
Give2Get: Forwarding in Social Mobile
Wireless Networks of Selfish Individuals

Alessandro Mei, Member, IEEE, and Julinda Stefa

Abstract—In this paper, we present two forwarding protocols for mobile wireless networks of selfish individuals. We assume that all

the nodes are selfish and show formally that both protocols are strategy proof, that is, no individual has an interest to deviate.

Extensive simulations with real traces show that our protocols introduce an extremely small overhead in terms of delay, while the

techniques we introduce to force faithful behavior have the positive and quite surprising side effect to improve performance by reducing

the number of replicas and the storage requirements. We test our protocols also in the presence of a natural variation of the notion of

selfishness—nodes that are selfish with outsiders and faithful with people from the same community. Even in this case, our protocols

are shown to be very efficient in detecting possible misbehavior.

Index Terms—Delay tolerant networks, pocket switched networks, social mobility, selfishness, forwarding protocols.

Ç

1 INTRODUCTION

IN the last few years, the diffusion of mobile personal
devices exploded. Smartphones are used by people—not

only technology geeks—to communicate, to use applications
once run only by desktops, and to organize their life.
Typically, these devices can communicate with each other
over short distances by using wireless technologies such as
bluetooth. In this way, a new kind of network emerges where
nodes are carried by people and links appear and disappear
as people move and get in contact. These networks, also
known as Pocket Switched Networks (PSN [1], [2]), can be
key technology to provide innovative services to the users
without the need of any fixed infrastructure. Pocket
Switched Networks are usually disconnected, are character-
ized by social-based mobility and heterogeneous contact
rate. Examples of such networks include people at work
places, students on university campuses, and citizens in
metropolitan areas. Possible application scenarios of PSNs
include bringing connectivity to rural areas and enabling
services such as e-governance, citizen journalism etc.

The problem of designing efficient forwarding protocols
for PSNs has attracted the attention of many researchers. In
forwarding protocols, messages are routed from source to
destination thanks to intermediate relays. One fundamental
and natural question, especially in this setting, is why nodes
should accept to use their own energy and bandwidth just
to carry other people’s messages. Indeed, the protocols in
the literature break down immediately if you do not assume
that all the nodes cooperate in an altruistic manner. We
show this phenomenon, which is intuitive indeed, by a few
experiments on Epidemic Forwarding [3] and Delegation
Forwarding [4], two important protocols in the literature.

In this paper, we introduce Give2Get (G2G) Epidemic
Forwarding and Give2Get Delegation Forwarding, which
are, to the best of our knowledge, the first protocols for
packet forwarding in a social mobile setting that leverage on
the social aspects of the network to tolerate selfish behavior:
friend nodes meet with high frequency. This helps us
showing formally that no rational node has any incentive to
deviate. In other words, our two protocols are strategy
proof, i.e., the strategies of following the protocols are Nash
Equilibria. However, for simplicity we will use the words
protocol and strategy (to follow that protocol) interchange-
ably. In the paper, we describe our methodology and the
main steps, the mechanisms, and the ideas that we have
used to build the complete proof.

Lastly, we perform a large set of experiments to check the
performance of G2G Epidemic Forwarding and G2G
Delegation Forwarding. Quite surprisingly, we discover
that some of the mechanisms that we introduce to make
these protocols Nash equilibria are also useful to control the
number of replicas in the network and push the messages
quickly and cheaply far from the community where they
have been generated. As a result, G2G Epidemic Forwarding
and G2G Delegation Forwarding, besides providing robust-
ness in a network where every node is selfish, have nearly
the same delay and success rate of their original alter egos,
and have a considerably lower cost in terms of number of
replicas (around 20 percent less). Moreover, we also perform
a detailed study of the memory load required by all these
protocols. To the best of our knowledge, this is the first time
such a detailed study is performed. We measure the cost
generated by each protocol by computing the average
storage requirements to forward one message. Our experi-
mental results show that our G2G protocols, aside providing
tolerance to selfish behavior, require considerably less
storage than their vanilla alter-egos in almost all cases, even
including the overhead due to signatures and other
information used by the G2G mechanisms.

The paper is organized as follows: Section 2 reports on
the literature in the area; Section 3 defines our system
model; Sections 4 and 5 present G2G Epidemic Forwarding

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 4, JULY/AUGUST 2012 569

. The authors are with the Department of Computer Science, Sapienza
University of Rome, Via Salaria 113, 00198 Rome, Italy.
E-mail: {mei, stefa}@di.uniroma1.it.

Manuscript received 7 Mar. 2011; revised 19 Nov. 2011; accepted 19 Mar.
2012; published online 23 Mar. 2012.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-2011-03-0038.
Digital Object Identifier no. 10.1109/TDSC.2012.37.

1545-5971/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

and G2G Delegation Forwanding along with proofs that the
two protocols are Nash Equilibria; in Section 6 we first
illustrate a large set of experiments that show the dramatic
effect of selfish behavior on vanilla Epidemic and Delega-
tion Forwarding; we show that our protocols detect
efficiently and quickly possible deviations; we then describe
the excellent performance of our protocols—similar success
rate and delay of earlier protocols (that do not tolerate
selfish behavior) and considerably less requirements in
terms of both number of replicas and storage. Lastly,
Section 7 concludes the paper.

2 RELATED WORK

A lot of work has been done in building efficient
forwarding protocols for Pocket Switched Networks. Many
of the protocols in the literature use in sophisticated ways
the properties of human mobility [4], [5], [6], [7], [8], [9]. All
of them rely on the altruistic cooperation among the nodes.

The problem of building mechanism and protocols that
can tolerate selfish behavior is an important and modern
issue in the design of networking protocols and distributed
systems. See, as an important example, the work in [10],
[11]. Earlier work has been done to mitigate the impact of
selfish behavior in mobile ad hoc networks as well. The
solutions can be classified into two main approaches:
reputation-based schemes [12], [13], [14], [15] and credit based
schemes [16], [17], [18], [19]. In the former schemes, nodes
collectively detect misbehaving members and propagate
declarations of misbehavior throughout the network. Even-
tually, other nodes will avoid routes through selfish
members. In credit-based approaches, nodes pay and get
paid for providing service to others. Digital cash system is
implemented in order to encourage correct behavior among
nodes. In [20], a combination of the two schemes is
presented. All these solutions assume the use of public
key cryptography for authentication of messages. Regard-
less of the performance of these schemes on ad hoc
networks, none of them is designed for social mobile
networks. Indeed, no previous work is neither designed
with a social mobile scenario in mind, nor exploits the social
nature of the network or the properties of the movement
that such social nature generates.

Recently, Buttyán et al. [21] introduced a barter-based
cooperation system to increase message delivery rate in
opportunistic networks. The authors assume that altruistic
static nodes scattered on the network area generate messages
downloadable by interested network members in physical
proximity. When two nodes meet, they exchange the list of
the messages in their buffers and each node decides to
download from the other node only the messages of its
interest. Then, the nodes start downloading messages till
they move out each other’s communication range. A game-
theoretical model helps the authors prove that the approach
foster cooperation. They support their findings with ex-
tensive simulations done with the restricted random way-
point (RRW) model and the Simulation of Urban MObility
SUMO [22]. Though it introduces a novel technique of
stimulation of cooperation, their work is oriented to a gossip-
like service, where messages are created from special nodes
and many other nodes are interested in downloading them,
which is a natural incentive for the distribution.

COFFEE [23] is an interesting mechanism to enforce
cooperation among nodes in wireless networks. However,
the solution relies on fixed and known-in-advance routes
among nodes. Indeed, it uses the DSR routing protocol,
which is shown to be inapplicable in a dynamic, delay
tolerant setting such as pocket switched networks. In [24],
[25], the authors study the impact of different degrees of
cooperation among the nodes on the performance of
Epidemic Forwarding [3], Binary Spray&Wait [26], and
the Two-Hop relaying algorithm [27]. A recent work [28]
presents a routing mechanism built upon the willingness
(declared by each individual) to forward other individuals’
messages. In [29], the authors study for the first time the
impact of different distributions of altruism on the
throughput and the delay of mobile social communication
systems. They show that, when forwarding algorithms that
use multiple paths are considered, social mobile networks
are robust to different distributions of altruism of nodes. To
the best of our knowledge their work is the first study
aimed to explore altruistic/selfish behavior in these types of
networks and encourages for further work in this direction.

3 THE SYSTEM MODEL

3.1 System and Node Properties

In our system model, every node is selfish. This is a realistic
scenario, if people can get the same level of service without
using part of their battery or part of their wireless uptime or
memory without any consequence, they will. And as soon
as the first user finds a way to get more (or the same) while
paying less, and publishes the patch of the system software,
everybody will download the patch and use it. So, it is
reasonable to assume that, if some of the nodes deviate
selfishly, after a while everybody will.

We assume that there are no byzantine nodes in the
network. We also assume that selfish nodes do not collude.
All the nodes in the system are interested in receiving and
sending messages, in other words, all the nodes are
interested in staying in the system. Nodes are loosely time
synchronized. Loose time synchronization (i.e., to effectively
limit the clock-drift to an external reference [30]) is very easy
to get, if a precision in the order of the second is enough, like
in our protocol. We assume that every control message of
our protocols is labeled with a time stamp, though it does
not appear in the protocols to keep the presentation clean.
The clock is used to check the time-outs, and the time stamp
is used when reporting misbehavior to the authority.

Lastly, nodes are capable of making use of public key
cryptography—this capability will be used to sign messages
and to make sender to destination encryption. Therefore,
we assume that every node has a public key and the
corresponding private key.

3.2 The System Authority and Key Revocation

In our system nodes that join and leave are handled by a
central authority. The authority handles new nodes joining
the network in a standard way: It identifies the new node and
it signs the new node’s certificate (or the master public key is
handed out to the node in case of an identity-based public
key system). More authorities can coexist, as long as they
exchange information on nodes that enter and exit the system

570 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 4, JULY/AUGUST 2012

in real time. To communicate with the nodes, we assume that
the authority can use the cellular infrastructure or wireless
technology like, e.g., GSM. This technology is very expensive
compared with Bluetooth communication used by our
forwarding protocols. However, it is used very sparingly:
Just when a node is revoked from the system using methods
like in [31], [32]. We can reasonably expect that this event is
rare. The cellular network can also have some delay, usually
due to nodes that are temporarily out of coverage—this is not
an issue, even if a revocation due to misbehavior is late, it
does not lose its power as a deterrent. Moreover, nodes can
pretend to have run out of battery or to be out of coverage just
to prevent communication with the authority. These pro-
blems can be dealt with quite easily (for example, by forcing
the nodes to keep all the cryptographic proofs of their
behavior until they are up and with cellular network
coverage). However, in the following, we will assume that
the cellular network covers the whole network and that nodes
are always up and running. This assumption is not funda-
mental (we can work out a solution even without it), it is not
far from reality, and it considerably simplifies presentation.
Node failures are dealt with as if a node switches of the device
for a certain amount of time. It is considered to be a legitimate
behavior in the system, even though, as we will prove, no
node will chose to do so deliberatively for its quality of
service will drop during such time.

It is known that public key cryptography is more
expensive than symmetric cryptography. However, modern
cryptography techniques, like those based on elliptic
curves, provide short signatures (a secure signature based
on elliptic curves is just 320 bits long), and cheaper and
cheaper computation [33], which is shown to be adequate
even for sensors. The same is true for identity-based
cryptosystems [34]. In addition to this, the delay tolerant
nature of the PSNs (there are less delay constrains) gives
nodes the time to generate and verify signatures. Moreover,
in our study we are addressing a network of smartphones
or PDAs, which are not-so-small devices. Modern smart-
phones can run sophisticated applications, like decoders of
streaming videos, 3D games, web browsers that can open
SSL sessions, and others. For these devices, a signature per
message can be considered a relatively low overhead. In the
rest of this paper, we will use HðÞ to denote a hash function,
and hmiA to denote a message m signed by node A.

4 GIVE2GET EPIDEMIC FORWARDING

In Epidemic Forwarding [3], every contact is used as an
opportunity to forward messages. When node A meets
node B, and A has a message that B does not have, the
message is relayed to node B. Epidemic forwarding with
unlimited buffer is often used as a benchmark, it is easy to
see that it is impossible to get smaller delay, or higher
success rate. However, the overhead in terms of number of
copies of the same message is very high. Put simply, many
of the forwarding protocols in the literature on Pocket
Switched Networks have the goal of reducing drastically
the overhead without affecting much the delay and the
success rate of Epidemic Forwarding.

However, Epidemic Forwarding does not tolerate a
scenario in which users can make selfish choices. Indeed,

selfish nodes simply drop every message they receive (except
those destined to themselves!). We will call message droppers
the nodes that implement this simple form of deviation. In
this section, we show how to build a version of Epidemic
Forwarding, called Give2Get Epidemic Forwarding, that
works in a system where every node is selfish. We will see
that G2G Epidemic Forwarding is a Nash equilibrium, that
is, no selfish node has a better choice than following the
protocol truthfully. In this way, we protect the network
against message droppers and against any other rational
deviation. Most of the ideas and techniques that we develop
in this section will be used in the more sophisticated
protocols we introduce later in this paper.

G2G Epidemic Forwarding consists of three phases:
Message generation, relay, and test. The idea behind each
phase is as follows: 1) during message generation the
message is modified so that a relay candidate has no
interest in not accepting it; 2) the relay phase “forces” nodes
to collect the so-called proof of relay to show to previous
relays (or source), during the test phase, 3) that they have
correctly behaved with the message—this is to make it
impossible to relays to drop messages. The details of each
phase will be given in the remaining of the section.

Message generation executes when one node creates a
message to send. Suppose that node S has a message to send
to node D. The message is built according to the following
form: m ¼ hD; EPKD

ðS;msg id; bodyÞiS . Key PKD is the
public key of the destination D. Note that it is a precise
design choice to hide the sender of the message to every
possible relay except the destination. We will see later why
this is important.

4.1 G2G Epidemic Forwarding: The Relay Phase

Once the message is generated, the sender S tries to relay it
to the first two nodes it meets. When node S meets node B,
node S starts a session with the possible relay by
negotiating a cryptographic session key with node B. This
is easily and locally done by using the certificates of the two
nodes, signed by the trusted authority. In this way, both
identities are authenticated. From this point on, every
communication during the session is encrypted with a
symmetric algorithm like AES and the session key (to keep
the notation clean, this encryption is not shown in the
protocols). Node S starts the relay phase by asking node B
if it has already handled a message with hash HðmÞ (see
Fig. 1, where the role of S is described as done by node A
step 1). Token TAB is a cryptographic proof that node A has
completed with the test phase the last interaction with

MEI AND STEFA: GIVE2GET: FORWARDING IN SOCIAL MOBILE WIRELESS NETWORKS OF SELFISH INDIVIDUALS 571

Fig. 1. Protocol of the relay phase (in case node B does not have the
message).

node B. In the formal proof, the token will be key to show
that also intermediate relays—and not just the sender—has
an interest to perform the test phase. More details on how
the token TAB is being computed will be given in the
description of the test phase (Session 4.2). However, in case
this is the first interaction, the token can be empty. In case
node B has never seen this message, the relay phase goes
on (step 2), otherwise node B informs S that it should not
be chosen as a relay. Note that node B would not lie, since
it still does not know the content of the message, its
destination, and, in particular, if node B itself is the
destination. In other words, if B deviates and executes a
modified version of the protocol in which it declines offers
of being a relay without knowing the destination of the
message, it won’t receive any message, against its own
interest. Node S generates a random key k, and sends
message m to B, encrypted with key k (step 3). Then,
node B sends a proof of relay to node S which in turn, lastly,
sends key k to B, who now knows whether it is the
destination of the message or just a relay. Note that the
relay phase is only started for messages that have not
expired yet. Indeed, after message time-out (that we will
denote with � in the rest of the paper), nodes are allowed
to discard everything about expired messages.

4.2 G2G Epidemic Forwarding: The Test Phase

Once it realizes that it is a relay for message m, node B
follows the same protocol as done by node A, the previous
relay. That is, find two other nodes and relay the message to
these two nodes by executing the relay phase as shown in
Fig. 1. By doing so, it can collect two proofs of relay (PORs)
that it will be asked to show, when meeting node A again,
during the test phase. If node B is not able either to show
the two proofs or to prove to have the message still in its
memory (as detailed at Step 2 in Fig. 2), then node A can
send by the cellular network a proof of misbehavior (PoM) to
the authority. The proof of misbehavior consists of the proof
of relay hPOR; HðmÞ; A; BiB, signed by node B. The
authority, in turn, will revoke node B, if node B is not in the
position to prove that A is wrong by showing the two
proofs of relay or by proving to have the message still in
its memory to the authority (the protocol between the
authority and node B is simple and similar to the test phase
in Fig. 2). It is important to realize, however, that under our
assumptions misbehavior never happens. Indeed, all the
nodes are rational—they will not deviate from the protocol
since it is against their own interest as we prove more
formally later in this paper. In particular, nodes have no
interest in sending fake proofs of misbehavior against other
nodes to the authority since it is expensive and it is not
going to have any effect.

Only when two proofs are collected the message can be
discarded from B’s memory. After a time-out �, B can stop
looking for relays and can discard every information
regarding the message. In turn, node A can discard the
token TAB, in case a test phase between the two nodes is
executed. Time-out � plays the role of the message time to
leave (TTL) in Epidemic Forwarding. Therefore, it should be
chosen in such a way that the success rate is high enough.
Our experiments show that the delay of G2G Epidemic
Forwarding is very close to the delay of Epidemic Forward-
ing, and so � can be chosen as in its original alter ago
without affecting the success rate.

The test phase is started by node A (see Fig. 2), when
meeting node B before time-out �. During the test phase,
node A challenges node B: Either it has two proofs of relay,
or it still stores the message. In case node B has two proofs
of relay, it can reply with the two proofs. The challenge is a
simple cryptographic protocol in which node A generates a
random seed s and asks node B to send back the value of a
hard to compute puzzle of message m and seed s. The
puzzle (denoted with P ðm; sÞ in the figure) is a so-called
cost-function: efficiently verifiable, but expensive to com-
pute. Example of cost-functions are the Interactive Hashcash
function [35] used to mitigate sybil and DOS attacks to
servers, or the Rivest et al. time-lock puzzle [36] famous for
mitigating distributed DOS attacks. By choosing a cost-
function that is hard enough to compute, node B is
encouraged to relay the message and get the two proofs of
relay in all cases in which the probability of meeting node A
again is not negligible (below a fixed and small probability).
Note that B does not know the seed beforehand, it must be
storing the message unless it has found two relays. So, while
it is a legitimate part of the strategy to keep the message and
not to relay it, it is rational to relay it unless the meetings
with the previous relay are very infrequent. In this way, we
can make the event that B chooses to store the message rare
in such a way that success probability is virtually
unaffected. Note that in many cases A cannot check whether
B has correctly computed the puzzle: Node A may have
already forwarded m to 2 relays (one is B itself) and thus
legitimately dropped the message afterwards. However, if
A is the source, A is interested in storing the message and in
checking that B has behaved correctly by verifying the
puzzle result. Since B does not know whether A is the
source of m or not, node B has to behave otherwise it can be
removed from the system.

Lastly, if A (relay or source) does not start the test phase
as required by the protocol, node B is forced to keep proofs
of relay in his buffer till time-out � expires, although it
could get rid of them and free the memory if A started the
test phase. Thus, the token TAB will not be sent to A, and
without it, node B will punish A and not relay any message
whose destination is node A until time-out � expires. If A
does not start the test phase this is very important to get
node A perform the test phase. In addition, it is not possible
for B to fool A by forging any of the two proofs, since they
are signed by the two relays. In any case, node A will store
the proof received by node B as token TAB until expiration
of time-out �.

572 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 4, JULY/AUGUST 2012

Fig. 2. Protocol of the test phase.

4.3 G2G Epidemic Forwarding Is a Nash
Equilibrium

We formally show that G2G Epidemic Forwarding is a Nash
equilibrium by defining a set of players, a set of possible
strategies S, and a payoff functionf : Sn 7! IRn. In our case, the
set of players consists of the n nodes of the network, and the
set S of possible strategies contains all the possible protocols
that the nodes might implement. When each player i
chooses strategy si 2 S, the payoff function maps the
strategy profile s ¼ ðs1; . . . ; snÞ to fðsÞ ¼ ðf1ðsÞ; . . . ; fnðsÞÞ,
where fiðsÞ is the payoff of player i. Note that the payoff
of each player depends on the strategies chosen by all the
players. A strategy profile s is a Nash equilibrium if no player
can do better by changing unilaterally his strategy. Formally,
a strategy profile s is a Nash equilibrium if for all players i
and for all strategy profiles s0 such that s0 and s differ only
in position i, fiðs0Þ � fiðsÞ. When we say “protocol s� is a
Nash equilibrium,” what we formally mean is that strategy
profile ðs�; . . . ; s�Þ is a Nash equilibrium.

Since strategies (that is, protocols) are not limited in
length, set S contains an infinite number of elements. To
handle the proof, we organize it in the following way:
Assume that our goal is to prove that protocol � is a Nash
equilibrium and that � consists of r steps. We partition the
set S of strategies into disjoint subsets P1; . . . ;Prþ1, where Pj
contains all the protocols that are equal to � in the first
j� 1 steps and then start to deviate. Clearly, P1 [� � � [Prþ1

is equal to S and Prþ1 ¼ f�g. Fixed player i and step j, if for
all strategy profiles s0 2 Pj such that s0 and ð�; . . . ; �Þ differ
only in position i it holds fiðs0Þ � fið�Þ, then we say that
player i executes step j of protocol � truthfully. Indeed, in this
case player i has no incentive to deviate at step j. Therefore,
we will prove that protocol � is a Nash equilibrium by
showing that for all players i and for all j ¼ 1; . . . ; r, player i
executes step j of protocol � truthfully. Note that, while our
protocol do not use randomization, the user can switch to
randomized protocol steps like “do C1 with probability p,
otherwise doC2.” Therefore, also randomized deviations are
taken into account (deviate with probability p). In the
description of the protocols and in the proofs, keep in mind
that deviations can be randomized and performed with some
probability.

Lastly, we define the payoff function. One of the driving
forces in the system is that every node has the ultimate
interest of being part of the system and to get a service of
good quality. At the same time, every node is selfish and
has a rational tendency to save energy and memory. We can
measure energy cost in joules and memory cost in bytes
seconds (clearly, using one KByte of memory for one second
or for one year does not have the same cost). Therefore, we
can define f in a very general way as a function fðsÞ ¼
ðf1ðsÞ; . . . ; fnðsÞÞ of the strategy profile such that for all i
fiðsÞ is strictly positive and

1. fiðsÞ ¼ 0 if player i, as a consequence of strategy
profile s, has a nonnegligible probability, say at
least 50 percent, of not being able to send or receive
messages with the same performance of the original
protocol.

2. otherwise, fiðsÞ is decreasing when either the
expected value of energy cost or the expected value
of memory cost required by the protocol increase.

Our goal is to show that, if � is G2G Epidemic Forwarding,
then the resulting strategy profile ð�; . . . ; �Þ is a Nash
equilibrium. That is, no node has an incentive to unilaterally
deviate from the protocol. The proof is quite technical and
long, we organize it into two lemmas. We will consider
player i, and show that, if player i deviates by executing a
protocol �0 6¼ �, then fið�0Þ � fið�Þ, that is, player i does not
do better by deviating (either it is not able any more to send
and receive messages with the same performance or it uses
more energy or memory).

Lemma 1. A rational node will follow all the steps of the relay
phase truthfully.

Proof. Assume that � is G2G Epidemic Forwarding.
Strategy � is composed by eight steps—the five steps
in Fig. 1 and the three steps in Fig. 2. Assume that
s ¼ ð�; . . . ; �Þ, �0 6¼ �, and strategy profile s0 is equal to
s except in position i, where the entry is �0. This is the
formal way to say that in strategy profile s0 player i
has unilaterally chosen to deviate from protocol � (our
G2G Epidemic Forwarding) to protocol �0. We show
that, if �0 2 P1 [� � � [P5, then fiðs0Þ � fiðsÞ (in other
words, if a node deviates from the relay phase then its
payoff is reduced). Recall that Pj contains all the
protocols that are equal to � in the first j� 1 steps and
that deviate starting from step j. We organize the proof
in cases, from �0 2 P1 to �0 2 P5. These cases collec-
tively cover all possible ways to deviate from the relay
phase.

Let �0 2 P1. That is, player i deviates from step 1 of the
relay phase (see Fig. 1, where player i has the role of
node A). If player i deviates when it is the source of the
message, then player i is not able to deliver its own
messages any more. Therefore, payoff fiðs0Þ ¼ 0 � fiðsÞ
and we are done. On the other hand, if node A is an
intermediate relay, node A has a nonnegligible prob-
ability to meet the previous relay and that it will be
asked to show two proofs or relay (later on, in our
experimental results, we will see that the probability of
detection is higher than 90 percent, therefore the
probability of meeting again the previous relay for at
least one message is also more than 90 percent) or to
show that he still has the message and perform the
puzzle P and thus consuming more energy, in expecta-
tion. Note, however, that a strategy where A deliberately
choses to not relay the message and keep it in memory at
the cost of having to compute the heavy puzzle each time
it meets the previous relay is perfectly legitimate.
However, since the puzzle P is a cost-function [35],
[36] computationally expensive to compute, the energy
consumed is higher than the energy saved by storing the
message without relaying it. Thus, we get fiðs0Þ � fiðsÞ.
Even so, there might be rare cases in which A knows
beforehand that, with high probability, it will not meet
the previous relay soon enough. Thus, A might chose to
not forward the message to B and keep it in his memory:
The risk of having to compute the heavy puzzle is very
low, and A knows it, i.e., in these rare cases fiðs0Þ � fiðsÞ.
However, as our experiments show, these events are
very rare in social mobile networks, in which most the
meetings are typically between people that know each

MEI AND STEFA: GIVE2GET: FORWARDING IN SOCIAL MOBILE WIRELESS NETWORKS OF SELFISH INDIVIDUALS 573

other or have something in common to each other which
makes them frequent the same places over and over
again (e.g., go to the same gym, take the same bus to go
to work in the morning, etc.). Thus, this strategy adopted
by node A very rarely (only for previous relays which he
knows he will not see soon), does not impact neither the
delivery ratio nor the other performance metrics of the
G2G protocol.

We get again fiðs0Þ � fiðsÞ if the node simply drops
the message an so it is not able to perform any of the two
operations, indeed it is discarded from the system and
his payoff drops to zero. Moreover, node A is interested
in getting rid of the message as soon as possible, since a
message typically uses much more memory than the
proofs of relays and it does not want to be in the position
of performing the heavy puzzle P in step 2 of the test
phase. Therefore, we have shown that, if �0 2 P1, then
fiðs0Þ � fiðsÞ. In other words, player i executes step 1 of
the protocol truthfully.

Let �0 2 P2. That is, player i deviates from step 2 of the
relay phase (see Fig. 1, where player i has the role of
node B). Let’s consider node B in the relay phase. Once
node B is asked to be a relay of a particular message m, it
does not know who is the destination of m. If player i
deviates from the protocol and declines to be a relay
(either it does no respond or does not send RELAY_OK),
it will never receive any message, since it will discover
both message content and message destination only at
step 5. Consequently, fiðs0Þ ¼ 0.

The case �0 2 P3 can be dealt exactly as the case
�0 2 P1, and the case �0 2 P4 as the case �0 2 P2.

Lastly, player i will execute step 5 truthfully. Let
�0 2 P5. Indeed, the message sent in step 5 is very short
and, if the key is not sent, node B freezes the session with
node A until it gets the key. In case A deviates to a
protocol in which step 5 is not executed, it won’t be able
to send and to receive any message through node B and,
after many frozen sessions, it won’t be able to send or
receive any message at all (or with a limited perfor-
mance), in such a way to make fiðs0Þ drop to zero. tu

Let’s consider the test phase.

Lemma 2. A rational node will follow all the steps of the test

phase truthfully.

Proof. Again, assume that s ¼ ð�; . . . ; �Þ, �0 6¼ �, and

strategy profile s0 is equal to s except in position i,

where the entry is �0. Just like in Lemma 1, we show that

if �0 2 P6 [� � � [P8, then fiðs0Þ � fiðsÞ.
Let �0 2 P6. That is, node A does not start the test

phase. If this is the case, then node B will never relay
node A’s messages and therefore the quality of service
experienced by A is reduced. That is, fiðs0Þ � fiðsÞ. Now,
let �0 2 P7. That is, player i deviates from step 2 of the
test phase (see Fig. 1, where player i has the role of node
B). Again, we can show that fiðs0Þ � fiðsÞ. Indeed, the
message sent in step 2 of the test phase is very short and,
if the proof is not sent, node A freezes the session with
node B until it gets the proof. In case B deviates to a
protocol in which step 2 is not executed, it won’t be able
to send and to receive any message through node A in

such a way to make fiðs0Þ drop to zero. Finally, node B
will not risk avoid computing the heavy puzzle and send
to A a fake value: If A still has the message or is the
sender (who always keeps the message till it expires), B
will get busted and reported by A, thus, thrown out of
the system.

Lastly, we can see that node A will perform step 3 of
the test phase (Fig. 1) truthfully. Indeed, if A does not
store the proof received from B into token TAB, then A is
not able to start a new relay phase with node B. tu

Note that it is not a rational strategy to shut off the radio
every time node B meets node A in such a way to avoid the
test phase. Indeed, in this case node B will not receive other
messages destined to itself that node A or other nodes
might have during that interval of time. Therefore, node B
would experience a reduced quality of the service that
makes its payoff drop. Moreover, note that session inter-
ruption due to node mobility is not a problem for none of
the phases of the protocol. Indeed, in such case the session
will resume from where it was interrupted as soon as the
nodes get in touch again with each other.

To summarize, if a node deviates from G2G Epidemic
Forwarding (deterministically or following a probability
distribution) then its payoff is reduced. Since the detection
happens right away (as we will see from our experiments),
rational users will follow the protocol truthfully.

Theorem 1. G2G Epidemic Forwarding is a Nash equilibrium.

4.4 Coalitions

Consistent with a very large part of the literature, in this
paper we assume that nodes do not collude. This is a
common assumption, coordination has a cost and in many
practical settings people just do not trust each other enough
to form a coalition. However, if a few nodes have a strong will
to cheat the system, they could deviate in a coordinated
manner from our protocols and do better. While this attack is
out of the scope of this paper, we would like to point out a few
countermeasures that can be worked out to mitigate its effect.

Assume that a set C of nodes, the coalition, deviate to a
protocol in which the nodes mark in some secret way the body
of messages coming from members of the coalition, exchange
fake proofs of relay when handling messages outside of the
coalition, never execute the test-phase within the coalition,
and drop messages that are not originated or destined to
members of the coalition. Of course, they stick to the protocol
when in session with users outside the coalition. To stop this
one and similar attacks, we can put in place two mechanism:
Random checks of conformity and rewarding traitors.

Random checks of conformity. The sender of a message, with
small probability p, sends the proof of relays got from first
relayB on the paths toward destination to the authority. The
authority, at a random time before the time-out, checks
whether node B has collected two proofs of relay or it is still
storing the message. Then, the authority can follow the
message at the next relays and check whether the message
has not disappeared. The sender has an interest to perform
this check, and nodeB does not know if the previous relay is
the sender or not. This check can be very costly since the
authority uses the expensive cellular network infrastructure.

574 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 4, JULY/AUGUST 2012

However, since the authority can impose a very stiff penalty,
like the eviction from the system, this mechanism can be a
good deterrent even with an extremely small probability p, in
such a way that the cost can be reasonably low.

Rewarding traitors. A simple observation is that any
member of the coalition can prove that another node is a
member as well. Suppose that node A 2 C, without actually
exchanging message, gets a fake proof of relay from
node B 2 C. Now, node A has a proof that can nail node
B. If node A gives away the fake proof of relay signed by
node B to the authority, then the authority can ask node B
for a proof of storing the message (or two proofs of relays)
and node B will not be able to respond. If the authority
rewards node A in such a way that the benefit of betraying
is larger than the benefit of being part of the coalition, this
attack can be prevented efficiently.

These mechanisms, among others, can be used to extend
our protocols in such a way to mitigate the possible presence
of coalitions or to limit the possible harm they can make,
including the protocols described in the next section.
However, the full development of these mechanisms is out
of the scope of this paper. Therefore, we stick to the classical
assumption that nodes do not collude and proceed with
more sophisticated, social-aware forwarding protocols.

5 GIVE2GET DELEGATION FORWARDING

Delegation Forwarding [4] is a class of protocols that have
been shown to perform very well. In Delegation Forward-
ing, every node is associated with a forwarding quality, that
may depend on the destination of the message at stake.
When a message is generated, it is associated with the
forwarding quality of the sender. Then, the message is
forwarded from node to node, creating a new replica of the
message at each step, according to the following protocol:
When a relay node A gets in contact with a possible further
relay B, node A checks whether the forwarding quality of B
is higher than the forwarding quality of the message. If this
is the case, node A creates a replica of the message, labels
both messages with the forwarding quality of node B, and
forwards one of the two replicas to B. Otherwise, the
message is not forwarded.

Delegation Forwarding, in many of its flavors, has been
shown to reduce considerably the cost of forwarding (that is,
the number of replicas), without reducing considerably
success rate and delay. However, just like Epidemic
Forwarding, it is far from being a Nash equilibrium. A
selfish node can easily send messages and receive messages
without taking care of relaying any other message. It is also
easy to see that it is not enough to translate all the techniques
used in G2G Epidemic Forwarding in order to get a version
of Delegation Forwarding that is a Nash equilibrium.

Simply speaking, the techniques we developed to build
G2G Epidemic Forwarding can be used to stop message
droppers in G2G Delegation Forwarding, but are not enough
to make it a Nash Equilibrium. Indeed, selfish nodes have
many other rational ways to deviate in these more
sophisticated protocols. First, nodes can lie on their for-
warding quality. They can claim that their quality is zero and
get their messages served without participating actively. We
will call these nodes liars. Not only that, selfish nodes can

change the forwarding quality of the message to zero, in
such a way to get rid of the message soon—they would be
able to relay it to the first two nodes they meet. We will call
these nodes cheaters. Of course, cheaters are less vicious than
liars, in our setting. However, we will show how to build a
version of Delegation Forwarding that is a Nash equili-
brium. Just like what we did with G2G Epidemic Forward-
ing, our approach is not to add patches against liars and
cheaters or incentives for altruistic nodes, our approach is to
design a protocol such that, step by step, it can formally be
shown that every rational player in the protocol cannot but
follow the protocol truthfully. In this way, we protect our
system against liars, cheaters, and any other possible way to
deviate rationally.

Here, we consider Delegation Destination Frequency and
Delegation Destination Last Contact (DDLC) [4].

Delegation Destination Frequency. Node A forwards
message m to node B if node B has contacted m0s
destination more frequently than any other node that the
copy of the message m carried by A has seen so far.

Delegation Destination Last Contact. Node A forwards
message m to node B if node B has contacted m0s
destination more recently than any other node that the
copy of the message m carried by A has seen so far.

In the above definitions the forwarding quality qAB is,
respectively, the number of encounters between node A and
node B, and the time of the last encounter between node A
and node B. Since encounters are committed by both nodes
with a commonly agreed time, it is easy to see that qAB ¼
qBA for every pair of nodes A and B.

G2G Delegation Forwarding builds upon all the techni-
ques that we have developed for G2G Epidemic Forward-
ing. First, in G2G Delegation Forwarding the quality of the
message is changed only when forwarded (we will see later
why). G2G Delegation Forwarding consists of four phases:
Message generation, relay, test by the sender, and test by
the destination. Message generation is just like message
generation and in G2G Epidemic Forwarding. Thus, in the
next sections, we will describe only the phases that are
substantially different from G2G Epidemic Forwarding. As
in G2G Epidemic, the relay and the test phases are based on
the idea of making nodes collect proofs of relay and to
check relays about their behavior with the message. The test
by destination phase is to protect the system against
cheaters: very low forwarding qualities declared by nodes
are “embedded” in the message by the source, and, when
eventually the destination is reached, are double-checked
(forwarding qualities are symmetric) by the destination. In
the remaining, we give details on the phases.

5.1 G2G Delegation Forwarding: The Relay Phase
and the Test by the Destination Phase

Fig. 3 shows the protocol of the relay phase. Just like G2G
Epidemic Forwarding, node A has an interest to start this
phase, since it has to collect the proof of relay for the
message. In step 1, node A asks B what is its forwarding
quality to destination D (denoted by qBD). Note that
forwarding quality qBD must be provable. That is, it must
be computed based on signed interactions. This is why
nodes A and B exchange signed messages carrying qAB and
qBA at every session. Note that, if qAB 6¼ qBA, then one of the

MEI AND STEFA: GIVE2GET: FORWARDING IN SOCIAL MOBILE WIRELESS NETWORKS OF SELFISH INDIVIDUALS 575

two players is cheating, and the loyal player can prove it
based on the quality exchanged in the previous session.
Again, in the request node A includes a token that certifies
that the last interaction has completed with the test phase.
Node B replies with its forwarding quality (we will see later
why B has no interest in lying). When the destination of m
is different from B, D0 is the actual destination D; when the
destination of m is B, D0 is chosen as a random node
different from B. This mechanism has the goal of making it
impossible to B to know whether it is the destination of the
message or not before taking the message and giving the
proof of relay. Therefore, just like in G2G Epidemic
Forwarding, node B will follow all the relay protocol with
the hope of being the actual destination of the message.
Note that in G2G Delegation Forwarding the proof of relay
contains much more information, including the forwarding
quality toward D claimed by node B and the forwarding
quality of the message at that point in time.

Node A forwards the message to two other nodes. In the
case when node A is also the sender of the message, A
stores the signed message hFQ RESP; B; D; qBDiB for the
nodes B that failed to be good relays for the message, that is
qBD < qm (recall that D ¼ D0 except the case in which B is
message’s destination). As soon as node A finds a good
relay, the last two signed qualities of such failed relays are
embedded into the message toward D. If the destination D
receives the message, it will be able to check if qBD is correct
or not (this is the test by destination phase). Indeed, qBD
should be equal to qDB. Since nodes B and C do not know
whether A is the sender or not, they will not lie about their
forwarding quality since there is a nonnegligible probability
to be tested by the destination (in the experiments we will
see that this is exactly the case). When D detects that node B
is a liar, he sends the proof to the authority by using the
cellular network infrastructure. Indeed, node D can prove
that the correct quality is different based on the quality
signed by node B himself during their last interaction. The
authority does not need to contact node B and can proceed
with its revocation from the system.

In order to make this mechanism work, the forwarding
quality qBD is not the current quality, it is the quality
computed in the last completed time frame. Every node keeps
three versions of the forwarding quality, the current and the
two forwarding qualities computed in the previous two
completed time frames. In this way, B and D have a
consistent notion of forwarding quality. Of course, the time
frame has to be set in such a way that, with high probability,
the message delay falls within one of the last two completed
time frames, so that the destination has the necessary
information to detect liars. As a consequence of this set of

techniques, no relay will lie about their forwarding
quality—we will see in the experiments that, in case of
deviation, the probability of being removed from the system
is actually very high.

5.2 G2G Delegation Forwarding: The Test Phase

The test by the sender is executed by the relay node as in
G2G Epidemic Forwarding. Assume that node B has
received the message from the node A. When B gets in
contact with A again, node B is tested and, just like in
G2G Epidemic Forwarding, it gives the two proofs from
relays C1 and C2hPOR; HðmÞ; B; C1; D; q

1
m; qC1DiC1

and
hPOR; HðmÞ; B; C2; D; q

2
m; qC2DiC2

to node S. In this
way, it is guaranteed that it is not rational to become a
message dropper. More than that, this phase is also
important to check that B is not a cheater, that is it has not
reduced the message quality qm to get rid of the message
quickly. Indeed, A can check whether

qBD ¼ q1
m < qC1D ¼ q2

m < qC2D:

The second equality in this equation is true since the quality
of the messages is changed only when forwarded. Since we
are sure that nodes do not lie, than we know that qBD, qC1D,
and qC2D are sound. Therefore, also q1

m ¼ qBD and conse-
quently node B has not selfishly modified the forwarding
quality of the message to convince B to take it. Similarly, we
also know that q2

m ¼ qC1D and so node B has not cheated
with node C2 as well. Note that it is not possible for B to
forge fake proofs or fake forwarding quality declarations of
another node C. Indeed, as in G2G Epidemic, proofs and
forwarding qualities are signed.

Again (as in G2G Epidemic), node A will store the proofs
received by node B as token TAB until expiration of time-out
�. Lastly, if A does not start the test phase as required by
the protocol, node B will not relay any message whose
destination is node A until time-out � expires.

To summarize, by using the techniques developed for
G2G Epidemic Forwarding and specific techniques for G2G
Delegation Forwarding, we can get the following result:

Theorem 2 G2G Delegation Forwarding. is a Nash
equilibrium.

6 EXPERIMENTS

6.1 Selfishness and Selfishness with Outsiders

In social environments, it is natural to consider two
different ways of being selfish. The first is just selfishness—
nodes that can deviate from the protocol with the goal of
maximizing their personal interest. The second is selfishness
with outsiders—nodes that can deviate from the protocol for
their personal interest only when this does not damage
people from the same community. This notion is natural
since it comes from our personal experience: Some people
can tend to be truthful with those they care about, and
selfish with outsiders. Formally, it is just vanilla selfishness
with a different objective function. However, it is useful to
define it as an independent notion. To implement self-
ishness with outsiders, we use the k-clique algorithm [37]
(also used in [5]) for community detection on each data
trace. Nodes that are selfish with outsiders deviate from
the protocol only in sessions with nodes from other
communities.

576 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 4, JULY/AUGUST 2012

Fig. 3. G2G Delegation Forwarding: Protocol of the relay phase.

6.2 The Data Set

For our experiments we have used three traces collected
during experiments done with real devices carried by people.
We will refer to these traces as Infocom 05, Infocom 06, and
Cambridge 06. Characteristics of these data sets such as
intercontact and contact distribution have been observed in
several previous works [1], [38], [2]. Cambridge 06 [39] is a data
set collected by distributing Intel iMotes to students of
Cambridge University. The iMotes were programmed to log
contacts of all visible mobile devices and a number of
stationary nodes (that we do not use in this paper). The
number of nodes is 36. This data set covers 11 days. Infocom 05
[40] is a data set collected during the Infocom 2005 student
workshop. The number of devices is 41. This experiment
covers approximately three days. Infocom 06 [41] is similar to
Infocom 05 except that the scale is larger, with 78 participants
from the Infocom 2006 conference. Further details on the real
traces we use in this paper are shown in Table 1.

6.3 Experiments on Detecting Deviations

Here, we study the impact of selfish behavior on Epidemic
Forwarding. Then, we turn to G2G Epidemic Forwarding and
test how good is our protocol in detecting possible deviations.

6.3.1 Impact of Selfish Behavior on Epidemic

Forwarding and Detection of Deviations in G2G

Epidemic Forwarding

For each trace and forwarding protocol we use the same
assumptions and the same way of generating traffic to be
routed as in [4]: A set of messages is generated with sources
and destinations chosen uniformly at random, and genera-
tion times from a Poisson process averaging one message
every 4 seconds. We isolated 3-hour periods for each data
trace. Each simulation runs therefore 3 hours. To avoid end
effects no messages were generated in the last hour of each
trace. The nodes are assumed to have infinite buffers. We
set the message TTL value to be the smallest one that
maximizes the success rate of Epidemic Forwarding in each
scenario, in the sense that the performance is the same as if
messages never expire. These values are, respectively,
30 minutes for the two Infocom scenarios and 35 minutes
for the Cambridge one.

Fig. 4 shows how the success rate1 of Epidemic
Forwarding is affected by the presence of message
droppers. In our experiments these nodes drop messages
right after the end of the relay phase (see Fig. 1). As you can
see, the performance of the protocol drops to around
50 percent, which is unacceptably low. Basically, when all
the nodes are droppers, the only hope for success is that the
sender gets personally in contact with the destination. It is

not much different when we consider selfishness with
outsiders (i.e., nodes who drop messages right after the end
of the relay phase with an outsider). In the experiments we
have used the same notion of community as in [5].

Next, we focus on the detection of message droppers. As
we already mentioned, � denotes the time interval within
which messages, proofs of relay, tokens (and everything
else that G2G Epidemic requires) is kept in the memory of
relay nodes. After this time interval nodes can safely
discard everything related to the message. Thus, in order to
get best delivery rate, � is bounded from below by the
optimal TTL. On the other side, � has to be large enough to
allow droppers to be detected. Our experiments show that it
is already safe to set � ¼ TTL in every scenario.

According to our experiments, shown in Table 2,
detection probability is more than 94 percent in the selfish
case and more than 91 percent in the selfish with outsiders
case. Deviations are detected very quickly (on the order of
minutes) and the time does not depend on the number of
the nodes that deviate (see Fig. 5). So, we can safely say that
our assumption, that nodes are tested with nonnegligible
probability, is sound. For more details on the rate and time
of detection see Table 2.

MEI AND STEFA: GIVE2GET: FORWARDING IN SOCIAL MOBILE WIRELESS NETWORKS OF SELFISH INDIVIDUALS 577

TABLE 1
The Three Experimental Data Sets

Fig. 4. Effect of message droppers on Epidemic Forwarding.

1. The success rate is under 100 percent when the number of
misbehaviors is 0 because of the intermittent connectivity in the network.

6.3.2 Detection of Deviations in G2G Delegation

Forwarding

Here, we consider message droppers, liars, and cheaters.
Note that it is not rational to be a cheater in Delegation
Forwarding—if a node labels a message with forwarding
quality zero, then it will have to relay it with higher
probability, doing more work. It is different in G2G
Delegation Forwarding, where cheaters can find two relays
much more quickly, discard the message, and save storage
space. Recall that no deviation is rational in G2G Delega-
tion Forwarding—it is a Nash equilibrium—and these
experiments on detection are important just to make sure
that our assumption that every node has a nonnegligible
probability of being tested during the test phase is sound.
Here, we present the results for Delegation Destination
Last Contact. Delegation Destination Frequency, as far as
detection of deviations is concerned, behaves in a very
similar way. In all our experiments we set � to be
50 minutes in the Infocom scenarios and 80 minutes in the
Cambridge scenario. In the experiments, droppers are
again those who drop the message immediately, liars are
those who always report a node forwarding quality equal
to 0, while cheaters are those who bring down the quality
of the message to be relayed (in order to get rid of it as
soon as possible). We ran a set of experiments on
Delegation Forwarding. Figs. 6 and 7 show the results,
that clearly indicate that both droppers and liars have a big
impact on the success rate, both in the case of selfishness
and in the case of selfishness with outsiders. Then, we
have run experiments to see how reliably these deviations
are detected by the protocols in all the three traces,
Infocom 05, Infocom 06, and Cambridge 06. According to
our results, droppers and liars are detected with a
probability that exceeds 80 percent, whereas cheaters are
detected with a probability that exceeds 60 percent in all
scenarios. The detection rate remains high even in the case
of selfishness with outsiders. Table 3 shows all the results.
Note that the detection probabilities are a bit lower for the
Cambridge 06 scenario, which is in accordance with its
lower contact frequency with respect to the Infocom
scenarios (see Table 1). In all cases, this is enough to say
that the probability of being detected is not negligible.

Then, our question is how fast is the detection. In Fig. 8
we can see that in all scenarios droppers are detected sooner
than liars that are detected sooner than cheaters and that the
speed of detection does not depend on the number of
deviating nodes. Moreover, detailed experimental results
shown in Table 3 indicate that nodes cannot hope to deviate
and remain in the system for long time. G2G Delegation
Forwarding is clearly very fast in the detection in all
scenarios. Note that these experiments are just to prove that
the probability of detection is very high in our system.

Therefore, our mathematical assumptions are realistic and
the threat of being removed from the system is actually a
deterrent. As a consequence, no node deviate and there is
no need for the authority to revoke (by using, e.g., GSM)
any node. This is why the cellular infrastructure is not
considered in our experiments.

6.4 Experiments on the Performance: Number of
Replicas and Delay

Initially, our goal was to show that adding all the mechanisms
needed to make the protocols Nash equilibria does not reduce
the success rate and the delay, and does not increase the cost in

578 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 4, JULY/AUGUST 2012

Fig. 5. Dependence of droppers detection time by the number of
droppers in G2G Epidemic Forwarding. Detection time (in minutes) is
measured starting from the moment in which a given dropper discards
the message.

TABLE 2
Performance of G2G Epidemic on the Real Traces

Detection time (in minutes) is measured starting from the moment in which a given dropper discards the message.

terms of number of replicas. During the protocols design, we
realized that the mechanism used to reduce the number of
relays to two, besides being fundamental to show that the
protocol is a Nash equilibrium, has the interesting property
that the message more cheaply flows far from the community
that generated it. Cheaply in the sense that fewer replicas
need to be generated to reach destinations that are far from
the sender in terms of community. Fig. 9 summarizes a long
set of experiments on success rate, delay, and cost. Indeed, the
results might seem surprising—G2G Epidemic Forwarding
is much better than Epidemic Forwarding in terms of cost (the

improvement is around 20 percent), and G2G Delegation

Forwarding is considerably better than Delegation Forward-

ing, again in terms of cost, while the performance in terms of

delay and success rate very close to the original, more

expensive, protocols. Note that the experimental setting that

we have chosen is considered to be standard in the literature.

6.5 Experiments on the Performance: Storage and
Communication Overhead

Another natural question is whether the storage overhead

of G2G protocols is high. Indeed, G2G protocols introduce

MEI AND STEFA: GIVE2GET: FORWARDING IN SOCIAL MOBILE WIRELESS NETWORKS OF SELFISH INDIVIDUALS 579

Fig. 7. Effect of message liars on Delegation Forwarding.

TABLE 3
Performance of G2G Delegation on the Real Traces

Detection time (in minutes) is measured starting from the moment in which a given dropper discards the message.

Fig. 6. Effect of message droppers on Delegation Forwarding.

PORs to be stored with the messages. For this reason, we

perform a detailed analysis of the memory required by each

of the protocols. Clearly, we also include the overhead due

to the G2G mechanisms. To the best of our knowledge, this
is the first such analysis in the literature for Pocket Switched
Networks.

The overhead depends on the size of the messages in the
system. In our study, we consider two types of messages:
Short messages (SMS or Tweets) and long messages (MMS).
We assume that each message is composed by the header and
the message body, and that the header is 32 bytes long. We
assume that short messages have a body of 140 bytes. (This is
actually the length of a regular SMS, 160 ASCII characters
encoded into 140 bytes, 7 bits per character; while tweets
have a limit of 140 UTF-8 characters, which is again
140 bytes.) Long messages have a body of 600 kbyte. (The
length of a standard MMS according to AT&T.) We use SHA-
256 as the hash function, therefore hashes are 32 bytes long.
Signatures are computed by using elliptic curve cryptogra-
phy [33], therefore signatures are 320 bits long. The metric we
use for storage is kilobyte hour (kBh). If you take Epidemic
Forwarding, the analysis is easy. When a message is received
by a relay node, the message is stored until the TTL lapses. In
the case of long messages in a scenario like Infocom 06, where
the TTL is 30 min, the cost incurred by the node to store the
message body is 600 kbyte times 30 min, that is 300 kBh. This
metric is intuitive, it is clearly cheaper to store one MMS for a
minute versus storing the same MMS for a hour.

The analysis for G2G protocols is more complicated. Take,

as an example, G2G Epidemic Forwarding. When a message

is received by a relay node, the storage used is just the

message—header and body. When the first relay is found,

the node has to store a POR along with the message. When

the second relay is found, the node has to store a second

POR, but it can discard the message. The PORs can be

discarded when the node is tested by the previous relay, but

a token must be stored by the tester according to the protocol.

The size of the POR depends on the protocol: In G2G

Epidemic Forwarding, we can see from Fig. 1 that a POR is

composed by the hash of the message and by the IDs of the

two relays, together with a signature. In G2G Delegation

Forwarding the POR is somewhat longer, since it stores other

information as described in Fig. 3.
We have performed a complete analysis of the storage

requirement of all the protocols discussed in this paper by

580 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 4, JULY/AUGUST 2012

Fig. 8. Dependence of detection time from the number of selfish
individuals in G2G Delegation Forwarding. Detection time (in minutes) is
measured starting from the moment in which a given dropper discards
the message.

Fig. 9. Performance of G2G Epidemic Forwarding and G2G Delegation Forwarding compared with Epidemic Forwarding and Delegation Forwarding.

using the same traces we have used for the other experi-
ments. The results are shown in Figs. 10a and 10b for short
messages and the long messages, respectively. Quite
surprisingly, the memory occupation of the G2G protocols,
even including the overhead induced by the PORs that we
have used to make them Nash Equilibria, is almost always
smaller than their vanilla alter egos. If we consider short
messages, only in the specific scenario of Infocom 06 and
protocol DDLC the overhead is about 10 percent; in all the
other cases the storage overhead of G2G mechanisms ranges
from -5 to -32 percent (that is, G2G mechanisms actually
reduce storage requirements!). If we consider long messages,
in Infocom 06 and DDLS the overhead of G2G mechanisms is
about -17 percent, while in all other cases it ranges from -37
to -55 percent. The reason is that in G2G protocols the nodes,
to optimize their own payoff function, discard the message
as soon as the first two relays are found. This is more than
enough to balance the overhead due to storing proofs of
relays and other additional information.

Lastly, since the G2G mechanisms makes nodes ex-
change more information (e.g., proofs of relay), one might
think that they incur high-communication overhead.
However, the execution of a Relay+Test phase induces a
relatively small (422 Bytes for G2G Delegation and
386 Bytes for G2G Epidemic) overhead per message,
independent from the message payload. Moreover, since
G2G mechanisms reduce the number of replicas distrib-
uted in the network, the actual communication overhead
is low. In Table 4 we show the average (per message)
information incurred to be exchanged in the network
during forwarding. We can see that, when short messages
like SMS are taken into consideration, the overhead of
G2G protocols is actually reasonably low compared to
their vanilla alter egos. While for longer messages like
MMS, G2G protocols have actually a smaller overhead to
their vanilla alter egos due to the reduced number of
replicas. Because of space limitations we only show results
with the Infocom 05 scenario. However, the other
scenarios present similar results.

7 CONCLUSIONS

In this paper, we have presented G2G Epidemic Forward-

ing and G2G Delegation Forwarding, the first protocols for

message forwarding that work under the assumption that

all the nodes in the network are selfish. We formally show

that the G2G protocols are Nash equilibria. Quite surpris-

ingly, G2G protocols also outperforms their alter egos in

terms of cost, while being almost as good in terms of

success rate and delay.

ACKNOWLEDGMENTS

A. Mei is supported by a Marie Curie Outgoing Interna-

tional Fellowship funded by the European Union Seventh

Framework Program (FP7/2007-2013) under grant agree-

ment n. 253461.

REFERENCES

[1] P. Hui, A. Chaintreau, J. Scott, R. Gass, J. Crowcroft, and C. Diot,
“Pocket Switched Networks and Human Mobility in Conference
Environments,” Proc. ACM SIGCOMM Workshop Delay-Tolerant
Networking (WDTN ’05), 2005.

[2] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott,
“Impact of Human Mobility on the Design of Opportunistic
Forwarding Algorithms,” Proc. IEEE INFOCOM ’06, 2006.

[3] A. Vahdat and D. Becker, “Epidemic Routing for Partially
Connected Ad Hoc Networks,” Technical Report CS-200006, Duke
Univ., 2000.

[4] V. Erramilli, M. Crovella, A. Chaintreau, and C. Diot, “Delegation
Forwarding,” Proc. ACM MobiHoc ’08, 2008.

[5] P. Hui, J. Crowcroft, and E. Yoneki, “Bubble Rap: Social-Based
Forwarding in Delay Tolerant Networks,” Proc. ACM MobiHoc ’08,
2008.

[6] E.M. Daly and M. Haahr, “Social Network Analysis for Routing in
Disconnected Delay-Tolerant Manets,” Proc. ACM MobiHoc ’07,
2007.

[7] F. Li and J. Wu, “LocalCom: A Community-Based Epidemic
Forwarding Scheme in Disruption-Tolerant Networks,” Proc. IEEE
CS Sixth Ann. Conf. Sensor, Mesh and Ad Hoc Comm. and Networks
(SECON ’09), 2009.

[8] W. Gao, Q. Li, B. Zhao, and G. Cao, “Multicasting in Delay
Tolerant Networks: A Social Network Perspective,” Proc. ACM
MobiHoc ’09, 2009.

[9] A. Mei, G. Morabito, P. Santi, and J. Stefa, “Social-aware
Stateless Forwarding in Pocket Switched Networks,” Proc. IEEE
INFOCOM ’11, 2011.

[10] A.S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and C.
Porth, “Bar Fault Tolerance for Cooperative Services,” Proc. 20th
ACM Symp. Operating Systems Principles (SOSP ’05), 2005.

[11] H.C. Li, A. Clement, E.L. Wong, J. Napper, I. Roy, L. Alvisi, and
M. Dahlin, “Bar Gossip,” Proc. Seventh Symp. Operating Systems
Design and Implementation (OSDI ’06), 2006.

MEI AND STEFA: GIVE2GET: FORWARDING IN SOCIAL MOBILE WIRELESS NETWORKS OF SELFISH INDIVIDUALS 581

Fig. 10. In the figure “D.D.Last C.” refers to Delegation Destination Last Contact and “D.D.Freq” to Delegation Destination Frequency. The G2G
prefix indicates the respective Give to Get version of each protocol.

TABLE 4
Average Information Transmitted per Message in the Network

[12] S. Marti, T. Giuli, K. Lai, and M. Baker, “Mitigating Routing
Misbehavior in Mobile Ad Hoc Networks,” Proc. MobiCom ’00,
2000.

[13] S. Buchegger and J.-Y.L. Boudec, “Performance Analysis of the
CONFIDANT Protocol: Cooperation Of Nodes Fairness in
Dynamic Ad-Hoc NeTworks,” Proc. IEEE/ACM MobiHoc ’02, June
2002.

[14] K. Balakrishnan, J. Deng, and V. Varshney, “Twoack: Preventing
Selfishness in Mobile Ad Hoc Networks,” Proc. IEEE Wireless
Comm. and Networking Conf., vol. 4, Mar. 2005.

[15] P. Michiardi and R. Molva, “Core: A Collaborative Reputation
Mechanism to Enforce Node Cooperation in Mobile Ad Hoc
Networks,” Proc. IFIP TC6/TC11 Sixth Joint Working Conf. Comm.
and Multimedia Security, 2002.

[16] L. Buttyán and J.-P. Hubaux, “Enforcing Service Availability in
Mobile Ad-Hoc Wans,” Proc. ACM MobiHoc ’00, 2000.

[17] J.-P. Hubaux, T. Gross, J.-Y. LeBoudec, and M. Vetterli, “Towards
Self-Organized Mobile Ad Hoc Networks: The Terminodes
Project,” IEEE Comm. Magazine, vol. 39, no. 1, pp. 118-124, Jan.
2001.

[18] M. Jakobsson, J.-P. Hubaux, and L. Buttyán, “A Micro-Payment
Scheme Encouraging Collaboration in Multi-Hop Cellular Net-
works,” Proc. Int’l Conf. Financial Cryptography ’03, Jan. 2003.

[19] M. Onen, A. Shikfa, and R. Molva, “Optimistic Fair Exchange for
Secure Forwarding,” Proc. Fourth Ann. Int’l Conf. Mobile and
Ubiquitous Systems: Networking & Services (MobiQuitous ’07), 2007.

[20] H. Miranda and L. Rodrigues, “Preventing Selfishness in Open
Mobile Ad Hoc Networks,” Proc. Seventh CaberNet Radicals
Workshop, Oct. 2002.

[21] L. Buttyán, L. Dóra, M. Félegyházi, and I. Vajda, “Barter Trade
Improves Message Delivery in Opportunistic Networks,” Ad Hoc
Networks, vol. 8, no. 1, pp. 1-14, 2010.

[22] “SUMO-Simulation of Urban Mobility,” http://sumo.sourceforge.
net/, 2012.

[23] C. Song and Q. Zhang, “Coffee: A Context-free Protocol for
Stimulating Data Forwarding in Wireless Ad Hoc Networks,”
Proc. IEEE CS Sixth Ann. Conf. Sensor, Mesh and Ad Hoc Comm. and
Networks (SECON ’09), 2009.

[24] A. Panagakis, A. Vaios, and I. Stavrakakis, “On the Effects of
Cooperation in DTNs,” Proc. Second Int’l Conf. Comm. Systems
Software and Middleware (COMSWARE ’07), pp. 1-6, 2007.

[25] G. Resta and P. Santi, “The Effects of Node Cooperation Level on
Routing Performance in Delay Tolerant Networks” Proc. IEEE CS
Sixth Ann. Conf. Sensor, Mesh and Ad Hoc Comm. and Networks
(SECON ’09), 2009.

[26] T. Spyropoulos, K. Psounis, and C.S. Raghavendra, “Spray and
Wait: An Efficient Routing Scheme for Intermittently Connected
Mobile Networks,” Proc. ACM SIGCOMM Workshops, Aug. 2005.

[27] M. Grossglauser and D. Tse, “Mobility Increases the Capacity
of Ad Hoc Wireless Networks,” IEEE/ACM Trans. Networking,
vol. 10, no. 4, pp. 477-486, Aug. 2002.

[28] Q. Li, S. Zhu, and G. Cao, “Routing in Socially Selfish Delay
Tolerant Networks,” Proc. IEEE INFOCOM ’10, 2010.

[29] P. Hui, K. Xu, V. Li, J. Crowcroft, V. Latora, and P. Lio,
“Selfishness, Altruism and Message Spreading in Mobile Social
Networks,” Proc. First IEEE Int’l Workshop Network Science for
Comm. Networks (NetSciCom ’09), Apr. 2009.

[30] D. Mills, “Internet Time Synchronization: The Network Time
Protocol,” IEEE Trans. Comm., vol. 39, no. 10, pp. 1482-1493, Oct.
1991.

[31] B. Lampson, M. Abadi, M. Burrows, and E. Wobber, “Authentica-
tion in Distributed Systems: Theory and Practice,” ACM Trans.
Computers Systems, vol. 10, pp. 265-310, 1992.

[32] E. Frank and M. Buer, “Key Revocation in a Mobile Device,” US
Patent Number 7860486, 2010.

[33] A. Liu and P. Ning, “Tinyecc: A Configurable Library for Elliptic
Curve Cryptography in Wireless Sensor Networks,” Proc. Int’l
Conf. Information Processing in Sensor Networks (IPSN ’08), 2008.

[34] A. Shamir, “Identity-Based Cryptosystems and Signature
Schemes,” Proc. CRYPTO ’84 Advances in Cryptology, pp. 47-53,
1984.

[35] A. Back, “Hashcash—A Denial of Service Counter-measure,”
Whitepaper, technical report, 2002.

[36] R. Rivest, A. Shamir, and D. Wagner, “Time-Lock Puzzles and
Timed-Release Crypto,” technical report, Cambridge, MA, 1996.

[37] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, “Uncovering the
Overlapping Community Structure of Complex Networks in
Nature and Society,” Nature, vol. 435, no. 7043, pp. 814-818, 2005.

[38] J. Leguay, A. Lindgren, J. Scott, T. Friedman, and J. Crowcroft,
“Opportunistic Content Distribution in an Urban Setting,” Proc.
SIGCOMM Workshop Challenged Networks (CHANTS ’06), 2006.

[39] J. Leguay, A. Lindgren, J. Scott, T. Riedman, J. Crowcroft, and P.
Hui, “CRAWDAD Trace upmc/content/imote/cambridge
(v. 2006-11-17),” Downloaded from http://crawdad.cs.dartmouth.
edu/upmc/content/imote/cambridge, 2006.

[40] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and A. Chaintreau,
“CRAWDAD Trace Cambridge/haggle/imote/infocom (v. 2006-
01-31),” Downloaded from http://crawdad.cs.dartmouth.edu/
cambridge/haggle/imote/infocom, Jan. 2006.

[41] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and A. Chaintreau,
“CRAWDAD Trace Cambridge/haggle/imote (v. 2009-05-29),”
Downloaded from http://crawdad.cs.dartmouth.edu/
cambridge/haggle/imote, 2009.

Alessandro Mei received the laurea degree in
computer science summa cum laude from the
University of Pisa, Italy, in 1994. He continued
working toward the PhD degree at the Depart-
ment of Mathematics of the University of Trento,
Italy, and as a visiting scholar at the Department
of EE-Systems of the University of Southern
California during 1998 and part of 1999. He
received the PhD degree in mathematics at the
University of Trento in 1999. After a postdoctor-

al position at the University of Trento, in 2001 he joined the faculty of
the Computer Science, Department at Sapienza, University of Rome,
Italy. His main research interests include computer system security and
parallel, distributed, and networked systems. He was presented with the
Best Paper Award of the 16th IEEE International Parallel and
Distributed Processing Symposium in 2002, the EE-Systems Out-
standing Research Paper Award of the University of Southern California
for 2000, and the Outstanding Paper Award of the Fifth IEEE/ACM
International Conference High Performance Computing in 1998. He is a
member of the ACM and the IEEE, a past associate editor of the IEEE
Transactions on Computers (2005-2009), and the general chair of IEEE
IPDPS 2009, Rome, Italy. During 2010-2011 he was on leave at the
CSE Department, University of California at San Diego, supported by a
Marie Curie fellowship.

Julinda Stefa received the Laurea degree in
computer science, summa cum laude, and the
PhD degree in computer science from Sapien-
za University of Rome, respectively, in July
2006 and February 2010. She is a postdoc at
the Computer Science Department of Sapienza
University of Rome, Italy. In 2005 she joined
Google Zurich for three months as an en-
gineering intern. She was a visiting scholar at
the CS Department of UNC-Chapel Hill, North

Carolina, from November 2008 to April 2009, and a Research Intern at
Microsoft Research, Cambridge, United Kingdom, from January to
April in 2011. Her research interests include computer systems and
network security, parallel and distributed systems, and analysis and
modeling of social mobile wireless networks. She has published in
some of the topmost Conferences and journals like IEEE INFOCOM,
ACM MobiHoc, IEEE ICDCS, and IEEE Transaction on Computers,
and is involved as reviewer and in technical program committees of
several Conferences and workshops in the field. She is winner of a
research grant from Working Capital PNI and offered by Telecom Italia
(30 winners out of 2,138).

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

582 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 4, JULY/AUGUST 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

