
J. Parallel Distrib. Comput. 96 (2016) 95–105
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Count on me: Reliable broadcast and efficient routing in DTNs
through social skeletons
Alessandro Mei, Natascia Piroso, Julinda Stefa ∗

Department of Computer Science, Sapienza University of Rome, Italy

h i g h l i g h t s

• Building distributively a sparse connected overlay of a DTN called Social Skeleton.
• Mathematically proving the connectivity properties of the Skeleton.
• Building upon it COM—the first reliable broadcast mechanism for DTNs.
• Exploiting the opportunistic Skeleton routes to deliver SR—a new routing mechanism.
• Assessing the performance of COM and SR through experiments on large network traces.

a r t i c l e i n f o

Article history:
Received 30 July 2015
Received in revised form
8 January 2016
Accepted 12 May 2016
Available online 19 May 2016

Keywords:
Reliable Broadcast
Efficient multi-hop routing
Social mobile networks

a b s t r a c t

This paper challenges the belief that reliable broadcasting and efficient routing primitives are not possible
whenDTNs are involved. Firstly, we present COM, a reliable broadcastingmechanism for hybrid networks
where nodes can rarely use long-range and costly communication links (e.g. 3G) to complete missing
opportunistic links. COM is based on the Social Skeleton, a compact and connected subgraph, computed
in an efficient and distributed way, that best represents the strongest social links among nodes. COM
exploits the Social Skeleton to guarantee reachability of 100% of nodes with the lowest number of
long communications. Then we empirically prove that the Social Skeleton can be used to build routing
mechanisms upon it. We deliver SR (Skeleton Routing), which involves at most 3 copies per message, and
yields delivery rates up to 5.5 times higher than state-of-the-art forwarding protocols.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Pocket Switched Networks (PSNs) [14,3] are a special type of
Delay Tolerant Networks [9] where short-range communicating
nodes are carried around by people. Smartphones, laptops, or
body-sensors with built-in Bluetooth or WiFi communication
technology enable the Pocket Switched networking paradigm. The
nodes communicate opportunistically as the human owners get in
proximity of each-other. The social-related features, brought in by
the involvement of the people, have given rise to sophisticated and
elegant routing [22,5,15,8,24] and security-related [2,21,25,29,12]
mechanisms for PSNs.

To the best of our knowledge, Reliable Broadcast – spreading
important information to all network nodes within a given mes-
sage time-to-leave (TTL) – has never been addressed in PSNs.

∗ Corresponding author.
E-mail addresses:mei@di.uniroma1.it (A. Mei), piroso@di.uniroma1.it

(N. Piroso), stefa@di.uniroma1.it (J. Stefa).

http://dx.doi.org/10.1016/j.jpdc.2016.05.011
0743-7315/© 2016 Elsevier Inc. All rights reserved.
Reliable broadcast is a foundational primitive for every kind of dis-
tributed networked system. In particular it is so for PSNs. With-
out reliable broadcast, PSN nodes cannot even know who is and
is not part of the network or simply agree on a given protocol to
use. Let alone to implement other important fundamental mecha-
nisms like definition and spread network community structure in-
formation, distributed snapshots of global states, leader election,
report on node failure or misbehavior, and others. In PSNs it is not
possible to perform a reliable broadcast only on the basis of short-
range opportunistic communications. As we empirically show in
Section 2, even a pervasive distributing strategy like Epidemic [30]
fails to achieve 100% delivery. Of course, one can use costly remote
communication technologies (e.g. cellular network) to reach those
nodes that Epidemic fails to. But, besides from being more expen-
sive, this requires having a global vision of the network state (who
received what), impossible to achieve without a reliable broadcast
mechanism.

In this scenario the issue becomes: Is it possible to build a dis-
tributed and efficient reliable broadcast primitive that guarantees
reachability of 100% of nodes? Distributed in the sense that it only

http://dx.doi.org/10.1016/j.jpdc.2016.05.011
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.05.011&domain=pdf
mailto:mei@di.uniroma1.it
mailto:piroso@di.uniroma1.it
mailto:stefa@di.uniroma1.it
http://dx.doi.org/10.1016/j.jpdc.2016.05.011


96 A. Mei et al. / J. Parallel Distrib. Comput. 96 (2016) 95–105
1

0.8

0.6

0.4

0.2

0
0 4 8 12 16 20 24 28 32 36

X = number of unreached users

P
 (

X
 >

=
x)

36

30

24

18

12

6

0
0 12 24 36 48 60 72 84 96

hours

nu
m

be
r 

of
 r

ea
ch

ed
 u

se
rs

(a) Tail distribution of the number of unreached
users with Epidemic. 1 day TTL.

(b) Average number of users reached by a message
starting at a random source and time. 4 days TTL.

Fig. 1. Unreliability of Epidemic on the Cambridge dataset.
relies on local information of nodes to spot the unreached mem-
bers of the network. Efficient so that it requires as few remotemes-
sages as possible to deliver the information to the unreached nodes
before the TTL elapses. In this paper we attack this issue and show
how to implement such a broadcast primitive. Our contribution is
as follows:

• We show how to build, in a distributed way, what we call a
Social Skeleton—a sparse connected opportunistic overlay of the
network (Section 5). The Social Skeleton is made up of strong
social links, thus underlining couples of nodes that are most
likely to have opportunistic contacts. Links also define amutual
commitment between nodes that take on the responsibility of
transmitting messages to their counterpart.

• We prove the connectivity properties of the distributively built
Skeleton in Section 5.4.

• Upon the Social Skeleton, we build a reliable and distributed
broadcast primitive called Count-On-Me (COM). The primitive
exploits the strength of the links in the Skeleton: If they
are carefully measured, opportunistic dissemination between
a linked couple is usually possible. But, in case of failure,
nodes resort to the long-range communication infrastructure,
right before the TTL is reached, to disseminate the broadcast
message to the neighbors they are responsible of according
to the Skeleton. Our experiments with real traces made of
up to thousands of nodes presented in Section 6.2 show that
the COM broadcast primitive generates only a small, near
minimal, number of long-range connections to guarantee 100%
of delivery.

• Weak links are as important as strong ones in the Skeleton. In
fact, they are links that most likely generate remote messages
by the end of the TTL. In Section 6.3 wemake use of this feature
by employing anticipated remote forwarding over these links,
as soon as a message is received by one of the relative nodes.
Anticipated forwarding eliminates local trapping ofmessages in
well-connected components. Thus, it enables free opportunistic
dissemination over links impossible to exploit otherwise. The
results show that this process lowers considerably the number
of the remote messages.

• Lastly, a further contribution of this work is to show how the
Social Skeleton can help to efficiently route messages in a pure
opportunistic way. We build upon it the SR (Skeleton Rout-
ing) primitive that makes use of distributively built Skeleton
end-to-end routes to push messages towards destination. The
comparison of SR with well-known state of the art rout-
ing mechanisms like Delegation, BUBBLE, and SimBet [8,15,5],
shows its prominence in delivery, particularly in large net-
works, despite its limited-copy nature.
2. Unreliability of opportunistic broadcasting

We start off with evaluating the reliability of broadcasting in
opportunistic networks. We aim at empirically evidencing the
limits of epidemic forwarding in terms of guarantee to delivery a
broadcast message to all users in a network. For this we consider
a small network consisting of 36 users, the Cambridge dataset,
whose short-range contacts have been collected and logged for
11 days [19,20]. We repeatedly chose a random source s and a
random starting time ts from the 11 days real trace. For each
drawn starting time, we simulate epidemic forwarding up to a
given TTL. At time ts the message is ready at s and starts to spread
through the network according to the encounters recorded in the
trace. The results are included in Fig. 1. Firstly, we focus on the
complementary cumulative distribution of the number of users
that are not reached by the message at the end of the simulation
time (Fig. 1(a)). As the results show, after 24 h of forwarding, the
probability that more than 50% users remain unreached is almost
0.3. The curve also shows a rather heavy tail. The situation is left
practically unchanged by the extension of the forwarding period.
In Fig. 1(b) the TTL of the message is extended to 4 days. Most of
the users are rapidly reached after a period ranging between 24
and 30 h. Afterwards, the curve increases at a slower pace, showing
that only a handful of users are further reached by the message in
nearly three days time. Thismeans that, for three days, themessage
is retained by the users that have already received it – over 75% of
the total users – and keeps circulating in multiple copies in order
to reach less than 15% of the total users.

Cambridge is a rather dense and small trace. So, results showed
in Fig. 1 are representative of structured systems where users
all know each other and have frequent encounters. The problem
can only be exacerbated in larger networks (we see this in the
final experimental results of this work). As a result, a reliable
broadcasting for opportunistic networks can only be implemented
if, when necessary, the unreached users are contacted by more
costly remote messages.

3. System requirements and problem definition

We consider a network consisting of n nodes (or users). Broad-
cast messages are generated by users and are to be delivered
to all other users in the cheapest possible way. Nodes exchange
messages using the short-range technology (e.g. Bluetooth or Wi-
Fi) if in physical proximity, or long-range wireless technology
(e.g. cellular network) otherwise. When a message M is transmit-
ted through the short-range technology we callM a proximity mes-
sage; when M is transmitted through the long-range technology
we call it a remote message. The problem we consider is to effi-
ciently implement a primitive of reliable broadcast on top of this



A. Mei et al. / J. Parallel Distrib. Comput. 96 (2016) 95–105 97
hybrid network. Remote messages are more flexible than proxim-
ity messages. In fact, they enable communication almost at any
time, but they are also muchmore expensive. Indeed, wireless ser-
vice providers typically ask for a fee to use the cellular network
infrastructure. Even when it is part of a fixed monthly plan, it is
actually a cost for the providers since the infrastructure has to be
large enough to sustain the load. As a simple approximation,we as-
sume that proximity messages are free (there is no infrastructure
or service involved). The goal is then to guarantee that each single
user receives any broadcast message generated in the network, by
making use of the smallest possible number of remote messages.

We assume that nodes can fail, but failure is transient. In other
words, after a certain time failing nodes are recovered and fully
operational. Faults can be associated with hardware or software
failures, battery exhaustion or simply with the intention of the
user of being off-line. During failures, nodes can neither send nor
receive proximity and remote messages, but remote message that
are sent to them are buffered by the infrastructure and delivered
after recovery.

Messages are created with an associated time-to-leave (TTL).
If there are no faults in the network, a message is expected to
reach all other nodes within the given TTL. However, since faults
are asynchronous, in the presence of faults we still guarantee
that all nodes will eventually receive the message, but we cannot
guarantee all nodes to be reached before the TTL.

4. The social skeleton

In a structured system, such as an academy institution, a
business company or a city-wide community, people have well
defined roles. The role of an individual involves the definition
of a behavioral pattern inside the system he is part of: His time
schedule, the locations he visits, the people he encounters are
all events that are predictable up to a certain extent. Of course,
sometimes our behavior deviates from our habits. All we assume
is that there is some degree of regularity in the behavior of our
users, as suggested by intuition and confirmed by well-known
sociological studies [28,11].

When we want to make an information available to all the
members of the society we are part of, we naturally turn to
the dynamics of our social behavior: We can mentally review
our acquaintances in order to delegate the duty of passing
the information by word of mouth. The spread of information
through an opportunistic mobile ad-hoc network is quite similar
to the spread of information through a structured system where
information is passed by word of mouth. Nodes physically close to
each other can exchange data and store it in order to pass it to other
nodes in the near future.

4.1. Word of mouth, opportunistic forwarding, and the responsibility
graphs

Weassume that amessageM , starting at a source user s, spreads
in the network through Epidemic: Users retain self-generated
messages or messages received from others, and transmit them
opportunistically to other users whenever possible through
proximity messages. In our setting, Epidemic is an effective way
to disseminate a message. It is the technological alter ego of what
word of mouth is in society. However, as empirically shown in
the first part of this paper and confirmed by all the literature in
the area, Epidemic gives no guarantees that messages are actually
received by all nodes in the network.

Our idea is to define a responsibility graph that users can look up
in order tomake sure every other user is informed. A responsibility
graph is a graph where the nodes are the users of the network and
where an edge u

r
−→ v indicates that node u commits to make
sure that node v receives all broadcast messages that u receives by
other nodes. On a high level, our protocol works as follows: When
a node u receives a new message M , it opportunistically forwards
it by proximity communication to all the nodes it subsequently
meets. In particular, during the activity, u keeps track of the
possible interaction had with nodes v it is responsible of according
to the responsibility graph. I.e., it registers that either u passes the
message to them or that they already received it through earlier
opportunistic contacts with other nodes. When the TTL expires, u
uses this information to spot nodes it is responsible of – it exists an
edge u

r
−→ v in the responsibility graph – that did not meet with u

before the TTL. As u has no information on whether they retain the
message or not, it sends themM through a remotemessage. In turn,
nodes v receiving a remote message, do the same by propagating
it remotely to their own responsibility links. It is easy to see that
it makes sense to consider only undirected responsibility graphs.
Indeed,whenu gets to know that v has received themessage, also v
gets to know that u has received the message, without overhead.
Therefore, assuming that the responsibility graph is undirected
does not increase the number of remote messages.

If the responsibility graph is connected, we know that the
broadcasting protocol will reach all the nodes of the network.
Therefore, by guaranteeing its connectivity, we get the correctness
of our reliable broadcast primitive.

One possible solution for the definition of the responsibility
graph is to take a star configuration, with a central node u.
However, aside from putting a large overhead on node u, most
of the broadcasts will incur a high overhead caused by the high
number of required remote messages. In fact, more than likely u
will physically meet, and thus, get information on, just a handful
of nodes in the network before the TTL expires. For all other nodes
it will not know whether they have received the message or not.
As a result, it will have to send many useless remote messages to
nodes that have already received it opportunistically from others
(u just does not know it!). So, our goal is to build a responsibility
graph that is connected, sparse (with a small number of edges) and
consists of strong social edges—edges that most probably will not
generate useless remote messages. We call such a graph a Social
Skeleton.

5. How to construct a social skeleton

Here we describe how to build a Social Skeleton through the
definition of a series of correlated responsibility graphs. Users
collect data regarding contacts with other users during a training
period of appropriate length. Then, they evaluate the strength of
the relations in terms of encounter probability. Subsequently, each
user u selects a small number of friends independently. Node u then
commits to make sure that its friends get every broadcast message
received by u. All this is achieved through several distinct stages.
Every stage refines the responsibility graph that has been defined
in the previous stage, until the final Social Skeleton is built.

5.1. Best friends selection

Given two users u and v, let I = I0∪ I1∪· · ·∪ Iq be the collection
of intervals corresponding to the continuousmaximal timespans in
which they physically see each other, as shown in Fig. 2. Suppose
that at time t0 a message M is received by user u and let tM be
the residual TTL associated to the message. When the TTL elapses,
user u storing M sends a remote message containing M to user v
only if:

1. u
r

−→ v and
2. u did not see v during the interval [t0, t0 + tM ].



98 A. Mei et al. / J. Parallel Distrib. Comput. 96 (2016) 95–105
Fig. 2. Blocks on the time axis t represent continuous contact periods between two
fixed nodes.

Clearly, if u and v domeet in the interval [t0, t0+tM ], then v getsM
directly through a proximity message from u, unless v already has
receivedM . In both cases,u records that v detainsM and vice versa.

To evaluate the chance of u sending a remote message to v, we
are interested in defining the following probability:

P (I ∩ [t0, t0 + tM ] ≠ ∅) , (1)

where t0 is uniformly sampled at random in the timeframe of the
training period. The value tM represents how long, at most, node u
can wait for a meeting with v. As all nodes have to be reached by
the time of expiry of messageM , it is useful to set tM much smaller
than the residual TTL associated to themessage, as originally stated
instead. tM should depend on the TTL value and on the approximate
number of users in the network. Our experiments have shown that
setting TM = TTL/n leads on average to the expected result.

Each user chooses the k friends that maximize the probability
expressed by Eq. (1) by using the indicated tM . Of course, this is an
approximation. Our experiments however show that this is indeed
a good one. Note that Eq. (1) is different from the frequency of
meetings and it is also different from the cumulative length of the
meetings, in the sense that it induces different choices of friends.
Indeed, Eq. (1) is exactlywhatwe need tomaximize the probability
of not sending a remote message through the link (u, v), assuming
that the training process predicts well the future encounters.

At this point, we denote with fi(u) the ith best friend selected
by node u. In this first stage, the Social Skeleton is represented by
the directed responsibility graph S = (U, R) where U is the set of
users and R are the responsibility relations derived from the best
friend selection process described above. Formally we have,

R = {u
r

−→ v | u ∈ U and v = fi(u), for i = 1, . . . , k}. (2)

5.2. Links consolidation

As we discussed earlier, we can make the responsibility graph
undirectedwithout having to pay any overhead in terms of induced
remote messages. Our second stage then simply requires to turn
the responsibility graph defined in Section 5.1 into an undirected
graph by replacing all directed edges with undirected ones, so that
if u

r
−→ v, then also v

r
−→ u holds.

5.3. Sparsification process

Social networks often exhibit the triadic closure property [7].
I.e., if a strong tie exists between a node u and a node v and
between node u and a nodew, then there is an increased likelihood
that v and w are also connected. In this case, the responsibility
graph S constructed through the previous stages is likely to present
a large number of small cycles. Cycles are highly undesirable as
they can easily generate useless remote messages. Therefore, this
third stage aims at eliminating unnecessary responsibility links
and is central to our procedure for its effects on costs reduction.
As a matter fact, in a structured system of users, as the ones we are
considering in this work, the triadic closure property is strongly
present. Our experiments on real traces, as well as previous works
on the same traces, confirm this assertion.

Each user erases unnecessary links contained in cycles indepen-
dently from other users, while the sum of all users decisions leads
to an agreed sparsified version of the responsibility graph. The spar-
sification process consists of three steps which we describe from
the point of view of single node u.

5.3.1. Step 1: Neighborhood discovery
In this first step, node u discovers the local topology of the

responsibility graph S built through the previous stages. Given
Nh(u) to be the set of nodes at distance atmost h from u, we assume
that u is able to reconstruct the subgraph lSu := S[Nh(u)] induced
by Nh(u) on S, which we call the local responsibility graph of u.
Experimental simulations presented later in this paper show that
the neighborhood discovery step is not a demanding task at all:
Nodes just need to exchange small proximity messages and the
size of the explored neighborhood is usually also very small. For
the traces considered in this work, that consist of up to thousands
of nodes, it is enough to set h = 3 or h = 4.

5.3.2. Step 2: Cycle detection
The subgraphs lSu build independently by each node will most

certainly contain cycles due to the triadic closure property of
social networks [7]. These cycles, however, could generate useless
loops: Messages departing from a node v of a given cycle would
again return to v during a broadcast process. Clearly, the last
transmission is useless, as v itself started the diffusion of the
message. Therefore, it becomes important to detect and break
cycles in the local responsibility graphs lSu. But, aswe have a choice
on how to break cycles, we would like to use a process that keeps
the strongest edges and deletes the weakest ones. Recall that weak
edges correspond to couple of nodes with the smallest probability
of passing messages through proximity contacts. Thus, they are
more likely to generate remote messages. A convenient way to
eliminate cycles from a graph is by computing its spanning tree.
Since we want to drop the weakest edges in the process, we make
user u compute amaximum spanning tree of the local responsibility
graph, which we call lMSTu (local Maximum Spanning Tree of u).
This can efficiently be achieved through the well-known Kruskal’s
algorithm.

By construction, the local responsibility graph built so far is
sparse. Thus, so will be the local maximum spanning tree.

5.3.3. Step 3: Confirmation/deletion of responsibility links
Once node u has found its lMSTu, it can proceed to the assess-

ment of its outgoing responsibility edges in lSu. The decision node u
is called to make is simple: Given a responsibility relation u

r
−→ v

in the local responsibility graph, if u
r

−→ v belongs to the lMSTu cal-
culated by u, then u maintains the link in lSu. Otherwise, u breaks
its commitment to v deleting u

r
−→ v from lSu. In the next section

we prove that the decision is coherent for adjacent nodes, though
taken independently.

At this point, the responsibility graph built in Section 5.1 is
modified according to the results of the confirmation/deletion step
followed independently by each user. Precisely, the social links of
the new responsibility graph are the (undirected) links of Eq. (2)
that have been confirmed in Step 3.

5.4. Local bones are global bones

The sparsification process described in Section 5.3 is run by
each user locally and independently from other users, and aims at
removing links of the responsibility graph that are unnecessary.
In this section we prove that nodes agree on the deletion or
confirmation of a shared link, so that there is no ambiguity on the
definition of a new responsibility graph. Further, we prove that the
sparsification process does not create disconnections among nodes



A. Mei et al. / J. Parallel Distrib. Comput. 96 (2016) 95–105 99
(a) Contact graph. (b) Responsibility graph after best friend selection and link consolidation.

(c) Social skeleton obtained after the sparsification.

Fig. 3. Generation of the social skeleton for the Cambridge dataset.
connected in the responsibility graph. To this end, let S be the Social
Skeleton before sparsification and S ′ be the Social Skeleton after
sparsification. At the local level, in accordance to the neighborhood
discovery step in Section 5.3, we have that lSu := S([Nh(u)]) and
lMSTu are respectively the local skeletons of u before and after
sparsification. This holds for all u ∈ U .

S can be viewed as a weighed graph, where weights are given
by the strength of the social relations among users measured
during the training process. Each edge can be considered to have
a distinct weight. If this is not the case, we break ties according to
a lexicographic order on the edges. Under these assumptions, it is
well known that the maximum spanning tree of a given graph is
unique. In the following, we prove that it is obtained by breaking
the cycles by deleting the edges with the minimum weight.

Lemma 1. Let G be an undirected graph with distinguished weights
and let MST be its unique maximum spanning tree. Then e ∈ E(G)
belongs to MST if and only if e is never the edge of minimum weight
in any cycle in G.
Proof. By the well known cycle property, if e ∈ E(G) is the edge of
minimumweight of an arbitrary cycle in G, then e cannot belong to
a maximum spanning tree of G. Therefore, the deletion in all cycles
of G of the edge ofminimumweight, returns a spanning treewhich
is also the unique maximum spanning tree. �

So far we know that users act independently. I.e., they generate
their local maximum spanning trees by breaking cycles in their
local graphs by deleting the edges with minimum weight. This
means that each user decides to let go of the responsibility links
that are more likely to generate remote messages. But, how do we
know that the decision on the retaining or not of a link is coherent
for adjacent users? I.e., how do we know that the independent
decisions that two users u and v have on whether to keep their
responsibility towards each other aremutual?We prove this in the
following proposition:

Proposition 1. In the confirmation/deletion step of the sparsification
process, two adjacent users u and v in S agree on the confirmation or
deletion of their common edge (u, v).
Proof. lSu and lSv satisfy the hypothesis of Lemma 1. Therefore,
(u, v) can be deleted by both u and v if and only if (u, v) is the
edge of minimum weight of a cycle Cu of lSu as well as the edge of
minimumweight of a cycle Cv of lSv . As a cycle C containing (u, v)
appears in Su if and only if it appears in Sv , it follows that nodes u
and v always agree on the possible deletion of edge (u, v). �

Finally, we need to prove that the local sparsification process
does not disconnect the responsibility graph. We do so in the
following theorem:

Theorem 1. The sparsified version S ′ of the responsibility graph S has
the same number of connected components of S.

Proof. First, note that if the global S has k connected components,
then its MST has also k connected components (spanning trees on
a graph do not introduce disconnections). Now, let C be a cycle of
lSu, the local graph of u. Because lSu is simply the subgraph of S
induced by the neighbors of u, C also belongs to S. From Lemma 1,
if an edge e ∈ lSu does not appear in lMSTu, then it must be the
edge of minimum weight of a cycle C of lSu. As C also belongs to
S, then e does not belong to the maximum spanning tree MST of
S. Therefore, the sparsification process only deletes from S edges
that do not appear in MST , so that S ′ must also have k connected
components. �

In Fig. 3 the reader can visually discern the transition from the
initial contacts of the training phase (Fig. 3(a)), to the responsibility
links (Fig. 3(b)), and finally, to the sparsified Social Skeleton
(Fig. 3(c)) for the Cambridge dataset.

5.5. Connecting up the responsibility graph

Unlike Cambridge, large networks with thousands of nodes
might result in unconnected responsibility graphs, and thus,
unconnected skeletons. Testing connectivity is a hard problem in
distributed computing. Indeed, it is not possible to test connectiv-
ity in time less than the diameter of the network. Fortunately, so-
cial networks are believed to have a small diameter, and this is ac-
tually confirmed by our experiments.



100 A. Mei et al. / J. Parallel Distrib. Comput. 96 (2016) 95–105
To connect up the responsibility graph, it is enough to run a
distributed protocol to detect and label its connected components
by a distributed version of a standard visit of a graph. Once
connected components have been detected, each component
elects a leader by taking the node with larger activity (we can
use any of the well-known measures used in the literature,
like the information dissemination function [26]). If a connected
component is small (less than half of the network), the leader
chooses a random node and, by using a remote message, connects
to that node, provided it belongs to a different component (this can
be checked by looking at its label and happens with probability
of at least 0.5). However, the newly connected nodes setup the
strength of the link to be 0, in order to record a link between
components. The process is iterated until the protocol detects one
single component that spans the whole network. It is easy to see,
by standard probabilistic techniques, that the number of iterations
is with high probability logarithmic in the number of components.

At this stage, our responsibility graph is connected, extremely
sparse (as our experiments will confirm) and made up of social
links that favor short-range communications against long-range
expensive communications. We have a fully connected Social
Skeleton!

5.6. Dynamic joins and leaves

It is interesting to see how nodes dynamically joining or leaving
the network can be handled. It is reasonable to divide time
into epochs, and to have the training period performed again at
the beginning of every epoch. This is important to optimize the
system according to the evolution of social relationships in the
network. Every epoch can be seen as an independent instance of
the network. Therefore, if nodes join or leave the network at the
beginning of an epoch, then they do not need special attention.

It is also easy to handle a join occurring during an epoch: The
new node only needs to perform a training period in order to
connect to the node of the Social Skeleton that maximizes the
social strength of the relative edge, according to Eq. (1). The Social
Skeleton is trivially still connected and this greedy choice does not
considerably reduce the quality of the solution.

Handling dynamic graceful leaves in an epoch is also easy. The
leaving node is expected to look at the Social Skeleton locally, and
connect up the possible disconnections due to its leave. Neighbors
canbe readily updated through remotemessages. Handling sudden
leaves or permanent crashes is harder. One possible solution is to
let the infrastructure deal with these cases. The infrastructure can
detect the permanent failure of a node (by using a long enough
timeout) and impose the re-construction of the Social Skeleton.We
are currentlyworking onmore efficient solutions based on the idea
that these failures can be locally detected and recovered.

6. CountOnMe: Performance evaluation

In Section 5 we have explained how to construct a Social
Skeleton to realize a reliable broadcast. We recall that a broadcast
is defined reliable when, departing from any node in the network,
it reaches all other nodes within a given TTL. A link in the Social
Skeleton is a commitment between two nodes to make sure that
the counterpart in the link is reached by any broadcastmessage. On
the basis of this commitment, we refer to the broadcast procedure
with the name CountOnMe, abbreviated in the following to COM.

In this section we evaluate the performance of COM. Since it is
important to validate the protocol in real environments, we choose
to perform our experiments on real-life traces.We have run awide
range of tests over traces of different size: Cambridge, a small
dataset of 36 nodes already described in the problem evaluation
(Section 2), Reality Mining, a medium-size dataset, and Dartmouth,
a large-size one, described here below:
Reality mining dataset. This dataset [28] consists of Bluetooth
contacts occurring among smart phones distributed to 96 subjects
of the MIT institute. The Bluetooth logs extend across a period of 9
months (Sept. 2004–May 2005). 68 users were colleagues working
in the same building on campus (90% grad students, 10% staff), the
remaining 26 were incoming students at the MIT Sloan business
school. The Reality dataset has portions of time inwhich only a few
contacts have been recorded and some users hardly ever appear
throughout thewhole trace or only appear in part of it.We isolated
data recorded from September 2004 to December 2004, when the
activity of users showed to be quite stable. We also excluded those
users who failed to appear in at least one-third of the days in the
considered timeframe. This left us with 76 users.
Dartmouth dataset. This data was collected at Dartmouth College
campus between April 2001 and June 2004. It consists of SMNP
logs from over 450 access points installed across the campus [18].
It recorded nearly 6000 different users. In order to make the data
suitable for our purpose, we followed a conventional approach
[3,23,1]: We consider two mobile users in contact when they are
associated to the same access point. We consider activities during
a period of eight weeks in which the academic campus life is
reasonably consistent, spanning from January 2004 toMarch 2004.
We chose to work with the set of nodes that have a fairly stable
activity in time: Those that appear in at least half of the considered
days. This results in a set of 1145 nodes.

For all datasets we imposed the selection of only two best
friends per users (k = 2) and each users has accomplished the
sparsification process on its neighborhood at a distance h ranging
from two (Cambridge) to five (Darthmouth). These values always
generate a Social Skeleton not containing cycles—a tree. Ifwe chose
lower values for h, the Social Skeleton could have few long cycles,
but often not generating overhead. Finally, the Social Skeleton is
built exploiting a training period that lasts the first half of each
trace. Then, we use the second half to evaluate the performance
of our solution.

6.1. A competitor for COM

The performance of COM depends on the number of remote
messages that it generates with respect to the actual number of
nodes that have not been reached by the broadcast message by
the end of the TTL. To the best of our knowledge, this is the first
time that a reliable broadcasting is being presented in literature.
However, we intend to provide the reader with a meaningful
benchmark against which the efficiency of the proposed solution
may be assessed. We do so by comparing COMwith a method that,
like COM, exploits remotemessages towards nodes connected from
responsibility links to achieve the 100% of delivery when Epidemic
fails to. The twomethods, however, differ in the way in which they
decide the responsibility links. COM exploits the Social Skeleton,
as discussed in the previous section. The benchmark method, that
we call Rand, generates responsibility paths through a random
permutation of the set of the users. In this way, each user within
the path (besides the extremes) is linked through responsibility
relations to strictly two users. The two extremes of the path are
linked to only one user, in order to avoid loops that generate
unnecessary messages. As in CoM, each user detaining a message
is requested to inform its neighbors according to the responsibility
links. When the message elapses, a user u sends a remote message
to the user(s) v that he is responsible of, whenever he cannot tell if
v has already received the information opportunistically through a
proximity message.



A. Mei et al. / J. Parallel Distrib. Comput. 96 (2016) 95–105 101
(a) Cambridge. (b) Reality.

(c) Dartmouth.

Fig. 4. MISSING: Unreached users with Epidemic. COM: Remote messages generated by COM. RAND: Remote messages generated by Rand. All graphs depict the average
(per message) and standard deviation of the values.
6.2. COM: Efficiency results

Aswe already showedby experimentalmeans in Section 2, even
epidemic is not able to reach all network nodeswithin themessage
TTL in opportunistic scenarios. But, if the mechanism needs to be
reliable, these nodes need to be reached aswell. An optimal remote
schedulingwould, therefore, knowexactlywhich nodes are left out
right before the message TTL, and send a remote message only to
these nodes. However, without a single global entity tracking all
interaction among nodes, clearly missing in a distributed scenario
like the one considered here, the optimal remote scheduling is
impossible to achieve. Nonetheless, it represents a benchmark for
a reliable broadcast mechanism: The number of remote messages
exceeding the optimal is a measure of the efficiency of any
reliable broadcast procedure. In fact, it corresponds to the number
of remote messages sent to users that were already informed
opportunistically.

In our evaluation, we compare the number of the remote
messages scheduled by both COM and Rand to the optimal one:
That of the number of users that are not reached by Epidemic
when the TTL elapses. The basal experiment involves the choice of
a random source user s and a random starting time t0. At time t0 the
message is created at s and starts circulating through the network
according to the contacts recorded in the selected trace. When the
TTL elapses, the required remote messages are sent and counted.
Each simulation includes a high number of basal experiment that
varies from 1000 to 10,000, according to the trace. The results are
then averaged.

Fig. 4 depicts the average and standard deviations of the
messages scheduled by COM and Rand in dependence of the
message TTL w.r.t. the optimal remote message scheduling for the
three traces considered. Note that Cambridge, the first trace, is
considerably shorter than the two other traces. Thus, in this case
the TTL is at the order of hours. The first observation is that in all
the traces the number of the nodes unreached is considerable, and
it increases with the size of the network under examination. This
is another proof that remote messages are necessary in order to
achieve a reliable broadcast. Second, we observe that COM always
outperforms Rand independently from the network size and TTL.
In particular, we notice how the number of remote messages
scheduled by COM is at most 10% higher (for lower TTLs) than that
of the optimal. Consider that, though predictable, user behavior
is not always exactly the same. So, it is evident that the Social
Skeleton generated observing the behavior during the first part of
the trace is reflecting quite well the strong relationships among
users. From the other side, the messages that Rand schedules are
considerably more: They vary from aminimum of 20% (12h TTL on
the Cambridge trace) to more than 35% higher than the optimal
(2–4 day TTL on the Reality Trace). These results give further
evidence of the importance of considering social interactions
between users for a 100% reliable broadcast.

6.3. Going beyond optimality with anticipated forwarding

In large or sparse social structures the number of social
communities – small groups of people frequenting each-other
often and having just a few contacts with other groups – increases.
This phenomena makes it more difficult for a message to reach
nodes that are (socially) further away from the source. An empirical
proof is the considerably larger number of unreached nodes in
Dartmouth (1145 nodes) with respect to Cambridge (36) and
Reality (76). The same holds for the messages scheduled by COM.
The reason is that messages remain trapped in well-connected
components of the source for very long and unreached nodes of
further away components generate lots of remote messages at the
end of the TTL. However, in this case we can use the strength
of the links within the Social Skeleton to improve its efficiency:
Indeed, the weakest links are most likely the ones that cause
remote messages. But, at the same time, the weakest links are
also the ones that typically connect distinct components. Thus, by



102 A. Mei et al. / J. Parallel Distrib. Comput. 96 (2016) 95–105
Fig. 5. Results with anticipated forwarding on Dartmouth. MISSING: Unreached
users with Epidemic. COM-A: Remote messages generated by COM with
anticipated forwarding. RAND: Remote messages generated by Rand. All graphs
depict the average (per message) and standard deviation of the values.

anticipating the sending of a remote message over these links, as
soon as themessage is received,wehave a good chance to impede a
message to be trapped within a well-connected component. Recall
indeed that in Section 5.5 we saw that component leaders are
bound together in the Social Skeleton by links of strength zero.
Therefore, if anticipated forwarding is correctly applied, leaders
would directly push a given message towards another component
much earlier before its expiration. Then, messages would start to
circulate in it through opportunistic forwarding and reach more
nodes by short and cheap links.

That said, we modify our protocol accordingly: Nodes that
have links with weight 0 send a remote message to the other
counterpart of that link as soon as they receive a newmessageM .
We present the results ofCOMwith anticipated forwarding in Fig. 5.
The first thing to notice is that there has been an improvement
w.r.t. pure COM of more than 20% (compare with Fig. 4(c)). Most
importantly, anticipated forwarding through weak Skeleton links
makes so that the number of remote messages scheduled by COM
is lower than the number of users not reached by Epidemic—the
optimal one. Indeed, choosing to send a few remotemessages from
one network component to the other much earlier than TTL elapse
avoids local trapping. As a result, opportunistic links on the other
component are given now the chance to be exploited for message
spreading, avoiding otherwise necessary remote communications.

7. Skeleton based routing

For how it is constructed, the Social Skeleton is a sparse graph
of the networkmade of links that represent the strongest relations
among nodes. In pure opportunistic networks, these relationships
are the most valuable for hop-to-hop routing. By exploiting the
links of the Social Skeleton, we can build an opportunistic routing
primitive that makes use of the most performing routes to push a
message towards destination. In this sectionwe show how to build
such a primitive, and we compare it with state-of-the-art routing
protocols for PSNs. For a fair comparison, routing does not make
use of remote messages, just opportunistic links.

7.1. Skeleton routing: The Protocol

Once the nodes have built the local responsibility graphs and
applied the sparsification process described in Section 5, they start
exchanging their responsibility links with other peers they meet.
During this process, nodes start locally building and incrementally
updating routing tables towards other peers in the network. The
routing tables contain also thenumber of hops and the cost to reach
a certain peer. The cost is calculated as the sum of the inverse of
the strengths of the hops (given by Eq. (1)) the route is made of.
So, the stronger the relationship, the lower the cost of a certain
hop. Our empirical evaluation shows that this process, exploiting
opportunistic contacts only, successfully ends in about 3 days in
the Cambridge trace, 7 days in the Reality trace, and 14 days in the
Dartmouth trace. (However, to speed up the process, or in cases of
particular large networks, our COM primitive can always be applied
by the first node that completes the routing table to reliably spread
it out to the rest of the network.)

The routing primitive, that we call Skeleton Routing, works as
follows: A message M for a destination d follows possibly three
routes starting from the source s:

1. through nodes v of the route s . . . d as defined by the Social
Skeleton;

2. through nodes v outside the path s . . . d, whose route-cost to d
is lower than that of the current node;

3. through nodes v outside the path s . . . d, whose route-cost to d
is higher but the route-length (hops) is lower than that of the
current node.

The source s passes a copy of M to the first three nodes met that
fulfill each of the rules above. From that moment on, the single-
copy travels following the type of the rule specified by the source.
Note that, while almost certainly node s encounters a node v that
fulfills the first rule (its best-friend in the route towards d), it is not
certain if the other two conditions are ever met. Therefore, every
message generates at most 3 independently traveling copies in the
network.

7.2. Experimental evaluation

To evaluate our routing primitive we compare it to SimBet [5],
Bubble [15], and Delegation [8]—three of the most well-known
social-based protocols in the literature. SimBet [5] exploits a mix
of the node betweenness in its ego-network and its similarity
with the destination in order to forward single-copy messages.
We have selected it because it outperforms Prophet [22], another
well-known protocol, and because it is a limited-copy protocol like
ours. Bubble [15] is a multi-copy protocol. It makes use of global
and local ranking of nodes, within respectively the global network
and the communities they belong to, to push the message towards
the destination. To detect the communities we have exploited the
k-clique algorithm [27] for the two smaller networks of Cambridge
and Reality, and the modularity algorithm [16] for the larger
Dartmouth network (k-clique does not support large networks).
Delegation [8] is another multi-copy protocol. It is based on a
quality rank, and nodes forward a copy of a given message to
nodes that have a higher rank than any other node they have
seen till then. We have implemented Delegation frequency – the
quality is the frequency of the meetings with the destination –
and Delegation last seen—the quality is the last time a node has
seen the destination. The latter, Delegation last seen, outperforms
the former in all traces. Therefore, we opt to present only results
with Destination last seen. Protocols are also compared to the very
costly benchmark Epidemic.

The results, for the three traces, are presented in Figs. 6, 7, and 8.
Note that, unlike in the broadcasting case, the success rate does not
present error intervals: A message either arrives to destination or
not. In addition,we also present the results on delivery time (delay)
and overhead (copies per message generated in the network) with
the respective confidence intervals. The first observation that we
make is that, in the three traces, SR outperforms all its social-aware
protocols in terms of success rate (see Figs. 6(a), 7(a), and 8(a)),
despite its limited-copy nature (see Figs. 6(b), 7(b), and 8(b)). The
gap increases for longer TTLs. The delay, from the other side, is
comparable to that of the other social-aware protocols. However,
recall that the delay is measured for the messages that are actually
delivered. This means that SR pushes more messages faster to
destination than its competitors.



A. Mei et al. / J. Parallel Distrib. Comput. 96 (2016) 95–105 103
(a) Success rate. (b) Cost in copies/message.

(c) Delay per delivered message.

Fig. 6. Cambridge trace: Performance of Epidemic (EP), Skeleton Routing (SR), Delegation (DEL), BUBBLE (BUB), and Simbet (SIM). Cost and delay results depict the average
and standard deviation of the values. The (very high) cost values for EP are omitted to make possible visual comparison of the other protocols.
(a) Success rate. (b) Cost in copies/message.

(c) Delay per delivered message.

Fig. 7. Reality trace: Performance of Epidemic (EP), Skeleton Routing (SR), Delegation (DEL), BUBBLE (BUB), and Simbet (SIM). Cost and delay results depict the average and
standard deviation of the values. The (very high) cost values for EP are omitted to make possible visual comparison of the other protocols.
It is important to observe that SR performs particularly better
than its competitors in large networks. Indeed, in the Dartmouth
network made of 1145 nodes, SR delivers up to two times more
messages than the two multi-copy competitors Delegation and
BUBBLE, and up to 5.5 times more messages than SimBet (see
Fig. 8(a)). All at the cost of at most 3 copies per message (Fig. 8(b)).
This is another evidence of the Skeleton’s capability to capture
correctly the relationships among network nodes, and to allow us
to build the most performing routes upon them.

8. Related work

Opportunistic mobile ad-hoc networks have attracted the at-
tention of many researchers in the last few years. There is now
a large and consistent body of research work in this area. In this
context, the idea of using information regarding social ties in net-
working is not new, it is actually common to a good part of the lit-
erature. Much work has been done in the analysis of data collected
during real-life experiments, to compute statistical properties of
human mobility, and to uncover its structure in sub-communities
[3,14,17]. Later on, a good part of the work in the field focused
on message-forwarding and to find the best strategy to relay mes-
sages in order to route them to a destination as fast as possible (see
[22,5,15,8,24], among many others). Excellent recent works have
investigated how, although very effective, existing routing proto-
cols suffer froma redundancy problem [10]. Also security problems
have been considered; problems like node capture [4] and detec-
tion of selfish behavior and other security issues [2,21,25,29,12]



104 A. Mei et al. / J. Parallel Distrib. Comput. 96 (2016) 95–105
(a) Success rate. (b) Cost in copies/message.

(c) Delay per delivered message.

Fig. 8. Dartmouth trace: Performance of Epidemic (EP), Skeleton Routing (SR), Delegation (DEL), BUBBLE (BUB), and Simbet (SIM). Cost and delay results depict the average
and standard deviation of the values. The (very high) cost values for EP are omitted to make possible the visual comparison of the other protocols.
have been solved by exploiting social relations among the network
nodes.

All these works introduce clever ideas, novel notions and
elegant ways to exploit the social structure of the network. In
the area of routing, which is the closest to our present work,
the above contributions take into consideration pure opportunistic
networks, networks in which the only mean of communication
is based on local communication technologies like Bluetooth or
WiFi. In these works routing is never reliable, in the sense that
it is just impossible to implement a reliable broadcasting service:
If a node is disconnected from the network (or just connected to
a small disconnected subset of the network) then it will not be
able to receive allmessages. Besides from that, allmechanisms that
rely on global knowledge of structural properties of the network,
even though distributively computed, are not possible without a
reliable broadcasting of this information to the nodes first. Most
importantly, the security mechanisms that require to report on
network misbehaviors, node captures, banning of members from
the system [4,2,21,25,12], cannot do sowithout a reliable broadcast
mechanism.

Fortunately, every smartphone and many of the other portable
devices that are commercially available, are equipped with some
kind of remote communication technology like those provided by
a cellular network. The drawback is that this technology is way
more expensive than using local free Bluetooth communication.
This is the reason why short-range opportunistic communication
is preferred whenever possible, even to communicate traffic of
overloaded cellular networks to partially alleviate them [13,1,31].
The approach is to select a small set of key nodes to which
to send through cellular traffic the data. Then, the key nodes
disseminate the message in the network through opportunistic
links. Nonetheless, the protocols are not distributed (the selection
of the initial key nodes is done by the cellular service provider), and
broadcasting is not reliable—none of the solutions achieve 100%
coverage.

Our work is also related to the area of computing overlays
and dominating sets in both static and mobile wireless ad-hoc
networks. In [6], for example, the idea is to compute a small,weakly
connected dominating set (a skeleton) by using a sparsification
process. However, the network is static, and the dominating set has
nothing to do with the social interactions of the nodes. In [32], the
authors compute a virtual backbone in a mobile ah-hoc network
by using twomechanisms: Clustering and adjustable transmission
range. Again, thiswork does not consider a social network, does not
consider the possibility of using remote cellular communication,
and broadcasting is not reliable. These twopapers are good starting
points to explore the literature in the area.

To the best of our knowledge, this work is the first that
addresses – in a completely distributed way – the problem of
reliable broadcasting in a hybridwirelessmobile network of people.
In addition, our opportunistic routing primitive based on the
distributively constructed Social Skeleton, outperforms state of the
art social-aware routing protocols for PSNs despite its limited-copy
nature.

9. Conclusions, discussion, and future work

In this work we have introduced the notion of Social Skeleton.
The Social Skeleton is a compact subset of a social mobile network
consisting of socially strong links, that can be used to implement
reliable broadcast in a very efficient way. We have presented
several experiments with real-life mobility traces that show
that our solution guarantees that all the nodes of the network
receive broadcast messages even when some of the nodes are
disconnected from the social network. In addition, we have shown
how Social Skeleton paths can be used to route messages to
destination in a pure opportunistic way cheaply, quickly, and with
a very low overhead.

The construction of the Social Skeleton depends on a long-
enough training period. During this period the nodes ‘‘learn’’
their strongest links in the network from which they deduct the
local social graphs. Nonetheless, the requirement of the training
period makes the broadcast and routing mechanisms not readily
employable in the network. However, this is a limitation of
all mechanisms proposed for opportunistic, infrastructure-less
scenarios [16,15,22,5,25,1], and often worthy to be payed in order
to achieve services similar to those in networked ones but with
very limited costs.

The local neighborhood level explored by users in our evalua-
tion was of h = 3 and h = 4, in dependence of the scale of the
trace. However, we believe that for larger networks with sizes of
up to hundreds of thousands of nodes, the value of h considered



A. Mei et al. / J. Parallel Distrib. Comput. 96 (2016) 95–105 105
should be slightly larger. Although we are not able to perform ex-
perimentswith larger traces, as they are not available, our intuition
is that the value of h should be of the order of O(log n), where n is
the number of network nodes.

We believe that our contributions are useful to move the large
body of deep and meaningful results on mobile social network
to a more practical setting, and are a first step to implement
other important primitives of distributed computing on this type
of networks. As future work we would like to study the coupling
of these mechanisms to already existing protocols that require
them, like detection of communities [16,15], alerting nodes about
misbehaving members of the network [25], and many more. In
particular, it would be interesting to assess the overheads of these
protocols in a more complete way, in view of these unexplored
costs in their evaluation.

References

[1] M. Barbera, A. Viana, M.D. Amorim, J. Stefa, Data offloading in social mobile
networks through VIP delegation, Ad Hoc Netw. 14 (2014) 92–110.

[2] L. Buttyán, L. Dóra, M. Félegyházi, I. Vajda, Barter trade improves message
delivery in opportunistic networks, Ad Hoc Netw. 8 (1) (2010) 1–14.

[3] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, J. Scott, Impact of human
mobility on the design of opportunistic forwarding algorithms, in: Proc. of IEEE
INFOCOM, 2006.

[4] M. Conti, R.D. Pietro, A. Gabrielli, L. Mancini, A.Mei, The smallville effect: social
ties make mobile networks more secure against node capture attack, in: Proc.
of ACMMobiWac, 2010.

[5] E.M. Daly,M. Haahr, Social network analysis for routing in disconnected delay-
tolerant manets, in: Proc. of ACMMobiHoc, 2007.

[6] D. Dubhashi, A. Mei, A. Panconesi, J. Radhakrishnan, A. Srinivasan, Fast
distributed algorithms for (weakly) connected dominating sets and linear-size
skeletons, in: Proc. of ACM-SIAM SODA, 2003.

[7] D. Easley, J. Kleinberg, Networks, Crowds, and Markets: Reasoning About a
Highly Connected World, Cambridge University Press, New York, NY, USA,
2010.

[8] V. Erramilli, M. Crovella, A. Chaintreau, C. Diot, Delegation forwarding, in: Proc.
of ACMMobiHoc, 2008.

[9] K. Fall, A delay-tolerant network architecture for challenged internets, in: Proc.
of ACM SIGCOMM, 2003.

[10] W. Gao, Q. Li, G. Cao, Forwarding redundancy in opportunistic mobile
networks: Investigation and elimination, in: Proc. of IEEE INFOCOM, 2014.

[11] M.C. Gonzalez, C.A. Hidalgo, A.-L. Barabasi, Understanding individual human
mobility patterns, Nature 453 (2008) 779–782.

[12] L. Guo, C. Zhang, H. Yue, Y. Fang, A privacy-preserving social-assisted mobile
content dissemination scheme in dtns, in: Proc. of IEEE INFOCOM, 2013.

[13] B. Han, P. Hui, V. Kumar, M. Marathe, J. Shao, A. Srinivasan, Mobile data
offloading through opportunistic communications and social participation,
IEEE Trans. Mob. Comput. 11 (5) (2012) 821–834.

[14] P. Hui, A. Chaintreau, J. Scott, R. Gass, J. Crowcroft, C. Diot, Pocket switched
networks and human mobility in conference environments, in: Proc. of ACM
WDTN, 2005.

[15] P. Hui, J. Crowcroft, E. Yoneki, Bubble rap: social-based forwarding in delay
tolerant networks, in: Proc. of ACMMobiHoc, 2008.

[16] P. Hui, E. Yoneki, S.Y. Chan, J. Crowcroft, Distributed community detection in
delay tolerant networks, in: Proc. of ACM/IEEE MobiArch, 2007.

[17] T. Karagiannis, J.-Y. L. Boudec,M. Vojnović, Power lawand exponential decay of
inter contact times between mobile devices, in: Proc. of ACMMobiCom, 2007.

[18] D. Kotz, T. Henderson, I. Abyzov, CRAWDAD data set dartmouth/campus (v.
2009-09-09), http://crawdad.cs.dartmouth.edu/dartmouth/campus.

[19] J. Leguay, A. Lindgren, J. Scott, T. Friedman, J. Crowcroft, Opportunistic content
distribution in an urban setting, in: Proc. of CHANTS, 2006.

[20] J. Leguay, A. Lindgren, J. Scott, T. Riedman, J. Crowcroft, P. Hui, CRAWDAD
trace upmc/content/imote/cambridge (v. 2006–11–17), Downloaded from
http://crawdad.cs.dartmouth.edu/upmc/content/imote/cambridge (Novem-
ber 2006).

[21] Q. Li, S. Zhu, G. Cao, Routing in socially selfish delay tolerant networks, in: Proc.
of IEEE INFOCOM, 2010.

[22] A. Lindgren, A. Doria, O. Schelén, Probabilistic routing in intermittently
connected networks, SIGMOBILE Mob. Comput. Commun. Rev. 7 (3) (2003)
19–20.

[23] M. McNett, G. Voelker, Access and mobility of wireless pda users, SIGMOBILE
Mob. Comput. Commun. Rev. 9 (2) (2005) 40–55.

[24] A. Mei, G. Morabito, P. Santi, J. Stefa, Social-aware stateless routing in pocket
switched networks, IEEE Trans. Parallel Distrib. Syst. 26 (1) (2015) 252–261.
[25] A. Mei, J. Stefa, Give2Get: Forwarding in social mobile wireless networks
of selfish individuals, IEEE Trans. Dependable Secure Comput. 9 (4) (2012)
569–582.

[26] G. Nemhauser, L. Wolsey, M. Fisher, An analysis of the approximations for
maximizing submodular set functions, Math. Program. 14 (1978) 265–294.

[27] G. Palla, I. Derényi, I. Farkas, T. Vicsek, Uncovering the overlapping community
structure of complex networks in nature and society, Nature 435 (2005)
814–818.

[28] N.E.A. Pentland, D. Lazer, Inferring social network structure using mobile
phone data, in: Proc. of PNAS, 2009.

[29] L. Shi, S. Yu, W. Lou, Y. Hou, Sybilshield: An agent-aided social network-based
sybil defense among multiple communities, in: Proc. of IEEE INFOCOM, 2013.

[30] A. Vahdat, D. Becker, Epidemic Routing for Partially Connected ad hoc
Networks, Tech. Rep. CS-200006, Duke University, 2000.

[31] X. Wang, M. Chen, Z. Han, D. Wu, T. Kwon, Toss: Traffic offloading by social
network service-based opportunistic sharing in mobile social networks, in:
Proc. of IEEE INFOCOM, 2014.

[32] J. Wu, F. Dai, Virtual backbone construction in manets using adjustable
transmission ranges, IEEE Trans. Mob. Comput. 5 (9) (2006) 1188–1200.

AlessandroMei is a full professor at the Computer Science
Department of Sapienza University of Rome, Italy. He
received the laurea degree in Computer Science summa
cum laude from the University of Pisa, Italy, in 1994. He
continued his studies as a Ph.D. student at the Department
of Mathematics of the University of Trento, Italy, and as
a visiting scholar at the Department of EE-Systems of the
University of Southern California during 1998 and part
of 1999. He received the Ph.D. in Mathematics at the
University of Trento in 1999. After a postdoctoral position
at the University of Trento, in 2001 he joined the faculty

of the Computer Science Department at Sapienza University of Rome, Italy. His
main research interests include computer system security and parallel, distributed,
and networked systems. He was presented with the Best Paper Award of the
16th IEEE International Parallel and Distributed Processing Symposium in 2002,
the EESystems Outstanding Research Paper Award of the University of Southern
California for 2000, and the Outstanding Paper Award of the Fifth IEEE/ACM
International Conference on High Performance Computing in 1998. He is a member
of the ACM and the IEEE, a past associate editor of the IEEE Transactions on
Computers (20052009), and the general chair of IEEE IPDPS 2009, Rome, Italy.
Alessandro Mei was a Marie Curie Fellow (at the CSE Department, University of
California San Diego, from Aug. 2010 to Aug. 2011, and at the CS Department,
Sapienza University of Rome, from Aug. 2011 to Aug. 2012).

Natascia Piroso got her Bachelor and Master degree in
Mathematics from ‘‘Roma Tre’’ University in respectively
2005 and 2007. She got her Ph.D. in Computer Science
from Sapienza University of Rome in 2012. Her research
interests include algorithms for parallel and distributed
systems, network security, fault-tolerant computing, re-
source management, optimization, computer networks
and communication, wireless networks, analysis of so-
cial mobile networks and dedicated applications. In spring
2011 she was a graduate visiting scholar at the CS&E de-
partment, University of California San Diego. Now she is a

Software Developer at Codin Spa, Rome, Italy.

Julinda Stefa is an Assistant Professor at the Computer
Science Department of Sapienza University of Rome, Italy.
She received the Laurea degree in Computer Science,
summa cum laude, and the PhD in Computer Science from
Sapienza University of Rome respectively in July 2006
and February 2010. In 2005 she joined Google Zurich for
3 months as an engineering intern. She was a visiting
scholar at the CS Dept. of UNC-Chapel Hill, USA, from
November 2008 to April 2009, and a Research Intern at
Microsoft Research, Cambridge, UK, from January to April
in 2011. Her research interests include computer systems

and network security, parallel and distributed systems, and analysis and modeling
of social mobile wireless networks. She was the recipient of the Working Capital
PNI Research Grant and offered by Telecom Italia (30 winners out of 2138). Julinda
was the co-winner of the Best Demo Award of IEEE INFOCOM 2013 and IEEE SECON
2013.

http://refhub.elsevier.com/S0743-7315(16)30041-7/sbref1
http://refhub.elsevier.com/S0743-7315(16)30041-7/sbref2
http://refhub.elsevier.com/S0743-7315(16)30041-7/sbref7
http://refhub.elsevier.com/S0743-7315(16)30041-7/sbref11
http://refhub.elsevier.com/S0743-7315(16)30041-7/sbref13
http://crawdad.cs.dartmouth.edu/dartmouth/campus
http://crawdad.cs.dartmouth.edu/upmc/content/imote/cambridge
http://refhub.elsevier.com/S0743-7315(16)30041-7/sbref22
http://refhub.elsevier.com/S0743-7315(16)30041-7/sbref23
http://refhub.elsevier.com/S0743-7315(16)30041-7/sbref24
http://refhub.elsevier.com/S0743-7315(16)30041-7/sbref25
http://refhub.elsevier.com/S0743-7315(16)30041-7/sbref26
http://refhub.elsevier.com/S0743-7315(16)30041-7/sbref27
http://refhub.elsevier.com/S0743-7315(16)30041-7/sbref30
http://refhub.elsevier.com/S0743-7315(16)30041-7/sbref32

	Count on me: Reliable broadcast and efficient routing in DTNs through social skeletons
	Introduction
	Unreliability of opportunistic broadcasting
	System requirements and problem definition
	The social skeleton
	Word of mouth, opportunistic forwarding, and the responsibility graphs

	How to construct a social skeleton
	Best friends selection
	Links consolidation
	Sparsification process
	Step 1: Neighborhood discovery
	Step 2: Cycle detection
	Step 3: Confirmation/deletion of responsibility links

	Local bones are global bones
	Connecting up the responsibility graph
	Dynamic joins and leaves

	CountOnMe: Performance evaluation
	A competitor for COM
	COM: Efficiency results
	Going beyond optimality with anticipated forwarding

	Skeleton based routing
	Skeleton routing: The Protocol
	Experimental evaluation

	Related work
	Conclusions, discussion, and future work
	References


