Furthermore, it generates

social behavior among nodes and models networks with complex social communities as the ones observed in the real traces. SWIM

shows experimentally and theoretically the presence of the power-law and exponential decay dichotomy of intercontact times, and,

most importantly, our experiments show that predicts very accurately the performance of forwarding protocols for PSNs like Epidemic,

Delegation, Spray&Wait, and more complex, social-based ones like BUBBLE. Moreover, we propose a methodology to assess

protocols on model with a large number of nodes. To the best of our knowledge, this is the first such study. Scaling of mobility models is

a fundamental issue, yet never considered in the literature. Thanks to SWIM, here we present the first analysis of the scaling

capabilities of Epidemic Forwarding, Delegation Forwarding, Spray&Wait, and BUBBLE.

Index Terms—Mobility model, small world, simulations, forwarding protocols in mobile networks

Ç

1 INTRODUCTION

POCKET switched networks (PSN), networks of mobile
humans carrying short-range communication devices

such as smartphones, PDAs, or laptops, have received
significant attention from the research community during
the last few years. The complexity of these networks derives
mostly from the difficulty of predicting human mobility.
Much research has been dedicated to the study of real-life
experimental data traces [1], [2], [3], [4], [5], [6] so as to
compute statistical properties of human mobility and,
therefore, of PSNs. These works have mostly focused on
intercontacts (time intervals between two consecutive con-
tacts of the same couple of nodes), contact duration, and
contact number distributions among node pairs, and have
confirmed the complexity and the unpredictability of human
mobility. Another large flow of works have been dedicated
to uncovering structural properties of PSNs such as the
presence of social-based community substructures [7], [8],
[5] and to using these properties to design efficient message
forwarding [8]. Additionally, in [9] the authors discuss on
the limits of experiments based on logging contacts and
show how to infer plausible mobility patterns from them.

Also have a large number of works been presented on

designing models for human mobility [10], [11], [12], [13],

[14], [15], [16], [17]. Most of these works validate their

models with real-life data traces available online and

unfortunately not very large.
In this work, we present small world in motion (SWIM

[17], [18]), a simple mobility model that generates small

worlds of mobile humans. The model is very simple to

implement and very efficient in simulations. The mobility

pattern of the nodes is based on a simple intuition on

human mobility: People go more often to places not very far

from their home and where they can meet a lot of other

people. By implementing this simple rule, SWIM is able to

raise social behavior among nodes, a fundamental ingre-

dient of human mobility in real life. We validate the model

using four different real traces and compare the distribu-

tions of intercontact times, contact durations, and number

of contacts between nodes, showing that synthetic data that

SWIM generate match very well each of the four real

scenarios simulated. The features of SWIM are as follows:

. It is the first model to show—mathematically, not
only experimentally—the power-law exponential
dichotomy of intercontact times that has been
observed in the real-life experiments;

. it generates traces with similar statistical properties
(distribution of intercontact times, contact number,
and contact durations among couples) and social
community structure to well-known, small-scale
experimental traces;

. it validates correctly sophisticated protocols based
on the social structure of the network such as
BUBBLE [8] (as well as Delegation [19], Epidemic
[20], and Spray&Wait [21]);

. it is able to generate easily large (small)-scale
scenarios, starting from known small (large)-scale
ones.

This last feature of SWIM allows us to address the

fundamental problem of generating large scale synthetic

social mobile networks that can be used to assess the

performance of forwarding protocols. SWIM-generate lar-

ger versions of well-known real-life experiments on human

mobility in two different ways—larger number of nodes
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and same network area (the Manhattan model), and
larger number of nodes and same density (the Phoenix
model)—and then use these traces to validate the aforemen-
tioned forwarding protocols. SWIM is able to extrapolate
key properties of human mobility and can be used to
understand how protocols scale to larger and larger
networks. To the best of our knowledge, this is the first
mobility model that addresses this issue and this is the first
work that can show reliable performance evaluation of
well-known forwarding protocols on large scale networks.

The rest of the paper is organized as follows: Section 2
briefly reports on current work in the field; in Section 3, we
discuss the fundamental requirements of a good mobility
model; in Sections 3.1, 3.2, and 3.3, we describe the way
SWIM operates and mathematically prove the presence of
exponentially distributed tail of the intercontact times in
SWIM, whereas Section 3.5 describes the methodology used
to make it able to scale up. In Section 4, we show
experimentally the good matching between statistical
properties of SWIM and the real traces, present the
experiments related to the enlarged SWIM-scaling scenar-
ios, and show how remarkably similarly Epidemic [20],
Delegation [19], Spray&Wait [21], and BUBBLE [8] perform
on both the real and synthetic SWIM-generated traces. In
Section 5, we show for the first time how these protocols
perform on the enlarged scenarios, and give insights on
their scaling properties. Section 6 shows how to customize
SWIM to generate networks with known community
substructure. We lastly conclude with Section 7.

2 RELATED WORK

The problem of designing a mobility model for human
mobility is felt as an important one in the community and in
the literature. In the last few years, there have been a
considerable number of papers on this topic. The work in
[22] is one of the first to argue heterogeneous movement of
nodes and to present a mobility model, where nodes target
a few concentration destination points in the area.

More recently, the model presented in [12] generates
movement traces using a model which is similar to a
random walk, except that the flight lengths and the pause
times in destinations are generated based on Levy Walks—
with power-law distribution. In the past, Levy Walks have
been shown to approximate well the movements of animals.
The model produces intercontact time distributions similar
to real-world traces. However, because every node moves
independently, the model does not generate any social
structure in the network. In [10], [11], the authors present a
mobility model based on social network theory that takes in
input a social network and discuss the community patterns
and groups distribution in geographical terms. They
validate their synthetic data with real traces and show a
good matching.

The work in [13] presents a new mobility model for
clustered networks. Moreover, a closed-form expression for
the stationary distribution of node position is given. The
model captures the phenomenon of emerging clusters,
observed in real partitioned networks, and correlation
between the spatial speed distribution and the cluster
formation. In [14], the authors present a mobility model that

simulates the everyday life of people that go to their
workplaces in the morning, spend their day at work, and go
back to their homes at evenings. Each one of these scenarios
is a simulation per se. The synthetic data they generate
match well the distribution of intercontact time and contact
durations of real traces. In [15], the authors proposed the
SLAW mobility model, which is a modification of the Levy-
walk-based model, where the human waypoints are
modeled as fractals. The model matches well the inter-
contact times distribution of the real traces, and predicts
quite accurately performance of simple forwarding proto-
cols. Yet, no results are presented in terms of contact
duration and contact number distributions and in the
structure in communities of the resulting network, and the
model seems to be hard to be used in theoretical analysis.

The work of Barabasi et al. [23] studies the trajectory of a
very large (100,000) number of anonymized mobile phone
users whose position is tracked for a six-month period.
They observe that human trajectories show a high degree
of temporal and spatial regularity, each individual being
characterized by a time-independent characteristic travel
distance and a significant probability to return to a few
highly frequented locations. They also show that the
probability density function of individual travel distances
is heavy tailed and also is different for different groups of
users and similar inside each group. Furthermore, they plot
the frequency of visiting different locations and show that
it is well approximated by a power law. All these
observations are in contrast with the random trajectories
predicted by Levy flight and random walk models, and
support the intuition behind SWIM. Also the authors of
[16] are inspired by the work of Barabasi et al. They point
out the following three rules of human mobility: 1) Nodes
move more frequently and visit more locations if they have
many friends; 2) users tend to visit a few locations where
they spend the majority of their time; 3) users prefer
shorter paths to longer ones. With these rules in mind, they
propose HCMM, an improvement of their previous work
in [10], [11]. They also include evaluation of temporal
properties, in terms of intercontact times, of the traces
generated by their model. In [24], the authors propose a
mobility model that aims to reproduce real-world mobility
traces, trying to capture group movements present in real-
life mobility. The model is validated against real-world
traces of vehicular networks, and the performance of the
ADV and DSDV routing protocols is compared on both real
and synthetic traces.

More recent works such as [25], [26] present other
models for human mobility that are simple, and match well
statistical properties of traces. However, these models have
not been shown nor to generate community substructure
such as those of real scenarios, neither to accurately validate
protocols. Lastly, to the best of our knowledge no mobility
model has been shown to have the capability to scale to
larger scenarios in a consistent way.

3 SMALL WORLD IN MOTION

The complexity of interpersonal relationships and the
multitude of hobbies/interests that people have in a life
that becomes more and more hectic make human mobility
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all but easy to model. In our vision, a model should be
simple, easy to implement, and able to extrapolate key
properties of human mobility. We cannot underestimate the
importance of having a simple model. A simple model is
easier to understand, can be useful to distill the funda-
mental ingredients of human mobility, can be easier to
implement, easier to tune (just one or few parameters), and
can be useful to support theoretical work. We are also
looking for a model that generates traces with the same
statistical properties that real traces have. Statistical
distribution of intercontact time and number of contacts,
among others, are useful to characterize the behavior of a
mobile network. A model that generates traces with
statistical properties that are far from those of real traces
is probably useless. Simultaneously, a good model should
also be able to generate similar social behavior among
nodes to that of real life. However, it is important to keep in
mind that matching statistical properties is not our final
goal. It can even be misleading—if in the quest for matching
a large number of statistical indicators we design a
complicated model that is hard to use and understand,
we are not doing a good job. It is much more important that
the model is accurate in predicting the performance of
network protocols on real networks. If a protocol performs
well (or bad) in the model, it should also perform well (or
bad) in the real network. As accurately as possible.

Lastly, we are looking for a model that, starting from a
small (large) well-known scenario, can generate large (small)
scale versions of it. A model that we can trust and use to
assess the performance of forwarding protocols on net-
works whose size far exceeds (or is way below) the size of
any available real experiment.

None of the mobility models in the literature meets all
of these properties. The random waypoint mobility model
is simple, but its traces do not look real. Some of the other
protocols we reviewed in the related work section can
indeed produce traces that have good statistical proper-
ties, at least with respect to some of the statistics, but are
far from being simple. And, as far as we know, no model
has been shown to predict real-world performance of
community-based protocols accurately, and no model has
been validated on larger scenarios (larger than known real
traces) in a consistent way.

3.1 The Intuition

According to studies by the Temple University, Phi, USA,1

the five topmost factors that impact peoples’ choice when
reallocating are safety, costs, good (high level) schools,
convenience to shopping, proximity to work, proximity to
family. While it is difficult to reinterpret safety and costs in
terms of a mobility model where simplicity is the main
requirement, the other factors suggest that people do
consider proximity and popularity (high level of schools,
good shopping, for example) when making decisions about
mobility. People tradeoff these two basic elements in
everyday mobility as well—the best supermarket/school
or the most popular restaurant that are also not far from
home, for example. It is unlikely (though not impossible)

that we go to a location that is far from our place and that is
not so popular, or interesting. Not only that, usually there
are just a few places where a person spends a long period of
time (for example, home and work office or school),
whereas there are lots of places where she stays less, like,
for example, post office, bank, cafeteria, and so on. So,
supported by the studies in [12], [27], we expect that the
wait-time follows a bounded power-law distribution. These
are the two basic intuitions SWIM is built upon. Of course,
tradeoffs humans face in their everyday life are usually
much more complicated, and there are plenty of unknown
factors that influence mobility. However, we will see that
simple rules—tradingoff proximity and popularity, and
distribution of waiting time—are enough to get a mobility
model with a number of desirable properties and an
excellent capability of predicting the performance of
forwarding protocols. These simple rules, our model is
based upon, are enough to make typical properties of real
traces emerge, just naturally.

3.2 The Model in Details

In SWIM, to each node is assigned a so-called home—a
randomly and uniformly chosen point over the network
area. The domain is continuous, so we divide the network
area into many small contiguous squared cells that
represent possible destinations. The size of the cells
depends on the transmitting range r of the nodes—the cell
diagonal equals r; this way, nodes that are in the same cell
at the same time are able to communicate. Each node can,
thus, easily build a map of the network area. That said,
every node independently assigns to every destination cell
a weight that grows with the popularity of the place and
decreases with the distance from the node’s home. The node
chooses its destination cell randomly and proportionally
with its weight. The exact destination point (remind that the
network area is continuous) is taken uniformly at random
over the cell’s area.

More specifically, let A be one of the nodes and hA its
home. Let C be one of the possible destination cells. We
denote with seenðCÞ the number of nodes that node A
encountered in C the last time it reached C. This number is
0 at the beginning of the simulation and it is updated each
time node A reaches a destination in cell C. The weight that
node A assigns to cell C is as follows:

wðCÞ ¼ � � distanceðhA;CÞ þ ð1� �Þ � seenðA;CÞ: ð1Þ

Informally, seenðA;CÞ and distanceðhA;CÞmeasure, respec-
tively, the popularity and the distance of cell C from the
point of view of node A. Constant � 2 ½0; 1� tradeoffs
distance from home and popularity. The larger �, the more
a node will tend to go to places near its home and to meet
neighbors. Conversely, the smaller �, the more a node will
tend to go to “popular” places and to meet large “crowds of
nodes.” Of course, there is no “correct” scenario. Both are
correct, they simply model different social structures.

Let hA, x, and xj be, respectively, node’s A home-point,
and the center of cellsC andCj. Let also r be the nodes’ radius
and d be the nodes’ density in the network area (computed as
a function of r and the total number of nodes). The seen and
the distance functions of (1) are defined as follows:
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seenðA;CÞ ¼
1þ 1

d TSeenðA;CÞ
maxjf1þ 1

d TSeenðA;CjÞg
; ð2Þ

where TSeenðA;CÞ and TSeenðA;CjÞ denote the number of
nodes A has encountered during all its visits, respectively,
in C and Cj, and

distanceðA;CÞ ¼
1

ð1þ1
rkhA�xkÞ

2

maxj
1

ð1þ1
rkhA�xjkÞ

2

� � : ð3Þ

As can be noticed from (2), node density plays a crucial role
in a given cell’s popularity. Indeed, a given density value
has the same impact on popularity, regardless of network
area. As well, the seen function that we propose depends on
the total number of encounters a node has seen during all
the visits in a cell. This tend to build a stable mobility
pattern over time: After an initial setup period, nodes tend
to belong to a static set of communities.

The distance(A,C) function (3) depends on the commu-
nication range r of the nodes. The model is built so that r
determines the number of possible cells. Thus, it directly
impacts the network area map for nodes. It is easy to see
that the distance function of (3) does scale with the scaling of
network area.

After a destination is chosen, a node moves toward it
following a straight line and with a constant speed that is
proportional to the distance between the starting point and
the destination. In particular that means that nodes finish
each leg of their movements in constant time. This can seem
quite an oversimplification, however, it is useful and also
not far from reality. Useful to simplify the model; not far
from reality because we are used to move slowly (maybe
walking) when the destination is nearby, faster when it is
farther, and extremely fast (maybe by car) when the
destination is far off. When reaching destination, the node
decides how long to remain there by using a bounded (also
known as truncated) power law. As discussed above, this is
a key observation coming from real experiments.

3.3 Power Law and Exponential Decay Dichotomy

In a recent work [4], it is observed that the distribution of
intercontact time in real-life experiments shows a so-called
dichotomy: First a power law until a certain point in time,
then an exponential cutoff. In [6], the authors suggest that
the cutoff is due to the bounded domain where nodes move.
In SWIM, intercontact time distribution shows exactly the
same dichotomy. Our experiments show that, if the model
is properly tuned, the distribution is strikingly similar to
that of real-life experiments.

Here, we prove mathematically that the distribution of
intercontact time of nodes in SWIM has an exponential tail
(cut-off). Later, we will see experimentally that the same
distribution has indeed a head distributed as a power law.
Note that the proof has to cope with a difficulty due to the
social nature of SWIM—every decision taken in SWIM by a
node does not depend only on its own previous decisions,
but also on other nodes’ decisions. Where a node goes
affects, where it will choose to go in the future, and where
other nodes will choose to go in the future. So, SWIM has no
renewal intervals and nodes never “forget” their past.

In the following, we will consider two nodes A and B.
Let AðtÞ, t � 0, be the position of node A at time t. Similarly,

BðtÞ is the position of node B at time t. We assume that at
time 0 the two nodes are leaving visibility after meeting.

That is, kAð0Þ �Bð0Þk ¼ r, kAðtÞ �BðtÞk < r for t 2 0�, and
kAðtÞ �BðtÞk > r for t 2 0þ. Here, k � k is the euclidean

distance in the square. The intercontact time of nodes A and

B is defined as TI ¼ inft>0ft : kAðtÞ �BðtÞk � rg.
Observation 1. For all nodes A and for all cells C, the

distance function distanceðA;CÞ returns at least � > 0.

Theorem 1. If � > 0, the tail of the intercontact time distribution

between nodes A and B in SWIM has an exponential decay.

Proof. To prove the presence of the exponential cutoff, we
will show that there exists constant c > 0 such that

IPfTI > tg � e�ct, for all sufficiently large t. Let ti ¼ i�,
i ¼ 1; 2; . . . ; be a sequence of times. Constant � is large

enough that each node has to make a waypoint decision

in the interval between ti and tiþ1 and that each node has
enough time to finish a leg. This is possible because

waiting time at waypoints is bounded above and nodes
complete each leg of movement in constant time. The

idea is to take snapshots of nodes A and B and see
whether they see each other at each snapshot. However,

in the following, we also need that at least one of the two
nodes is not moving at each snapshot. So, let

�i ¼ minf� � 0

: either A or B is at a waypoint at time ti þ �g:

Clearly, ti þ �i < tiþ1, for all i ¼ 1; 2; . . . .
We take the sequence of snapshots fti þ �igi>0. Let

""i ¼ fkAðti þ �iÞ �Bðti þ �iÞk > rg be the event that
nodes A and B are not in visibility range at time ti þ �i.
We have that

IPfTI > tg � IP
\bt=�c�1

i¼1

""i

( )
¼

Ybt=�c�1

i¼1

IPf""ij""i�1 . . . ""1g:

Consider IPf�ij�i�1 . . . �1g. At time ti þ �i, at least one of
the two nodes is at a waypoint, by definition of �i. Say
node A, without loss of generality. Assume that node B
is in cell C (either moving or at a waypoint). During its
last waypoint decision, node A has chosen cell C as its
next waypoint with probability at least �� > 0, thanks to
Observation 1. If this is the case, the two nodes A and B
are now in visibility. Note that the decision has been
made after the previous snapshot, and that it is not
independent of previous decisions taken by node A, and
it is not even independent of previous decisions taken by
node B (since the social nature of decisions in SWIM).
Nonetheless, with probability at least �� the two nodes
are now in visibility. Therefore,

IPf""ij""i�1 . . . ""1g � 1� ��:

So,

IPfTI > tg � IP
\bt=�c�1

i¼1

""i

( )
¼

Ybt=�c�1

i¼1

IPf""ij""i�1 . . . ""1g

� ð1� ��Þbt=�c�1 � e�ct;

for sufficiently large t. tu
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3.4 The Simulation Environment

To evaluate SWIM, we built a discrete event simulator of
the model (see the website for SWIM [28]). The simulator

takes as input:

. n: the number of nodes in the network;

. r: the transmitting radius of the nodes;

. the simulation time in seconds;

. coefficient � that appears in (1); and

. the distribution of the waiting time at destination.

The output of the simulator is a text file containing
records on each main event occurrence. The main events of
the system and the related outputs are:

. Meet event. When two nodes are in range with each
other. The output line contains the ids of the two
nodes involved and the time of occurrence.

. Depart event. When two nodes that were in range of
each other are not anymore. The output line
contains the ids of the two nodes involved and the
time of occurrence.

. Start event. When a node leaves its current location
and starts moving toward destination. The output
line contains the id of the location, the id of the node,
and the time of occurrence.

. Finish event. When a node reaches its destination.
The output line contains the id of the destination, the
id of the node, and the time of occurrence.

During the simulation each node A keeps a vector
TSeenðA;CÞ updated. So, in every moment A is able to
compute the value seenðA;CiÞ for all the cells Ci. Note that
the nodes do not necessarily agree on what is the popularity

of each cell. Indeed, usually they do not because nodes visit
cells at different times. As mentioned earlier, it is not
necessary to keep in memory the whole vector, without
changing the qualitative behavior of the mobile system.

However, the four real scenarios we will consider next are
not large enough to cause any real memory problem. Vector
TSeenðA;CÞ is updated at each Finish and Start event, and
is not changed during movements.

Lastly, note that people do not tradeoff proximity

for popularity in the same way. Take a salesman, for
example—he moves frequently from one town to another,
or from one building to another. Surely, he has a different
mobility pattern compared to a high-school teacher that

tends to move in a more repetitive way. SWIM is able to
simulate these scenarios too, simply by setting different �
values to different nodes. Nonetheless, the scenarios we
simulate in this work involve only people with similar jobs/

interests (students or conference attendees), so here we set �
to be the same for all nodes.

3.5 Generating Large Scenarios with SWIM

Obtaining large and trustworthy synthetic mobility traces is

both important and challenging. It is important to assess
networking protocols on data sets larger than those available
today and, thus, check their scalability; it is challenging
because it is not clear how a large mobility trace should look

like by looking just at the few available and small real-world
data sets. Here, we propose a methodology.

To generate mobility traces with SWIM, we choose the
parameters and let the model generate traces as long as we
need. In the literature, it is customary to choose the
parameters in such a way that the mobility pattern is
similar, in some precise statistical sense, to a real data set.
For example, the data set collected during the Infocom
conference in 2006 (in the experimental section of this
paper, we show how to do it for this real data set among
others). In this way, we can build a model that looks like
Infocom 2006 with n ¼ 78 nodes and density � (tuned with
a large set of experiments). This is already a very useful
thing to do, we are now able to generate traces that are
much longer than the three days of the conference in a
sound way.

Here, we consider the problem of generating traces for
the same scenario in which the number of nodes is N > n. If
the basic assumption of SWIM is correct (people tradeoff
popularity of places and vicinity with a parameter �), it is
enough to replace the number of nodes n in the original
model with N . We can also assume that transmission range
does not change with the number of the nodes. The only
issue, which is not obvious indeed, is how density �ðNÞ
changes as N grows and, consequently, how the area of the
network changes as N grows.

Actually, it is impossible to give an answer to this
problem. It is like predicting the future growth of a mobile
community. Our effort in this direction is to build a model
that is able, in a simple way, to generate scaled versions of
nowadays networks. It seems reasonable to bound the
possible future of a growing community by using two
extremes that we define in this paper: The Phoenix model
and the Manhattan model. In the Phoenix model, �P ðNÞ ¼ �
for all N > n (recall that � is the density that has
experimentally been shown to be appropriate for the
scenario when the number of nodes is n). Speaking in
metaphorical terms, this is the case when a town grows in
size without creating denser agglomerates and just covering
a larger geographical area. In the Manhattan model, �MðNÞ ¼
N�=n for all N > n. In this model, as the network grows
more people populate the same geographical area. The
place is just much more crowded, and that means that every
node meet many more other nodes in the same unit of time
and that people mix more (it is more common to meet
people that are not in your circle of friends).

When assessing the performance of networking proto-
cols, a fundamental property to check is scalability. This is
one of the contributions of this paper, showing how some of
the protocols that are the state of the art perform on large
networks—larger than any real data. Thanks to SWIM, we
are able to show the performance under the Phoenix and
the Manhattan models. If a protocol shows good perfor-
mance in larger and larger networks under both models,
then we can have some confidence that the model has good
scalability. We still do not know how large mobile networks
are going to be. However, we can predict the scalability of
the protocols under the various hypotheses that are
represented by these models. This allows us to study, for
the protocols we have now, the performance in reasonable
future scenarios. Clearly, a more comprehensive experi-
ment can consider a class of density functions � such that
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�P ðNÞ � �ðNÞ � �MðNÞ and, thus, understand under what

conditions of scalability the protocol has good performance.

4 EXPERIMENTAL RESULTS

To show the accuracy of SWIM in simulating real-life
scenarios, we will compare SWIM with four traces gathered
during experiments done with real devices carried by people.
We will refer to the real traces as Cambridge, Infocom 05,
Infocom 06, and Dartmouth. Characteristics of these data sets
such as intercontact times and contact distribution have been
observed in several previous works [2], [29], [3]:

. In Cambridge [8], [30], the authors used Intel iMotes
to collect the data. The iMotes were distributed to
two groups of students (Year1 and Year2) of the
University of Cambridge and were programmed to
log contacts of all visible mobile devices. Also, a
number of stationary nodes were deployed in
various locations around the city of Cambridge
United Kingdom. The data of the stationary iMotes
will not be used in this paper. The number of mobile
devices used is 36 (plus 18 stationary devices). This
data set covers 11 days.

. In Infocom 05 [8], [31], the same devices as in
Cambridge were distributed to students attending
the Infocom 2005 student workshop. Participants
belong to different social communities (depending
on their country of origin, research topic, etc.) The
number of devices is 41. This experiment covers
approximately three days.

. In Infocom 06 [8], [31], the scenario was similar to
Infocom 05 except that the scale is larger, with
78 participants. Participants were selected so that
34 out of 78 form four subgroups by academic
affiliation: ParisA with 10 participants, ParisB with
four participants, Lausanne five participants, and
Barcelona 15 participants. In addition, 20 long range
iMotes were deployed at several places in the
conference site to act as access points. However, the
data from these fixed nodes are not used in this paper.

. Dartmouth [32] includes SNMP logs from the access
points (smartphones and laptops) across the
Dartmouth College campus from April 2001 to
June 2004. To generate user-to-user contacts from
the data set, we follow the popular consideration in
the literature that devices associated with the same
AP at the same time are assumed to be in contact
[3]. We consider activities from the 5th of January
to the 6th of March 2004, corresponding to a 2-
month period during which the academic campus
life is reasonably consistent.

Further details on the real traces are shown in Table 1.

4.1 Tuning SWIM

Each parameter in SWIM has an impact on the outcome of
the simulation. Table 2 shows, in details, the parameters we
have used to tune SWIM when simulating each of the real
scenarios considered. Here, we explain the tuning metho-
dology we used.

4.1.1 Number of Nodes, Area, and Radius

First, the SWIM simulation area is fixed, 1� 1. Parameters
such as the number of nodes and the node radius are
directly taken from the real setting. If, for example, the
contacts are bluetooth (WiFi) based, the radius is set to
emulate bluetooth (WiFi) communication range. Then, it is
scaled according to the experimental area. Finally, the
simulation area is divided into contiguous and equally
sized cells, whose diagonal equals the radius.

In Infocom 06, for example, the number of nodes is set to
78. We then set the radius to 0.04, as an approximate
proportion between bluetooth range and an estimation of
the conference area (a hotel of around 700 m2). In the case of
Dartmouth, being a campus (surface around 2 km2), we set
the radius to 0.013. Clearly, this automatic setting might not
yield the best results, as radius influences the number of
contacts. In particular, larger radius means higher number
of “random” contacts—contacts that happen when the
nodes move from one point of interest to another—and
vice versa. However, we have observed that these para-
meters follow intuition very precisely, and that this way of
setting simulation area, nodes, and communication radius
yields very accurate results. Indeed, small differences in
these parameters create small differences in the traces, thus
allowing to tune the model systematically.

4.1.2 Waiting Time Distribution

The parameters of the waiting time come directly from the
traces in an automatic way. In Cambridge, Infocom 05 and
Infocom 06 the head distribution of intercontact times has a
slope of 1.35; whereas in Dartmouth, it is 1.65. Accordingly,
we set the slope of the wait time distribution to be exactly the
one observed from the real trace. Similarly for the cutoff—it
is set to match the length of the power-law head of the
intercontact time distribution of the respective real scenario.
The values are: 24 h for Cambridge, 12 h for both Infocom
scenarios, and, 11.5 days (277 h) for the Dartmouth scenario.

4.1.3 Parameter �: Local Small Restaurant or VIP Bar?

To understand how parameter � influences the results we
setup the following experiment: We simulate a 100 node
network by keeping all parameters fixed but �, which is
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TABLE 1
The Three Experimental Data Sets

TABLE 2
Tuning Parameters



set to three different values: 0, 0.5, and, 0.9. Then, we
compute the number of contacts of a randomly chosen
node A with other nodes in the network as a function of
the distance of their homes. We plot the results in Fig. 1.
The result confirms our intuition: The bigger �, the more
frequently nodes meet their neighbors. This is due to the
fact that for high values of � nodes tend to restrict their
movement to cells nearby their home. With lower �, the
phenomenon is attenuated and for � ¼ 0 the meeting rate
does not depend at all on the distance of the homes (from
Fig. 1 the trend of the meeting probability when this
distance varies is almost uniform).

Playing with the � parameter, and only this one, it is
possible to boost social aspects of a well-known test
scenario, or to boost geographical aspects of the same
scenario. In Cambridge, the nodes are freshmen and
sophomores at the Cambridge University. It is reasonable
to think that freshmen meet freshmen and that sophomores
meet sophomores more frequently. Indeed, we have seen
that � ¼ 0:8 (giving more weight to geographical aspects)
yields traces with statistical properties very close to the real
one. In conferences, participants typically meet people that
share affiliation or research interests. However, there are
occasions that favor social mixing (e.g., social events, coffee
brakes, etc.). This is why, experimentally, a smaller � ¼ 0:7
proved to work best, and yield a synthetic trace that
better matches the statistical properties of the real one.
Dartmouth is different—the AP-based contacts make so
that people that go to the same place meet even though
they might not share much. Nonetheless, students with

same interests (e.g., taking the same classes) still tend to
meet more often between them than with other students. In
this case, which has higher mixing, the best � has been 0.6.
Clearly, setting parameter � is not an automatic process. It
is, thus, important to observe that in SWIM the results are
always consistent with intuition, and that the number of
parameters that have to be set in a nonautomatic way is
very limited.

4.2 SWIM versus Reality: Statistical Properties

Here, we present experimental results comparing statistical
properties of the real scenarios with respect to SWIM. The
parameters are shown in Table 2. We will call the four
synthetic versions of Cambridge, Infocom 05, Infocom 06,
and Dartmouth, respectively, SWIM 36, SWIM 41, SWIM 78,
and SWIM 1146, where the number refers to the number of
nodes in the scenario. It is particularly interesting that we
might as well have got the (almost) exact parameters for
SWIM 78 (the synthetic version of Infocom 06) by scaling
SWIM 41 (the synthetic version of Infocom 05) according to
the Manhattan model (constant area, higher density).
Indeed, we can conjecture that the two real scenarios run
in an area of approximately the same size, with roughly
double density because the number of devices distributed is
roughly the double. This simple fact is a good support to
our methodology.

For each of the experiments, we consider the following
metrics: Intercontact time CCD function, contact distribu-
tion per pair of nodes, and number of contacts per pair of
nodes. The intercontact time distribution is important in
mobile networking because it characterizes the frequency
with which information can be transferred between nodes.
It has been studied for real traces in a large number of
previous papers [2], [3], [29], [6], [4], [10], [33]. The
distributions of contact durations and contact frequency
per node-pairs are also important. Indeed, they represent a
way to measure relationship between people. As also
discussed in [34], [35], [8], it is natural to think that if two
people spend time together and meet frequently then they
are familiar to each other. Familiarity is important in
detecting communities, which may help improve signifi-
cantly the design and performance of forwarding protocols
in mobile environments [8].

In Fig. 2, we show the results for Cambridge and for
SWIM 36 (the synthetic version of Cambridge). Moreover,
we have considered SWIM-M 360 that is a larger version of
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Fig. 1. How does the number of contacts with other nodes depend on the
mutual home-point distance for various values of �.

Fig. 2. SWIM and Cambridge. Cambridge is the real scenario, SWIM 36 is the synthetic version of Cambridge, SWIM-P 500 is Cambridge with 500
nodes according to the Phoenix model, and SWIM-M 360 is Cambridge with 360 nodes according to the Manhattan model.



Cambridge with 10 times the number of nodes according to

the Manhattan model, and SWIM-P 500 a version with

500 nodes according to the Phoenix model. Similarly, Figs. 3

and 4 show the results for Infocom 05, Infocom 06, their

synthetic versions, and the larger scenarios built according

to the Manhattan and the Phoenix models. In Fig. 5, we

show the results for Dartmouth. As the figures suggest,

SWIM yields synthetic traces with statistical properties that

are similar to the real ones. To strengthen this claim we

show, in Table 3, the Jensen-Shannon divergence [36]
between a given distribution in one of the real scenarios
and its synthetic alter ego, for all the distributions
considered. The Jensen-Shannon divergence measures the
similarity of two probability distributions and takes values
in ½0; 1�, higher values mean higher divergence. We note
that all values are low, which confirm what we observed
from the figures. Note that the same choice of parameters
gets good results for all the metrics under consideration at
the same time.

In the figures, we also show the behavior of the Phoenix
(constant density) and Manhattan (constant area) models.
Let us first discuss the Phoenix model: If we consider two
arbitrary nodes, it is more likely that they meet less
frequently as the number of nodes grows (and so the area).
As a consequence, the intercontact time should decay
slower, while the contact-duration and the number of
contacts should decay faster. Intuition is fully confirmed by
the experimental results (see Figs. 2a, 2b, 2c, 3a, 3b, 3c, and
4a for the intercontact times distribution and Figs. 2b, 2c, 3a,
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Fig. 3. SWIM and Infocom 05. Infocom 05 is the real scenario, SWIM 41 is the synthetic version of Infocom 05, SWIM-P 500 is Infocom 05 with
500 nodes according to the Phoenix model, and SWIM-M 410 is Infocom 05 with 410 nodes according to the Manhattan model.

Fig. 4. SWIM and Infocom 06. Infocom 06 is the real scenario, SWIM 78 is the synthetic version of Infocom 06, SWIM-P 500 is Infocom 06 with
500 nodes according to the Phoenix model, and SWIM-M 780 is Infocom 06 with 780 nodes according to the Manhattan model.

Fig. 5. SWIM and Dartmouth. Dartmouth is the real scenario, SWIM-1146 is the synthetic version of Dartmouth, SWIM-P 100 is Dartmouth with
100 nodes according to the Phoenix model, and SWIM-M 114 is Dartmouth with 114 nodes according to the Manhattan model.

TABLE 3
Jensen-Shannon Divergence between

Distributions of the Real and SWIM Traces



3b, 3c, 4a, and 4b, and Figs. 2c, 3a, 3b, 3c, 4a, 4b, and 4c for
the contact duration and the contact-number distributions).
In the same figures, we can see that the Manhattan model is
different. Since the area is the same when the number of
nodes grows, the distribution of intercontact time, contact
duration, and number of contacts between any arbitrary
pair of nodes should not change. It is just a more crowded
world. This is also completely supported by our results.

For the Dartmouth case, we downscale: We scale to
obtain smaller networks—this trace is large enough
(1,146 nodes) to make it possible. For the Manhattan case,
we keep the area constant and lower the nodes number (so
to lower the density), whereas, for the Phoenix case we
lower the number of nodes yet keeping the density constant
(so we lower the area). As in the up-scaling case (getting
enlarged traces), from the graphics we observe that, for the
Manhattan scaling (lower density, constant area), the
distributions are preserved. Whereas for the Phoenix
scaling (constant density, smaller area), the effect in the
distributions is exactly the opposite of that of the up-
scaling: The smaller area makes so that nodes couple meet
more frequently, and for longer times if averaged with all
the nodes in the network. So, intercontact times decay
faster, while the contact duration and the number of
contacts decay slower (see Figs. 5a, 5b, and 5c for,
respectively, the intercontact times, contact duration, and
the contact-number distributions).

4.3 Protocol Performance

Now, we get to a fundamental aspect for every model. We
want to show that SWIM is good to predict the performance
of forwarding protocols. We describe the experimental
results of SWIM and four forwarding protocols for DTNs:
Epidemic Forwarding [20], Delegation Forwarding [19],

Spray&Wait [21], and BUBBLE [8]. In the experiments, we
use exactly the same tuning used in the previous section.
That is, the parameters input to SWIM are not “optimized”
for each of the forwarding protocols, they are just the same
that has been used to fit real traces with synthetic traces.

For the evaluation, we use the same assumptions and the
same way of generating traffic to be routed as in [19]. For
each trace and forwarding protocol, a set of messages is
generated with sources and destinations chosen uniformly
at random, and generation times form a Poisson process
averaging one message every 4 seconds. The nodes are
assumed to have infinite buffers and carry all message
replicas they receive until the end of the simulation—this is
in accordance with the literature on these protocols. The
comparison is done in terms of success percentage (rate of
messages delivered to destination) and cost (average
number of replicas per delivered message) as a function
of message TTL (time to leave). Message traffic follows a
uniform traffic pattern (source-destination distributed uni-
formly at random among network nodes). As in [19], we
isolated 3-hour periods for each data trace (real and
synthetic) for our study. Each simulation runs, therefore,
3 hours. To avoid end-effects no messages were generated
in the last hour of each trace.

Figs. 6 and 7 show how the forwarding protocols
perform in both real and synthetic traces, generated with
SWIM. The first observation that we make is that the trend
of the protocols in the real scenarios is the same with that of
the respective synthetic ones—the ones that perform better
in the real world do so also in the SWIM-generated one.
This support the claim that SWIM is an excellent model for
protocol validation. In particular, this is also true for
complex forwarding protocols such as BUBBLE that depend
on the structure of the network in social communities.
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Fig. 6. Average cost of forwarding protocols. Cambridge and Infocom 05 (06) are the results on the real traces. SWIM-Cambridge and SWIM-
Infocom 05 (06) are the results on the simulated traces.



Another important observation is that each protocol
performs very similarly when validated both in SWIM and
in the respective real trace. This is also confirmed by the
results of Table 4, where we show the average error
percentage of each protocol in SWIM compared to its
performance on the respective real trace, for the Infocom
06 scenario. Note that the difference is small in both terms
of cost and success percentage. (Unfortunately, due to space
restrictions we omit the results for the other data sets;
however, we stress that the trend is very similar.) So, we
conclude that the performance of all protocols in the small-
scale scenarios can be accurately predicted by running the
protocols on the synthetic traces. Most importantly, this is
not due to a customized tuning that has been optimized for
these forwarding protocols, it is just the same output that
SWIM has generated with the tuning of the previous
section. This can be important methodologically: To tune
SWIM on a particular scenario, you can concentrate on a
few well known, important statistical properties like
intercontact time, contact number, and duration. Then,
you can have a good confidence that the model is properly
tuned and usable to get meaningful performance estimation
of a forwarding protocol.

Finally, to compare SWIM to the well-known RWP
model, we setup the following experiment: we simulate
with RWP one of the real scenarios considered in the
paper—mainly, the Infocom 06 scenario—and we run on
the RWP trace and on the SWIM trace Delegation
Forwarding and Random Forwarding (when A and B meet,
B is decided to be a relay of a message depending on the
result of a coin toss). Whereas Delegation performs highly
better than Random forwarding on the SWIM trace, there is
no distinction between the performances of the two
protocols on the RWP trace. This is because in RWP the
nodes’ movement is memoryless, and it does not follow any
social rule. So, the fact that a given node has seen the
destination soon or not does not give any information on
what will happen in the future. This is why using
Delegation, a social-based forwarding strategy, rather than
a random strategy to forward messages does not make any
difference. Conversely, in SWIM the movement is social-
based-nodes tend to regularly go to cells nearby their
home-points, and where they have met in the past
many other nodes. Thus, social-based strategies (such as
Delegation, in this case) perform particularly better with
respect to random strategies. Again, we do not show the
relative plots because of space constraints.

5 SCALING CAPABILITIES OF FORWARDING

PROTOCOLS

When designing a networking protocol, scalability is a most
desired property. SWIM can be used to address this
important question: How do well-known forwarding
protocols perform in large-scale social mobile networks?
To give an accurate answer to this question, we validate the
previously considered forwarding protocols on large-scale

KOSTA ET AL.: LARGE-SCALE SYNTHETIC SOCIAL MOBILE NETWORKS WITH SWIM 125

Fig. 7. Average success percentage of forwarding protocols. Cambridge, Infocom 05 (06) are the results on the real-traces. SWIM-Cambridge, and
SWIM-Infocom 05 (06) are the results on the simulated traces.

TABLE 4
Error Percentage of Protocol Performance

(SWIM versus Infocom 06)



SWIM-generated traces. The experimental setting is the

same of the last section, whereas the Spray&Wait’s limit on

message copies differs from scenario to scenario, and is set

following the suggestions of the authors in [21]. Again, we

study the success percentage and cost for various TTL (time to

leave). The results are presented in Figs. 8, 9, 10, and 11.

Here, are our observations:

Scaling with the Phoenix model. When the number of nodes

grows, the cost in terms of number of replicas is much

higher, whereas the delivery rate drops considerably

(compare Fig. 6 with Fig. 8 for the cost and Fig. 7 with

Fig. 9 for the delivery rate). This is because when the

network is enlarged by keeping the density constant, more

hops are required to deliver a message (increasing the cost),
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Fig. 8. Average cost of forwarding protocols on enlarged Phoenix scenarios (constant density, larger area).

Fig. 9. Average success percentage of forwarding protocols on enlarged Phoenix scenarios (constant density, larger area).

Fig. 10. Average cost of forwarding protocols on enlarged Manhattan scenarios (higher density, constant area).

Fig. 11. Average success percentage of forwarding protocols on enlarged Manhattan scenarios (higher density, constant area).



and simultaneously, the network area is much larger, which
makes it more difficult to get a message to destination.

Scaling with the Manhattan model. The cost again is much
higher for all protocols but so is the delivery ratio (compare
Fig. 6 with Fig. 10 for the cost and Fig. 7 with Fig. 11 for the
delivery rate). This scaling method yields much denser
networks, so the many contacts help all protocols to deliver
messages quickly. Nonetheless, this also makes more
probable that a high number of replicas are generated in
the network, so, the cost is increased.

It is worthy to notice that these effects are attenuated for
BUBBLE, Delegation, and Spray&Wait, which adopt more
sophisticated rules to keep the cost reasonably low. Also,
Delegation Forwarding and Spray&Wait seem to offer the
best tradeoff. They are not always the best when the network
is small, but they show a good behavior when the network
size grows compared both to Epidemic and to BUBBLE.

Overall, the experiments show that the quest for a
scalable forwarding protocol for pocket switched network is
still largely an open issue. Most probably, the techniques
used in these protocols are excellent tools that can be used
for larger and larger networks as well, but it seems that
some new additional idea is needed to keep cost in terms of
messages low enough and success rate reasonably high.

6 AD HOC COMMUNITIES WITH SWIM

Many works have studied the communities that appear in
traces of social mobile networks obtained from real experi-
ments. To detect community substructures, the k-clique
algorithm is widely used [37], [2], [3], [7]. The algorithm
determines as belonging to the same community a union of
adjacent cliques of k nodes sharing k� 1 nodes [37]. In
particular, this algorithm has been used in two of the
scenarios we consider in this work—Infocom 06 and
Cambridge [7]. The authors, which are also the ones who
set up the experiments, have gathered information on the
social relations of the participants. After detecting commu-
nities from the traces, they observe that the social relation-
ships in real life have a good match with the ones uncovered
from the traces by the k-clique algorithm.

In the Cambridge scenario, they detect two main
communities of 11 members each that correspond to the
students of the first and the second year. In the Infocom
06 scenario, they observe that most of the participants with

the same academic affiliation (ParisA, ParisB, Lausanne, and
Barcelona) do belong to the same community detected by the
k-clique algorithm. Unlike the first two traces, Infocom 05
only contains partial information on the participants: There
are four groups of, respectively, 10, six, four, four members
each. It is not known how node IDs are mapped to
participants, thus, which node is member of which group.

The next step of our study is to SWIM-generate these
scenarios in an ad hoc manner, such that a given desired
social structure is observed at the end of the simulation. Let
us start with Cambridge 05. There are 36 students involved,
grouped by academic year in two groups: Year1 and Year2.
As we mentioned, in the real trace there are two clear
communities of 11 students. To each community we assign
a “center point” in the network area: p1 ¼ ð0:05; 0:05Þ and
p2 ¼ ð0:95; 0:95Þ (for, respectively, groups Year1 and Year2).
The members of each group is given a home-point obtained
by perturbing the center point of their community with a
Gaussian distribution of standard deviation of 0.01. The
remaining 14 nodes are assigned a home-point obtained
with a uniform distribution over the network area.

In Infocom 06, there are four communities (ParisA,
ParisB, Lausanne, and Barcelona) of, respectively, 10, four,
five, and, 15 members each. Therefore, to simulate this
scenario we divide 34 nodes in four groups of as much
members as in the real case. For each group, we assign a
central point as follows: p1 ¼ ð0:01; 0:01Þ for ParisA, p2 ¼
ð0:013; 0:013Þ for ParisB, p3 ¼ ð0:95; 0:01Þ for Lausanne, and,
p4 ¼ ð0:5; 0:95Þ for Barcelona. Note that the members of the
two Paris groups are initially placed close, to simulate social
connection among them. The members of each group is
given a home-point obtained by perturbing the respective
center point with a Gaussian distribution of standard
deviation of 0.01. The remaining nodes are assigned
home-points chosen uniformly and randomly over the
network area.

Unlike the Cambridge and the Infocom 06 scenario, in
Infocom 05 we have no exact information on the social
relationships among participants. We have however in-
formation on the initial affiliation of some of the members
(given by the authors of the experiment). So, in this case,
we obtain the community information from the trace itself.
We first run the k-clique algorithm on the Infocom 05 trace.
The communities that we detect are consistent with the
information we have on the experiment—four communities
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Fig. 12. Communities detected in the synthetic traces.



of, respectively, 10, 6, four, and four members each. This is
not surprising. The k-clique algorithm is indeed one of the
most used in the area to uncover social substructures from
real traces that reflect well the social relationships in real
life. Then, to simulate this scenario we feed the simulator
with the information extrapolated from the k-clique
communities uncovered in the real trace. We divide our
nodes in four groups of as much members as in the real
case. For each group, we assign a central point as follows:
p1 ¼ ð0:95; 0:95Þ for group 1, p2 ¼ ð95; 0:05Þ for group 2,
p3 ¼ ð0:05; 0:95Þ for group 3, p4 ¼ ð0:05; 0:05Þ for group 4.
The members of each group is given a home-point obtained
by perturbing the respective center point with a Gaussian
distribution of standard deviation of 0.01. The remaining
nodes are assigned home-points chosen uniformly and
randomly over the network area.

The rest of the simulation parameters are set as described
in Table 2. In particular, the choice of � is done based on the
grade of relationship people have in the scenarios (con-
ferences versus university): 0.8 and 0.7 for Cambridge and
the two Infocom scenarios, respectively. Also, the choice of
the waiting time bound is done based on the real traces
intercontact time distribution’s head. In the Cambridge
case, it follows a power law for 24 hours, whereas in both
Infocom scenarios for 12 hours.

In Fig. 12, we show the communities detected from the
synthetic traces. As can be seen, in each simulated scenario
the structure in communities reflects very well the real
scenario: Nodes whose affiliation was emulated by assign-
ing adjacent home-points result being members of the
same community detected after the simulation. This means
that SWIM preserves initial “social relationships” among
nodes in the same way as a real social mobile network
does and that it can be used to recreate traces with known
community structures.

7 CONCLUSIONS

In this paper, we have presented SWIM, a mobility model
that we can use to generate small mobile worlds. SWIM is
very simple and it generates synthetic traces with excellent
statistical properties. More than that SWIM can predict
extremely well the performance of forwarding protocols,
even the most sophisticated ones that base their mechan-
isms on the structure in communities of the network.

We have also shown how we can get larger networks
with SWIM in a sound way. We have used this capability to
perform the first experimental analysis of the scaling
properties of several of the best forwarding protocols in
the literature.
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