Give2Get: Forwarding in Social Mobile Wireless
Networks of Selfish Individuals

Alessandro Mei and Julinda Stefa
Department of Computer Science
Sapienza University of Rome, Italy
Email: {mei, stefa} @di.uniromal..it

Abstract—In this paper we present two forwarding protocols
for mobile wireless networks of selfish individuals. We assume
that all the nodes are selfish and show formally that both
protocols are Nash equilibria, that is, no individual has an interest
to deviate. Extensive simulations with real traces show that our
protocols introduce an extremely small overhead in terms of
delay, while the techniques we introduce to force faithful behavior
have the positive side-effect to improve performance by reducing
the number of message considerably (more than 20%). We test
our protocols also in the presence of a natural variation of the
notion of selfishness—nodes that are selfish with outsiders and
faithful with people from the same community. Even in this case,
our protocols are shown to be very efficient in detecting possible
misbehavior.

Index Terms—Delay tolerant networks, pocket switched net-
works, social mobility, selfishness, forwarding protocols.

I. INTRODUCTION

Nowadays people walk around carrying all sorts of devices
such as cellphones, PDAs, laptops, etc. Typically, these devices
are able to communicate with each other in short distances by
using communication technologies such as blue-tooth. These
networks, also known as Pocket Switched Networks (PSN [1],
[2]), can be a key technology to provide innovative services to
the users without the need of any fixed infrastructure. Pocket
Switched Networks fall in the class of the Delay Tolerant
Networks (DTNs). In DTNs, messages can multi-hop from
source to destination by using the forwarding opportunities
given by the contacts between the nodes. These networks
are usually disconnected, are characterized by social-based
mobility and heterogeneous contact rate. Examples of such
networks include people in working places, students in uni-
versity campuses, and citizens in metropolitan areas.

The problem of designing a forwarding protocol for Pocket
Switched Networks has attracted the attention of many re-
searchers. In most cases, the protocols in the literature break
down immediately if you assume that all the nodes in the
network are selfish. We show this phenomenon, which is intu-
itive indeed, by a few experiments on Epidemic Forwarding [3]
and Delegation Forwarding [4], two important protocols in the
literature. Epidemic Forwarding is often used as a benchmark,
since it is easy to see that, by generating as many replicas as
possible in the network, it has optimal delay and success rate.
Delegation Forwarding, on the other hand, is one of the best
protocols in the literature with its excellent trade-off of cost,
delay, and success rate.

In this paper, we introduce Give2Get Epidemic Forwarding
and Give2Get Delegation Forwarding, which are, to the best
of our knowledge, the first protocols for packet forwarding
in a social setting such as the Pocket Switched Network, that
cope with the social aspects of the network to tolerate selfish
behavior. We reach this goal by showing formally that no
rational node has any incentive to deviate. In other words, our
two protocols are Nash equilibria. In the paper we describe
our methodology and the main steps, the mechanisms, and
the idea that we have used to build the complete proof.

Lastly, we perform a large set of experiments to check per-
formance of G2G Epidemic Forwarding and G2G Delegation
Forwarding. Quite surprisingly, we discover that some of the
mechanisms that we introduced to make these protocols Nash
equilibria, are also useful to control the number of replicas
in the network and push the messages quickly and cheaply
far from the community where they have been generated.
As a result, G2G Epidemic Forwarding and G2G Delegation
Forwarding, besides providing robustness in a network where
every node is selfish, have nearly the same delay and success
rate of their original alter ego, and a considerably lower cost
in terms of number of replicas (around 20% less).

The paper is organised as follows: Section II reports on the
literature in the area, Section III defines our system model,
Sections IV and V present G2G Epidemic Forwarding, the
dramatic effect of selfish behavior on vanilla Epidemic For-
warding, and the capability of our protocol to detect possible
deviations; Sections VI and VII builds upon the mechanisms
developed for G2G Epidemic Forwarding to design the much
more sophisticated G2G Delegation Forwarding; lastly, Sec-
tion VIII describe our experiments on the performance of the
G2G protocols and Section IX concludes the paper.

II. RELATED WORK

A lot of work has been done in building efficient forward-
ing protocols for Pocket Switched Networks. Many of these
protocols use in clever and sophisticated ways the properties
of human mobility [4]-[6], [20], [21]. All of them rely on
the altruistic cooperation among nodes, which, in this settings
where nodes are independent individuals cannot be given as
granted. Therefore, the problem of building mechanism and
protocols that can tolerate selfish behavior is an important
and modern issue in the design of networking protocols and

distributed systems. See, as an important example, the work
in [7], [8].

Previous work has been done in studying techniques of
selfish mitigation for mobile ad-hoc networks. The solutions
can be classified in two main approaches: reputation based
schemes [9]-[12] and credit based schemes [13]-[15]. In the
former, nodes collectively detect misbehaving members and
propagate declaration of misbehaving throughout the network.
Eventually this propagation leads to other nodes avoiding
routes through selfish members. In credit based approaches
nodes pay and get paid for providing service to others. Digital
cash system is implemented in order to encourage correct
behavior among nodes. In [16], a combination of the two
schemes is presented. All these solutions assume the use
of public key cryptography for authentication of messages.
Regardless of the performance of these schemes on ad-hoc
networks, none of them is designed for social mobile networks.

Recently in [17] the authors introduce a barter-based co-
operation system that aims to increase message delivery in
opportunistic networks. The authors assume that altruistic
static nodes scattered on the network area generate messages
down-loadable from interested network members that pass by.
When two nodes meet they exchange the list of the messages
in their buffers and each node decides to download from the
other node only from the subset of the messages to which it is
interested. Then the nodes start downloading one message per
node at time slot, till they move out each other’s communi-
cation range. The game-theoretical model developed helps the
authors prove that the approach foster cooperation among the
nodes. They support their findings with extensive simulations
done with the restricted random waypoint model RRW model
and the Simulation of Urban MObility SUMO [18]. Though it
introduces a novel technique of cooperation stimulation, their
work is oriented to a gossip-like service within the network,
where messages are created from special nodes and have no
specific destination. Moreover, the setting is different and the
solution does not consider social aspects of pocket switched
networks.

In a very recent work [22] the authors build a routing mech-
anism based on the willingness (declared by each individual)
to forward other individuals’ messages.

In [19], the authors study for the first time the impact of
different distributions of altruism on the throughput and delay
of mobile social communication system. They show that, when
forwarding algorithms that use multiple paths are considered,
social mobile networks are robust to different distributions of
altruism of nodes. To the best of our knowledge their work
is the first study aimed to explore altruistic/selfish behavior in
these types of networks and encourages for further work in
this direction.

III. THE SYSTEM MODEL

In our system model, every node is selfish. This is a realistic
scenario, if people can get the same level of service without
consuming part of their battery or part of their wireless uptime
or memory without any consequence, they will. And as soon as

the first user finds a way to get more (or the same) by paying
less, and publish the patch of the system software, everybody
will download the patch and use it. So, it is reasonable to
assume that, if some of the nodes deviate selfishly, after a
while everybody will.

We assume that there are no byzantine nodes in the network.
We will also assume that selfish nodes do not collude. All the
nodes in the system are interested in receiving and sending
messages, in other words, all the nodes are interested in staying
in the system. Nodes are loosely time synchronized. Loose
time synchronization is very easy to get, if a precision in the
order of the second is enough, like in our protocol. We assume
that every control message of our protocols is labeled with a
time-stamp, though it does not appear in the protocols to keep
the presentation clean. The clock is used to check the timeouts,
and the time-stamp is used when reporting misbehavior to the
other network members.

Lastly, nodes are capable of making use of public key
cryptography—this capability will be used to sign messages
and to make sender to destination encryption. It is known that
public key cryptography is more expensive than symmetric
cryptography. However, modern cryptography techniques, like
those based on elliptic curves, provide short signatures (a
secure signature based on elliptic curves is just 160 bits long),
and cheaper and cheaper computation [23], which is shown to
be adequate even for sensors. Moreover, in our study we are
addressing a network of smart-phones or PDAs, which are not-
so-small devices. Modern smart-phones can run sophisticated
applications, like decoders of streaming videos, 3D games,
web browsers that can open SSL sessions, and others. For
these devices, a signature per message can be considered a
relatively low overhead. Therefore, we assume that every node
has a public key and the corresponding private key. The public
key is signed by an authority that is trusted by every node in
the system. Anyhow the authority is never used actively in the
protocols, thus, as far as our protocols are concerned, it may
remain off-line all the time.

In the rest of this paper, we will use H() to denote a hash
function, and (m)4 to denote a message m signed by node A.

IV. GIVE2GET EPIDEMIC FORWARDING

In Epidemic Forwarding [3], every contact is used as an
opportunity to forward messages. If node A meets node B,
and A has a message that B does not have, the message is
relayed to node B. Epidemic forwarding is often used as a
benchmark, it is easy to see that it is impossible to get smaller
delay, or higher success rate. However, the overhead in terms
of number of copies of the same message of the network is
very high. Put simply, many of the forwarding protocols in
the literature on Pocket Switched Networks have the goal of
reducing drastically the overhead without affecting much the
delay and the success rate of Epidemic Forwarding.

However, Epidemic Forwarding does not tolerate a scenario
in which users can make selfish choices. Indeed, selfish nodes
would simply drop every message they receive (except those
destined to themselves!). In this section, we will show how

(RELAY_RQST, H(m))4

A B (1)
s (RELAY_OK, H(m))p B)
A (RELAY, H(m), E(m))a B 3)
A POR(m,A,B)=(POR,H(m),A,B)p B 4)
4 (KEY, H (m),k) B 5)
Fig. 1. Protocol of the relay phase (in case node B does not have the
message).

to build a version of epidemic forwarding, called Give2Get
Epidemic Forwarding, that works in a system in which every
node is selfish. We will see that G2G Epidemic Forwarding is
a Nash equilibrium, that is, no selfish node has a better choice
than following the protocol truthfully. Most of the ideas and
techniques that we develop in this section will be used in the
more sophisticated protocols we introduce later in this paper.

G2G Epidemic Forwarding consists of three phases: Mes-
sage generation, relay, and test. Message generation executes
when one node has a message to send to some other node
in the system. Suppose that node S has a message to send to
node D. The message is built according to the following form:
m = (D, Epg,,(S,msg_id, body))s. Key PKp is the public key
of the destination D. Note that it is a precise design choice to
hide the sender of the message to every possible relay except
the destination. We will see later why it is important.

A. G2G Epidemic Forwarding: The relay phase

Once the message is generated, the sender S tries to relay it
to the first rwo (at least) nodes it meets. Assume that node S
meets node B. Node S starts a session with the possible relay
by negotiating a cryptographic session key with node B. This
is easily and locally done by using the certificates of the two
nodes, signed by a trusted authority. In this way, both identities
are authenticated. From this point on, every communication
during the session is encrypted with a symmetric algorithm
like AES and the session key (to keep the notation clean,
this encryption is not shown in the protocols). Node S starts
the relay phase by asking node B if it has already handled
a message with hash H(m) (see Figure 1, where the role of
S is described as done by node A step 1). In case node B
has never seen this message, the relay phase goes on (step 2),
otherwise node B informs S that it should not be chosen as
a relay. Note that node B would not lie, since it still does
not know the content of the message, its destination, and, in
particular, if node B itself is the destination. In other words,
if B deviates and execute a modified version of the protocol
in which it declines offers of being a relay without knowing
the destination of the message, it won’t receive any message,
against its own interest. Node S generates a random key ., and
sends message m to B, encrypted with key k (step 3). Then,
node B sends a proof of relay to node S which in turn, lastly,
sends key & to B, who now knows whether it is the destination

of the message or just a relay.

B. G2G Epidemic Forwarding: The test phase

Node B, once it realizes that it is a relay for message m, will
follow the same protocol as done by node S—find two other
nodes and relay the message to these two nodes by executing
the relay phase as shown in Figure 1. By doing so, it can
collect two proofs of relay that it will be asked to show, when
meeting node S again, during the test phase. If node B is not
able either to show the two proofs or to prove to have still
the message in its memory, then node A can broadcast a proof
of misbehavior (PoM) to the whole network that, in turn, will
remove node B if node B is not in the position to prove that
A is wrong. The proof of misbehavior consists of the proof of
relay (POR, H(m), A, B)p, which is signed by node B.

Only when two proofs are collected the message can be
discarded from B’s memory. After a timeout A;, B can stop
looking for relays, and after an additional timeout A,, node B
can discard every information regarding the message. Time-
out A; plays the role of the message time to leave (TTL) in
Epidemic Forwarding. Therefore, it should be chosen in such
a way that the success rate is high enough. Our experiments
show hat the delay of G2G Epidemic Forwarding is very close
to the delay of Epidemic Forwarding, and so Aj can be chosen
as in its original alter ago without affecting the success rate.

The difference A, — A bounds the time during which S can
test B, and indicates how much longer B has to keep memory
of the message. Thus, the shorter this difference, the better in
terms of memory usage. On the other hand, timeout A, should
be chosen in such a way that, with non-negligible probability,
nodes B meets node S again before A, expires. We have to
trade-off detection rate for efficiency. In our setting, here we
can use the “good properties” of social networks: If S and B
meet, then it is likely that they will meet again in the near
future (within A in our case). Indeed, it has been shown in
previous work [1], [2], [5] that in social mobile network nodes
tend to form clusters of members that meet often in time. Our
experiments in the following section fully support this claim.
Simply by setting A, = 2A; the detection rate is very high
(more than 90% of misbehaving nodes are detected). This
result implicitly reveals that re-encounters between pairs of
nodes happen soon enough with high probability. Note that
during the interval (Aj,A;) the nodes do not act as relays
anymore. According to what happened before time A; nodes
keep trace of the message/PORs required in the test phase.
This might be the message itself (no relays or only one
relay have been found till Ay) or the two PORs (the message
was relayed to 2 other nodes before Aj). Note that the POR
requires just the same overhead of a message signature. Thus,
in the worst case, nodes keep a copy of the message for time
Ay — A; longer than in Epidemic Forwarding. On the other
hand, speaking in terms of total replicas of messages generated
in the network we have a gain in terms of cost. Indeed,
differently from vanilla Epidemic, in G2G Epidemic nodes
forward message copies to at most two other relays. While this
is a design choice to make the protocol a Nash equilibrium,

(POR_RQST, H (m), s) 4

A B (6)
A (POR_RESP, POR(m,B,X),POR(m,B,Y))5 B

or (7
A (STORED, H(m),s, HMAC(m,s))p B

Fig. 2. Protocol of the test phase.

our experiments show that this reduces the number of replicas
of some 20%.

The test phase is started by node S (see Figure 2, where,
again, the role of § is described as done by node A), when
meeting node B, after timeout A; has expired. During the test
phase, node S challenges node B: FEither it has two proofs
of relay, or it still stores the message. In case node B has
two proofs of relay, it can replay with the two proofs. The
challenge is a simple cryptographic protocol in which node §
generates a random seed s and asks node B to send a keyed-
Message Authentication Code HMAC on message m. The
particular HMAC used in this protocol should be designed
in such a way to be heavy to compute, since we want to
incentive node B to relay the message and get the two proofs
of relay. Since B does not know the seed beforehand, it must
be storing the message unless it has found two relays. Note
that it is not possible for B to fool S by forging any of the two
proofs, since they are signed by the two relays. Note also that
the test phase is started only by the source of the message,
not by intermediate relays. This is very important to get a
Nash equilibrium: only the sender has the interest of checking.
As a positive side-effect, the heavy HMAC is virtually never
executed if no node deviates from the protocol—it is extremely
unlikely that the first two relays are not able to find two other
nodes that have never seen the message.

C. G2G Epidemic Forwarding is a Nash equilibrium

We formally show that G2G Epidemic Forwarding is a Nash
equilibrium by defining a set of players, in our case the n
nodes in the network, a set of possible strategies ., and a
payoff function f :." — R". When each player i chooses
strategy s; € ., the payoff function maps the strategy profile
s={s1,...,8n} to f(s) = (fi(s),..., fu(s)), where f(s) is the
payoff of player i. Note that the payoff of each player depends
on the strategies chosen by all the players. A strategy profile
s is a Nash equilibrium if no player can do better by changing
unilaterally his strategy. Formally, a strategy profile s is a Nash
equilibrium if for all players i and for all strategy profiles s’
such that s’ and s differ only in position i, f;(s') < fi(s). When
we say “protocol s is a Nash equilibrium”, what we formally
mean is that strategy profile (s,...,s) is a Nash equilibrium.

In our case, the set . of possible strategies contains
all the possible protocols that the node might implement.
Since strategies (that is, protocols) are not limited in length,
set . contains an infinite number of elements. To handle
this complexity, we organize our proof in the following way:

Assume that our goal is to prove that protocol 7 is a Nash
equilibrium and that 7 consists of r steps. We partition the
set .~ of strategies into subsets Z,..., 7.1, where Z;
contains all the protocols that are equal to 7 in the first
Jj—1 steps and then start to deviate. Clearly,) U---U P2,
is equal to . and &,y = {n}. Fixed player i and step J,
if for all strategy profiles s’ € & such that s’ and (7,...,7)
differ only in position i it holds f;(s") < fi(7), then we say that
player i executes step j of protocol & truthfully. Indeed, in this
case player i has no incentive to deviate at step j. Therefore,
we will prove that protocol 7 is a Nash equilibrium by showing
that for all players i and for all j=1,...,r, player i executes
step j of protocol 7 truthfully.

Lastly, we define the payoff function. One of the driving
forces in the system is that every node has the ultimate interest
of being part of the system, and to receive a service of good
quality. At the same time, every node is selfish and has a
rational tendency to save energy and memory. We can measure
energy cost in joules and memory cost in bytes seconds
(clearly, using one KByte of memory for one second or for one
year does not have the same cost). Therefore, we can define
f in a very general way as a function of the strategy profile
such that f;(s) is strictly positive, is decreasing when either
the expected value of energy cost or the expected value of
memory cost required by the protocol increase, and drops to
zero if player i, as a consequence of strategy profile s, has a
non-negligible probability, say at least 50%, of not being able
to send or receive messages with the same performance of the
original protocol.

Now our goal is to show that, if 7© is G2G Epidemic
Forwarding, then the resulting strategy profile (7,...,7) is a
Nash equilibrium. That is, no node has an incentive to unilat-
erally deviate from the protocol. The proof is quite technical
and long, we keep it reasonably short by going through the
most important steps without hiding critical details. We will
consider player i, and show that, if it deviates from the protocol
by executing a protocol 7’ # 7, then f;(7') < fi(7), that is,
player i does not do better by deviating.

Assume that s = (7,...,7), &' € 9?1, and strategy profile s’
is equal to s except in position i, where the entry is 7. This
is the formal way to say that in strategy profile s’ player i
has unilaterally chosen to deviate from protocol 7 (our G2G
Epidemic Forwarding) by moving to protocol 7’. Since &’ €
Z1, player i deviates from step 1 of the relay phase (see
Figure 1, where player i has the role of node A). If player i
deviates when he is the source of the message, then player i
is not able to deliver its own messages and its payoff fi(s") =
0 < fi(s). It is trickier to understand why f;(s') < f(s) when
player i has the role of node A and it is not the sender of
the message. Note that node A does not know the sender of
the message, so, there is a non-negligible probability that it is
one of the two first relays from the sender and that it will be
asked to show two proofs or relay (later, in our experimental
results, we will see that the probability of detection is higher
than 90%, therefore the probability of being one of the first
two relays for at least one message is also more than 90%) or

to show that he still has the message and perform an heavy
HMAC and thus consuming more energy, in expectation. If
the heavy HMAC is properly chosen in such a way that the
energy consumed is higher than the energy saved by storing
the message without relaying it, we get f;(s') < fi(s). We get
again f;(s") < fi(s) if the node simply drops the message an
so it is not able to perform none of the two operations, indeed
it is discarded from the system and his payoff drops to zero.
Note that node A will realize whether it is one of the first
two relays only after the timeout A; has expired. Moreover,
node A is interested in getting rid of the message as soon as
possible, since a message typically uses much more memory
than the proofs of relays, and, lastly, it does not want to be in
the position of performing the heavy HMAC in step 7 of the
test phase. Therefore, we have shown that, if 7’ € &2, then
fi(s") < fi(s). In other words, node A executes step 1 of the
protocol truthfully. With the same argument as for step 1, we
can easily show that node A executes steps 3 truthfully.

Let’s consider node B in the relay phase. Once node B is
asked to be a relay of a particular message m, it does not
know who is the destination of m. If node B deviates from the
protocol and declines to be a relay, it will never receive any
message, since it will discover the destination of the message
only at step 5. So, node B will execute truthfully steps 2 and 4.

Lastly, node A will also execute step 5 truthfully. Indeed, the
message is extremely short and, if the key is not sent, node B
freezes the session with node A until it gets the key. In case A
deviates to a protocol in which step 5 is not executed, it won’t
be able to send and to receive any message through node B
and, after many frozen sessions, it won’t be able to send or
receive any message at all, in such a way to make f;(s') drop
to zero. Hence, we have got the following result.

Lemma 1: A rational node will follow all the steps of the
relay phase truthfully.

Let’s consider the test phase. As described, only the sender
will start the phase, and it will otherwise the other nodes will
start dropping its messages. On the other hand, every relay
cannot tell whether the previous relay is the sender or not
(the sender is encrypted in the message), so they cannot tell
whether they will be tested or not. Since nodes do not take
the risk of being removed from the network they will get two
proofs of relays or keep storing the message. More formally,
if node B drops the messages, experiments show that with
probability higher than 90% they will be removed from the
network and therefore the payoff is zero. Note that it is not a
rational strategy to shut off the radio every time node B meets
node A in such a way to avoid the test phase. Indeed, in this
case node B will not receive other messages destined to itself
that node A or other nodes might have during that interval of
time. Therefore, node B would experience a reduced quality
of the service that makes its payoff drop. Note that the sender
won’t reveal to be the sender before the timeout A;.

Lemma 2: A rational node will follow all the steps of the
test phase truthfully.

To summarize, if a node deviates from G2G Epidemic
Forwarding then its payoff is reduced.

Theorem 1: G2G Epidemic Forwarding is a Nash equilib-
rium.

V. G2G EPIDEMIC FORWARDING: EXPERIMENTS WITH
REAL TRACES ON DETECTING DEVIATIONS

In this section, we report on the results of some experiments
with real data, with the goal of understanding what is the
impact of selfish behavior in Epidemic Forwarding. Then,
we turn to G2G Epidemic Forwarding and test how good is
our protocol in detecting possible deviations. In the case of
Epidemic Forwarding, we consider message droppers—nodes
that use the system to send and receive messages and that
just drop every message they happen to relay. We will see
that message droppers can make the performance of Epidemic
Forwarding drop quickly, and we will also see that G2G
Epidemic Forwarding detects this kind of deviation right away.

A. Selfishness and selfishness with outsiders

In a social environment, it is natural to consider two
different ways of being selfish. The first is just selfishness—
nodes that can deviate from the protocol with the goal of
maximizing their personal interest. The second is selfishness
with outsiders—nodes that can deviate form the protocol for
their personal interest only when this does not damage people
from the same community. This notion is natural since it
comes from our personal experience, some people can tend
to be truthful with those they care about, and selfish with
outsiders. Formally, it is just vanilla selfishness with a different
objective function. However, it is useful to define it as an
independent notion. To implement selfishness with outsiders,
we use the k-clique algorithm [24] (also used in [5]) for
community detection on each data trace. Nodes that are selfish
with outsiders deviate from the protocol only in sessions with
nodes from other communities.

B. The data set

For our experiments we have used two traces collected
during experiments done with real devices carried by people.
We will refer to these traces as Infocom 05 and Cambridge 06.
Characteristics of these data sets such as inter-contact and
contact distribution have been observed in several previous
works [1], [2], [25].

o In Cambridge 06 [26] the authors used Intel iMotes to
collect the data. The iMotes were distributed to students
of the University of Cambridge and were programmed
to log contacts of all visible mobile devices. Also, a
number of stationary nodes were deployed in various
locations around the city of Cambridge UK. The data of
the stationary iMotes will not be used in this paper. The
number of mobile devices used is 36 (plus 18 stationary
devices). This data set covers 11 days.

o In Infocom 05 [27] the same devices as in Cambridge
were distributed to students attending the Infocom 2005
student workshop. The number of devices is 41. This
experiment covers approximately 3 days.

Delivery %
Delivery %

Droppers —— Droppers ——
Droppers with outsiders - Droppers with outsiders,
0 8 w0 a5 o 5 10

Droopers Number

o 5 10 15 20 25 15 30 85 40
Droppers Number

(a) Infocom0O5 (b) Cambridge06

Fig. 3. Effect of message droppers on Epidemic Forwarding

Average Detection Time
Average Detection Time

tom | Pt

Droppers wit

0 5 10 15 2 25 @ 9 40 45 o 5 10 15 2 2 0 % 40
Droppers Number Droppers Number

(b) Cambridge06

am

(a) InfocomO5

Fig. 4. Dependence of droppers detection time from the number of droppers
in G2G Epidemic Forwarding. Detection time is considered after the expiring
of TTL value A; of message.

C. Impact of Selfish behavior on Epidemic Forwarding and
detection of deviations in G2G Epidemic Forwarding

For each trace and forwarding protocol we use the same
assumptions and the same way of generating traffic to be
routed as in [4]: A set of messages is generated with sources
and destinations chosen uniformly at random, and generation
times from a Poisson process averaging one message per 4
seconds. We isolated 3-hour periods for each data trace. Each
simulation runs therefore 3 hours. To avoid end-effects no
messages were generated in the last hour of each trace. The
nodes are assumed to have infinite buffers. We set the message
TTL value to be the smallest one that maximizes the success
rate of Epidemic Forwarding in each scenario, in the sense that
the performance is the same as if messages never expire. These
values for Infocom 05 and Cambridge 06 are respectively 30
and 35 minutes.

We first focus on the effect of selfish behavior on Epidemic
Forwarding. Figure 3 shows how success rate! is affected by
the presence of message droppers. In our experiments these
nodes drop messages right after the end of the relay phase (see
Figure 1). As you can see, the performance of the protocol,
under our assumption that every node is selfish, drops to
around 50%, which is unacceptably low. Basically, when all
the nodes are droppers, the only hope for success is that the
sender gets personally in contact with the destination. It is not
much different when we consider selfishness with outsiders
(i.e. nodes who drop messages right after the end of the relay
phase with an outsider). In the experiments we have used the
same notion of community as in [5].

Next, we focus on the detection of message droppers.
Anyhow, before showing detection results let us make some
considerations on the setting of timeouts A; and A;. As we
already mentioned, A; is bounded from below by the optimal

I'The success rate is under 100% when the number of misbehaviors is 0
because of the intermittent connectivity in the network.

TTL of the messages, in order to get best delivery rate. Thus,
we set it to be 30 minutes in Infocom 05, and 35 minutes in
Cambridge 06. From our discussion in the previous section,
we set Ay = 2A; thus 60 and 70 minutes respectively.

According to our experiments detection probability is 94.7%
in the selfish case and 91.3% in the selfish with outsiders case.
Moreover, deviations are detected very quickly (on the order
of minutes) and the time does not depend on the number of
the nodes that deviate (see Figure 4). More specifically, in the
Infocom 05 scenario the detection takes 12.1 and 13.3 minutes
in average, respectively for the vanilla selfishness and for the
selfish with outsiders case. Whereas in the Cambridge 06 case
it takes 21 and 27.3 minutes in average, respectively for the
vanilla selfishness andfor the selfish with outsiders case. All
the detection timing is considered after A; expires. Note that
in both scenarios these values are much below the respective
Ay — Ay timeout.

VI. GIVE2GET DELEGATION FORWARDING

Delegation Forwarding [4] is a class of protocols that have
been shown to perform very well. In Delegation Forwarding,
every node is associated with a forwarding quality, that may
depend on the destination of the message at stake. When a
message is generated, it is associated with the forwarding
quality of the sender. Then, the message is forwarded from
node to node, creating a new replica of the message at
each step, according to the following protocol. When a relay
node A gets in contact with a possible further relay B, node A
checks whether the forwarding quality of B is higher than
the forwarding quality of the message. If this is case, node A
creates a replica of the message, label both messages with the
forwarding quality of node B, and forwards one of the two
replicas to B. Otherwise, the message is not forwarded.

Delegation Forwarding, in many of its flavors, has been
shown to reduce considerably the cost of forwarding (that is,
the number of replicas), without reducing considerably success
rate and delay. However, just like Epidemic Forwarding, it is
far from being a Nash equilibrium. A selfish node can easily
send messages and receive messages without taking care of
relaying any other message. It is also easy to see that it is not
enough to translate all the techniques used in G2G Epidemic
Forwarding in order to get a version of Delegation Forwarding
that is a Nash equilibrium.

Simply speaking, the techniques we developed to build G2G
Epidemic Forwarding can prevent message dropping by those
who take the message. However, selfish nodes has many other
rational ways to deviate in these more sophisticated protocols.
First, nodes can lie on their forwarding quality. They can claim
that their quality is zero, and nobody can do much about
this, these nodes would get their messages served without
participating actively. We will call these nodes liars. Not only
that, selfish nodes can change the forwarding quality of the
message to zero, in such a way to get rid of the message
soon—they would be able to relay it to the first two nodes they
meet. We will call these nodes cheaters. Of course, cheaters
are less vicious than liars, in our setting. However, we will

show how to build a version of Delegation Forwarding that is
a Nash equilibrium. Just like what we did with G2G Epidemic
Forwarding, our approach is not to add patches against liars
and cheaters or incentives for altruistic nodes, our approach
is to design a protocol such that, step by step, it can formally
be shown that every rational player in the protocol cannot but
following the protocol truthfully. In this way, we protect our
system against liars, cheaters, and any other possible way to
deviate rationally.

In this paper, we consider Delegation Destination Frequency
and Delegation Destination Last Contact [4].

Delegation Destination Frequency Node A forwards message
m to node B if node B has contacted m's destination more
frequently than any other node that the copy of the message
m carried by A has seen so far.

Delegation Destination Last Contact Node A forwards mes-
sage m to node B if node B has contacted m’s destination more
recently than any other node that the copy of the message m
carried by A has seen so far.

In the above definitions the forwarding quality is respec-
tively the number of encounters with the destination (Desti-
nation Frequency), and the time of the last encounter with
the destination (Destination Last Contact). G2G Delegation
Forwarding builds upon all the techniques that we have devel-
oped for G2G Epidemic Forwarding. First, in G2G Delegation
Forwarding the quality of the messages is changed only
when forwarded (we will see later why). G2G Delegation
Forwarding consists of four phases: Message generation, relay,
test by the sender, and test by the destination. We will describe
only the phases that are substantially different from G2G
Epidemic Forwarding. Message generation is just like message
generation and in G2G Epidemic Forwarding. Again, the
complete proof is long and technical. In the following sections
we show the key elements, without hiding important details.

A. G2G Delegation Forwarding: The relay phase and the test
by the destination phase

Figure 6 shows the protocol of the relay phase. Just like
G2G Epidemic Forwarding, node A has an interest to start this
phase, since it has to collect the proof of relay for the message.
In step 8, node A asks B what is its forwarding quality to D'.
Node B replies with its forwarding quality (we will see later
why B has no interest in lying). When the destination of
m is different from B, D’ is the actual destination D; when
the destination of m is B, D' is chosen as a random node
different from B. This mechanism has the goal of making it
impossible to B to know whether it is the destination of the
message or not before taking the message and giving the proof
of relay. Therefore, just like in G2G Epidemic Forwarding,
node B will follow all the relay protocol with the hope of
being the actual destination of the message. Note that in
G2G Delegation Forwarding the proof of relay contains much
more information, including the forwarding quality towards D
claimed by node B and the forwarding quality of the message
at that point in time.

(FQ_RQST, H(m),D') 4

A B ®)
4 (FQ_RESP,B,D', fzp)p B 9)
4 (RELAY , H (m), fu, Ef.(m)) o B (10)
4 (POR,H(m),A,B.D, f, f5D)B B (11)
4 (KEY, H (m),k)a B (12)

Fig. 6. G2G Delegation Forwarding: Protocol of the relay phase.

Node A forwards the message to two other nodes. In the
case when node A is also the sender of the message, A stores
the signed message (FQ_RESP, B, D, fp)p for the nodes B
that failed to be good relays for the message, that is fpp < fiu-
As soon as node A finds a good relay, the last two signed
qualities of such failed relays are embedded into the message
towards D. If the destination D receives the message, it will
be able to check if fpp is correct or not (this is the rest by
destination phase). Indeed, fpp should be equal to fpp. Since
nodes B and C does not know whether A is the sender or not,
they will not lie about their forwarding quality since there is
a non-negligible probability to be tested by the destination (in
the experiments we will see that this is exactly the case). When
D detects that node B is a liar, he will add B and the PoM
of B (the fake fpp value signed by B), to his black list. From
that moment on D will be allowed to discard any message
that involves B. As in the G2G Epidemic case, D will also
broadcast the couple (B, PoM) to the network so that other
members of the network exclude B from future message paths
generated from or destined to D. Because all network nodes
are selfish, they will behave exactly like D when receiving the
broadcast message. Thus, B will soon be out of the system.

Note that, in our setting, we don’t really need to introduce
mechanisms to make this proof checkable by the authority,
or by other network members: Node D has no interest in
lying. However, simple techniques can be introduced to make
it impossible for D to remove faithful nodes. For example,
in case of Delegation Destination Last Contact, if the nodes
exchange a signed message (with a time-stamp, as usual) at
every contact, this message would be a proof of misbehaving
against B. Similar techniques can be introduce for Delegation
Destination Frequency.

In order to make this mechanism work, the forwarding
quality fpp is not the current quality, it is the quality computed
in the last completed timeframe. Every node keeps three
versions of the forwarding quality, the current and the two
forwarding qualities computed in the previous two completed
timeframes. In this way, B and D has a consistent notion of
forwarding quality. Of course, the timeframe has to be set in
such a way that, with high probability, the message delay falls
within one of the last two completed timeframes, so that the
destination has the necessary information to detect liars. As a
consequence of this set of techniques, no relay will lie about

Delivery %
Delivery %

Droppers —— 45
Droppers with autsiders -
o s 10 15 20 2 8 35 40 o 5 10 15 20 25 3 8 40
Droppers Number Droppers Number

Droppers ——
Droppers with outsiders -

(a) Droppers in Infocom05 (b) Droppers in Cambridge06

Fig. 5.

their forwarding quality—we will see in the experiments that,
in case of deviation, the probability of being removed from
the system is actually very high.

B. G2G Delegation Forwarding: The test by the sender phase

The test by the sender is executed only by the sender
of the message. Assume that node A is not the sender,
and that it has received the message from the sender S.
When A gets in contact with S again, after timeout A
(defined as in G2G Epidemic Forwarding), node A is
tested and, just like in G2G Epidemic Forwarding, it
gives the two proofs (POR,H(m),A, B, D, f., fsp)p and
(POR, H(m), A, C, D, f2, fcp)p to node S. In this way, it is
guaranteed that it is not rational to became a message dropper.
More than that, this phase is also important to check that A
is not a cheater, that is it has not reduced f,, to get rid of the
message quickly. Indeed, S can check whether

fap = fih < fap = f% < fep-

The second equality in this equation is true since the quality
of the messages is changed only when forwarded. Since we
know that nodes do not lie, than we know that fip, fpp, and
fcp are sound. Therefore, also f. = fip and consequently
node A has not selfishly modified the forwarding quality of
the message to convince B to take it. Similarly, we also know
that f2 = fgp and so node A has not cheated with node C as
well. Note that it is not possible for A to forge fake proofs
or fake forwarding quality declarations of another node B.
Indeed, as in G2G Epidemic, proofs and forwarding qualities
come with the giver’s certificate.

To summarize, by using the techniques developed for G2G
Epidemic Forwarding and specific techniques for G2G Dele-
gation Forwarding, we can get the following result.

Theorem 2: G2G Delegation Forwarding is a Nash equilib-
rium.

VII. G2G DELEGATION FORWARDING: EXPERIMENTS
WITH REAL TRACES ON DETECTING DEVIATIONS

In this section we will consider message droppers, liars, and
cheaters. Note that it is not rational to be a cheater in vanilla
Delegation Forwarding—if a node labels the message with
forwarding quality zero, than it will have to relay it with higher
probability, doing more work. Since we are interested only in
rational deviations, we will see what is the impact of droppers
and liars for Delegation Forwarding, and how fast and reliably
G2G Delegation Forwarding is able to detect droppers, liars,

Delivery %
Delivery %

Liars —— 40 Liars ——
Liars with outsiders - Liars with outsiders -
0 5 10 15 20 25 30 3 40 0 5 10 15 2 25 3 3 40
Liars Number Liars Number

(c) Liars in Infocom05 (d) Liars in Cambridge06

Effect of message droppers and liars on Delegation Forwarding

and cheaters as well. Recall that no deviation is rational in
G2G Delegation Forwarding—it is a Nash equilibrium—and
these experiments on the detection probability are important
just to make sure that our assumption that every node has
a non-negligible probability of being tested during the test
phase is sound. Here we present the results for Delegation
Destination Last Contact. Delegation Destination Frequency,
as far as detection of deviations is concerned, behaves in a
very similar way. In all our experiments we set timeout A; to
be 45 minutes in the Infocom 05 case and 75 minutes in the
Cambridge 06 case. Again, as in Section V these TTL values
are the smallest ones that maximize the performance of the
vanilla Delegation protocols. Following the same reasoning
as in the G2G Epidemic settings, A, is set to be 2A; for
every scenario. The timeframe after which nodes update the
old values of forwarding qualities is set in every experiment
to be 34 minutes.

In our experimental setting droppers are again those who
drop a message received right after a relay phase, liars are
those who report a forwarding quality equal to O any time
they’re asked to, whereas cheaters are those who lower the
quality rate within a message to be relayed (in order to get rid
of it as soon as possible).

In all our experimental results G2G Delegation Last Contact
and G2G Delegation Frequency perform the same. Thus for
the sake of space saving here we show only results related to
G2G Delegation Last Contact. We run a first set of experiments
to see what is the impact of these deviations on Delegation
Forwarding. Figure 5 shows the results, that clearly indicate
that both droppers and liars have a big impact on the success
rate, both in the case of selfishness and in the case of
selfishness with outsiders. Second, we have run a large set of
experiments to see how reliably these deviations are detected
by the protocols in both traces, Infocom 05 and Cambridge 06.
According to our results, droppers and liars are detected with
a probability that exceeds 80%, whereas cheaters’ detection
probability exceeds 60% in both scenarios. The detection rate
remains high even in the case of selfishness with outsiders.
Table I shows all the detailed results. Note that the detection
probabilities are a bit lower for the Cambridge 06 scenario,
which is in accordance with it’s lower frequent contact rate
with respect to Infocom 05. In all cases, this is much more
than enough to say that the probability of being detected is not
negligible. Recall that, in our model, users have the interest of
being part of the system, and that they are not willing to risk

Infocom 05 Cambridge 06
Detection Rate | Avg detection time (minutes) | Detection Rate | Avg detection time (minutes)
Droppers 88% 12 86% 21
Liars 67% 26 65% 52
Cheaters 83% 35 84% 64
Droppers with outsiders 87% 15 84% 23
Liars with outsiders 64% 28 62% 54
Cheaters with outsiders 83% 37 81% 68
TABLE 1

PERFORMANCE OF G2G DELEGATION ON THE REAL TRACES. DETECTION TIME IS CONSIDERED AFTER THE EXPIRING OF TTL VALUE A; OF MESSAGE.

Cheaters ——

Cheaters with outsiders -
roppers

Droppers with outsiders
Liars -----

Liars with outsiders ------

Average Detection Time

10m
2m

0 5 10 15 20 25 30 35 40
Number

(a) Infocom05

Fig. 7.
of TTL value A; of message

(even with small probability) to be removed from the network.

Then, our question is how fast is the detection. In Figure 7
is plotted the detection time versus the number of selfish
members present in the network. As can be seen from the
figure, the detection time does not depend on such number. In
both scenarios droppers are detected sooner than liars that are
detected sooner than cheaters. Moreover, detailed experimental
results shown in Table I indicate that nodes cannot hope
to deviate and remain in the system for long time. G2G
Delegation Forwarding is clearly very fast in the detection
in both scenarios. Again note that the time needed is longer
in Cambridge 06, which has less frequent contact rate.

VIII. EXPERIMENTS ON THE PERFORMANCE OF G2G
EPIDEMIC AND G2G DELEGATION FORWARDING

In this section we are interested in evaluating the perfor-
mance of G2G Epidemic Forwarding and G2G Delegation
Forwarding compared with their original alter egos. The exper-
imental setting is the same that has been used throughout the
whole paper, and described in Section V. We are interested in
the following metrics: memory (amount of memory overhead
of the protocol), success rate, delay, and cost in terms of
number of replicas of the same message in the network. We
start from memory. Indeed, we can easily check that the
memory used by the G2G version of these protocols is within
a constant factor from their original counterpart. It is enough
to go through the protocols step by step.

Initially, a reasonable goal was to show that adding all the
mechanisms and functionalities needed to make the protocols
Nash equilibria does not reduce the performance considerably.
During the protocols design, we realized that we could hope
for more. The mechanism used to reduce the number of relays

Cheaters ——
Cheaters with outsiders ———
Liars
Liars with outsiders
Droppers -----
Droppers with outsiders -~~~

Average Detection Time

YR T DU N B
2m besig

0 5 10 15 20 25 30 35 40
Number

(b) Cambridge06

Dependence of detection time from the number of selfish individuals in G2G Delegation Forwarding. Detection time is considered after the expiring

to two, besides being fundamental to show that the protocol
is a Nash equilibrium, has the interesting property that the
message more cheaply flows far from the community that
generated it. Cheaply in the sense that fewer replicas need
to be generated to reach destinations that are far from the
sender in terms of community. Figure 8 summarizes a long
set of experiments on success rate, delay, and cost. Indeed,
looking at the results, something that might seem surprising
is happening—G2G Epidemic Forwarding is much better than
Epidemic Forwarding in terms of cost, and G2G Delegation
Forwarding is considerably better than Delegation Forwarding,
again in terms of cost. Note that the experimental setting that
we have chosen is considered to be standard in the literature.

To summarize the results of our experiments, G2G proto-
cols show an excellent performance in terms of cost, even
compared with their alter egos that are not Nash equilibrium,
decreasing considerably (more than 20%) the number of
replicas generated in the system, while their performance in
terms of delay and success rate are very close to the original
protocols.

IX. CONCLUSIONS

In this paper we have presented G2G Epidemic Forwarding
and G2G Delegation Forwarding, the first protocols for mes-
sage forwarding that work under the assumption that all the
nodes in the network are selfish. We formally show that the
G2G protocols are Nash equilibria. Quite surprisingly, G2G
protocols also outperforms their alter egos in terms of cost,
while being almost as good in terms of success rate and delay.

REFERENCES

[1] P. Hui, A. Chaintreau, J. Scott, R. Gass, J. Crowcroft, and C. Diot,
“Pocket switched networks and human mobility in conference envi-

Fig. 8.

[2]

[3]
[4]

[5]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

G2G on INFOCOM 05

100

80
* L]
2 [) b
S w0
o
@
2
8
S 40
@
20
0
0 2 4 6 8 10 12 14 16
Cost (Number of replicas)
1h
)
°
8
o
H o . * .
£
>
=
o
=]
10m
2m
0 2 4 6 8 10 12 14 16
Cost (Number of replicas)
Epidemic & G2G Dest Last Contact
G2G Epidemic & Deleg.Dest Frequency =
Deleg.Dest Last Contact G2G Dest Frequency @

(a) Infocom0O5

ronments,” in WDTN ’05: Proc. of the ACM SIGCOMM workshop on
Delay-tolerant networking. ACM Press, 2005.

A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott,
“Impact of human mobility on the design of opportunistic forwarding
algorithms,” in INFOCOM °06. Proc. of the 25th IEEE International
Conference on Computer Communications, 2006.

A. Vahdat and D. Becker, “Epidemic routing for partially connected ad
hoc networks,” Duke University, Tech. Rep. CS-200006, 2000.

V. Erramilli, M. Crovella, A. Chaintreau, and C. Diot, “Delegation
forwarding,” in MobiHoc ’'08: Proc. of the 9th ACM international
symposium on Mobile ad hoc networking and computing. ACM, 2008.
P. Hui, J. Crowcroft, and E. Yoneki, “Bubble rap: social-based forward-
ing in delay tolerant networks,” in MobiHoc "08: Proc. of the 9th ACM
international symposium on Mobile ad hoc networking and computing.
ACM, 2008.

E. M. Daly and M. Haahr, “Social network analysis for routing in
disconnected delay-tolerant manets,” in MobiHoc ’07: Proc. of the
8th ACM international symposium on Mobile ad hoc networking and
computing. ACM, 2007.

A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and C. Porth,
“Bar fault tolerance for cooperative services,” in In SOSP05 20th ACM
Symposium on Operating Systems Principles. ACM, 2005.

H. C. Li, , A. Clement, E. L. Wong, J. Napper, 1. Roy, L. Alvisi, and
M. Dahlin, “Bar gossip,” in Proc. of the 7th Symposium on Operating
System Design and Implementation (OSDI ’06), 2006.

S. Marti, T. Giuli, K. Lai, and M. Baker, “Mitigating routing misbehavior
in mobile ad hoc networks,” in MobiCom ’00: Proc. of the 6th annual
international conference on Mobile computing and networking. New
York, NY, USA: ACM, 2000.

S. Buchegger and J.-Y. L. Boudec, “Performance analysis of the CON-
FIDANT protocol: Cooperation Of Nodes Fairness In Dynamic Ad-hoc
NeTworks,” in MobiHoc 02: Proceedings of IEEE/ACM Symposium on
Mobile Ad Hoc Networking and Computing, June 2002.

K. Balakrishnan, J. Deng, and V. Varshney, “Twoack: preventing selfish-
ness in mobile ad hoc networks,” in Wir. Comm. and Net. Conf., 2005
IEEE, vol. 4, March 2005.

P. Michiardi and R. Molva, “Core: a collaborative reputation mechanism
to enforce node cooperation in mobile ad hoc networks,” in Proceedings
of the IFIP TC6/TCI1 Sixth Joint Working Conference on Communica-
tions and Multimedia Security. Kluwer, B.V., 2002.

L. Buttydn and J.-P. Hubaux, “Enforcing service availability in mobile
ad-hoc wans,” in MobiHoc ’00: Proc. of the Ist ACM international
symposium on Mobile ad hoc networking & computing. 1EEE Press,
2000.

Success Rate

Delay in seconds

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

(27]

10

G2G on CAMBRIDGE 06

100 T

PS L]

80 ‘

60

40

20

0

0 2 4 6 8 10 12 14 16
Cost (Number of replicas)

u *
L]
10m
2m
0 2 4 6 8 10 12 14 16
Cost (Number of replicas)
Epidemic @& G2G Dest Last Contact
G2G Epidemic & Deleg.Dest Frequency =
Deleg.Dest Last Contact G2G Dest Frequency @

(b) Cambridge06

Performance of G2G Epidemic Forwarding and G2G Delegation Forwarding compared with Epidemic Forwarding and Delegation Forwarding

J.-P. Hubaux, T. Gross, J.-Y. LeBoudec, and M. Vetterli, “Towards
self-organized mobile ad hoc networks: The terminodes project,” IEEE
Communications Magazine, vol. 39, no. 1, 2001.

M. Jakobsson, J.-P. Hubaux, and L. Buttyan, “A Micro-Payment Scheme
Encouraging Collaboration in Multi-Hop Cellular Networks,” in Pro-
ceedings of Financial Crypto 2003, January 2003.

H. Miranda and L. Rodrigues, “Preventing selfishness in open mobile
ad hoc networks,” in Proc. of the Seventh CaberNet Radicals Workshop,
October 2002.

L. Buttyan, L. Déra, M. Félegyhazi, and I. Vajda, “Barter trade improves
message delivery in opportunistic networks,” Ad Hoc Networks, vol. 8,
no. 1, pp. 1-14, 2010.

“SUMO-Simulation of Urban MObility,” http://sumo.sourceforge.net/.
P. Hui, K. Xu, V. Li, J. Crowcroft, V. Latora, and P. Lio, “Selshness,
altruism and message spreading in mobile social networks,” in Proc. of
First IEEE International Workshop on Network Science For Communi-
cation Networks (NetSciCom09), April 2009.

F. Li and J. Wu, “LocalCom: a community-based epidemic forwarding
scheme in disruption-tolerant networks,” in SECON’09: Proc. of the 6th
Annual IEEE communications society conference on Sensor, Mesh and
Ad Hoc Comm. and Net., 2009.

W. Gao, Q. Li, B. Zhao, and G. Cao, “Multicasting in delay tolerant
networks: a social network perspective,” in MobiHoc '09: Proc. of the
tenth ACM international symposium on Mobile ad hoc networking and
computing, 2009.

Q. Li, S. Zhu, and G. Cao, “Routing in socially selfish delay tolerant
networks,” in To appear in INFOCOM 2010.

A. Liu and P. Ning, “Tinyecc: A configurable library for elliptic
curve cryptography in wireless sensor networks,” in Proc. of the 7th
International Conference on Information Processing in Sensor Networks
(IPSN 2008), SPOTS Track, 2008.

G. Palla, I. Derényi, I. Farkas, and T. Vicsek, “Uncovering the overlap-
ping community structure of complex networks in nature and society,”
Nature, vol. 435, no. 7043, 2005.

J. Leguay, A. Lindgren, J. Scott, T. Friedman, and J. Crowcroft,
“Opportunistic content distribution in an urban setting,” in CHANTS
’06: Proc. of the SIGCOMM workshop on Challenged networks. ACM,
2006.

J. Leguay, A. Lindgren, J. Scott, T. Riedman, J. Crowcroft, and P. Hui,
“CRAWDAD trace upmc/content/imote/cambridge (v. 2006-11-17),”
J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and A. Chaintreau,
“CRAWDAD trace cambridge/haggle/imote/infocom (v. 2006-01-31),”

