
Pervasive and Mobile Computing 36 (2017) 57–67

Contents lists available at ScienceDirect

Pervasive and Mobile Computing

journal homepage: www.elsevier.com/locate/pmc

Fast track article

Anonymous end-to-end communications in adversarial
mobile clouds
Claudio A. Ardagna a, Kanishka Ariyapala b, Mauro Conti c,∗,
Cristina M. Pinotti d, Julinda Stefa e

a University of Milan, Italy
b University of Florence, Italy
c University of Padua, Italy
d University of Perugia, Italy
e Sapienza University of Rome, Italy

a r t i c l e i n f o

Article history:
Available online 28 September 2016

Keywords:
Anonymity
Mobile cloud computing
Wireless network

a b s t r a c t

Today’s mobile devices have changed the way we interact with technology. Internet, cloud
access, online banking, instant messaging, and file exchange through the cloud are just
a handful of the myriad of smartphone services that we make use of every day. At the
same time, the very enablers of these services – mobile internet providers and cloud plat-
forms that host them – pose several threats to the anonymity of our communications.
In this paper, we consider the problem of providing end-to-end anonymous communica-
tions and file exchange under the cooperative privacy threat of involved parties including
network operators and cloud providers, which actively tamper with the communication.
We propose a solution for delay-tolerant applications (similar to Whatsapp or Email) and
prove the security properties of the protocol under this strong attack model. Finally, we
present an experimental analysis of the efficiency of our protocol in terms of performance
overhead.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Mobile cloud computing is the paradigm that was built with the goal to save a resource very precious tomobile devices—
their battery. The idea is simple: Pushing the execution of (parts of) mobile apps to remote servers residing on the cloud in
order to avoid the energetic cost coming from the local execution on the device. The paradigmworks bestwith computation-
intensive applications with very limited access to device local resources like sensors, data. In fact, the more computation-
intensive a given task, themore the device will benefit from executing it remotely. The less a given task needs to access local
resources, the smaller is the device–cloud communication overhead to execute it remotely. Through the years, researchers
have proposed offloading frameworks that take smart decisions on what to execute remotely [1–3], and solutions that
boost the security of our devices [4–6] or enable efficient data/application backup [7]. Also, solutions that create virtual
peer-to-peer networks of smartphone software clones in the cloud enable unprecedented and efficient, complex distributed
protocols on mobiles [8,9].

∗ Corresponding author.
E-mail address: conti@math.unipd.it (M. Conti).

http://dx.doi.org/10.1016/j.pmcj.2016.09.001
1574-1192/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.pmcj.2016.09.001
http://www.elsevier.com/locate/pmc
http://www.elsevier.com/locate/pmc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pmcj.2016.09.001&domain=pdf
mailto:conti@math.unipd.it
http://dx.doi.org/10.1016/j.pmcj.2016.09.001

58 C.A. Ardagna et al. / Pervasive and Mobile Computing 36 (2017) 57–67

The nature of the mobile apps, but most importantly, their typical complexity, makes it very hard, if not impossible, to
use privacy-preserving execution mechanisms like homomorphic schemes. In fact, these mechanisms, designed to operate
in hostile environments (e.g., the untrusted cloud) over encrypted user data, are not suitable for application scenarios
considering remote execution of mobile apps [10]. While offloading to the cloud, a mobile user has then to fully trust the
cloud-side of the process. Not only is the cloud aware of which data and jobs the user is running, but it also knows exactly
who is communicating to whom and what information is being shared.

In this paper,we advocate that communication and file-exchange privacy amongmobile cloud computing users is achiev-
able, even under very powerful attacks. To this aim, we propose a protocol that, while supporting storage and computation
offloading, implements anonymous end-to-end communications for mobile devices in adversarial mobile clouds. Specif-
ically, we consider a strong attack model (Section 3) in which smartphones, cloud clones, the network operator, and the
cloud provider are all adversarial entities and can collude to de-anonymize a communication. The cloud provider can both
monitor the traffic from/to the user’s cloud clones, and have access to thememorywithin themachines hosting them. Under
this powerful and multifaceted attack model, all previous solutions for anonymous end-to-end communication in a mobile
cloud computing setting, including ours [11], are unable to provide the requested privacy (Section 2). In this paper we chal-
lenge the common belief and come up with a solution that provides anonymity and unlinkability to the users (Section 4).
We discuss the security properties of the protocol according to this new challenging attack model (Section 5). We finally
investigate on possible slow-down effects in the system and show, through experimental evaluations, that the overhead
incurred is affordable (Section 6).

2. Related work

The mobile cloud computing paradigm, though initially designed with the offloading of heavy computations in mind
[1–3], brings multifaceted benefits in a large number of application scenarios. It can enable more complex security mech-
anisms for smartphones [6], or help exploit the cloud to optimize incoming data-traffic, minimize the device connections
to remote servers, and ensure efficient data backup in the cloud [4,7,12]. It opens the way to complex peer-to-peer services
on mobile devices [5,8,9], otherwise impossible to run on our battery-limited smartphones. All these solutions assume full
trust on both the cloud and the network operators providing the device–cloud communication channel. Also, encryption can
come to hand for the protection of the user data stored in the cloud. Unfortunately, if the data/application code is encrypted
with a key known only to the user, the cloud cannot be exploited for offloading anymore. In addition, encryption does not
guarantee full user privacy. Both the cloud and the network operator in fact know how often a user is: (i) Offloading com-
putation to her cloud server (a.k.a. clone of the device [1,8,9]); (ii) storing data on her cloud server; (iii) exploiting the clone
as a bridge to communicate/send the data previously stored on it to other users [8]. If the first two issues are unavoidable
to achieve all the benefits of cloud computation offloading and backup, the user is increasingly concerned about her privacy
when communicating with other users through the cloud.

Wired, wireless, and hybrid networked systems, have always brought the need of anonymous communication protocols
[13–20]. Most applicable solutions exploit chains of proxy nodes [21,22], accumulating and forwarding source-encrypted
messages in batches. Among them, TOR [22] is probably themost popular one. However, TOR is not applicable in the scenario
in this paper because devices and clones on the cloud are uniquely coupled. Also, the communication among two devices
directly involves the corresponding clones. If the latter are compromised, theywill identify the sender (receiver) even if TOR
is employed when communicating with the corresponding clone.

With the increasing popularity of social networks, several works put the trust among friends as a means to achieve
anonymity of communications [14–20]. However, these solutions either not fit at all for mobile–cloud computing scenar-
ios, or are computationally heavy for battery-limited devices. To the best of our knowledge, our previous work [11] was
the first attempt to address the issue of anonymous communications through the mobile cloud. It provided a user-tunable
level of anonymity to sender (indistinguishable among α users) and receiver (indistinguishable among β users), the (α, β)-
anonymity, as defined Section 3, in presence of colluding adversaries, including both cloud providers and network opera-
tors. The protocol worked under the assumption that the cloud clones of friend users could trust each other, and rely on
each other to thwart anonymity breaches of communicating users. Differently from [11], in this work we consider a much
stronger attack model: The cloud provider is able to look into a hosted clone’s memory and read encryption keys stored
therein; other clones, even friend ones, are malicious and can collude with both the cloud provider and the network opera-
tor to de-anonymize other user’s communication. Our solution also supports computation offloading, in addition to storage
offloading, balancing it with data confidentiality.

Other works have addressed a variety of issues in research areas similar to the ones considered in this paper. Senftleben
et al. [23] propose a decentralized privacy-preserving microblogging infrastructure based on a distributed peer-to-peer
network of mobile users. The infrastructure, using device-to-device communications, is robust against censorship and
provides high availability. Daubert et al. [24] present a solution to privacy-preserving sharing of smartphone sensor data
and user-generated content via Twitter. The proposed solution ensures both confidentiality and anonymity of users and
their messages. Finally, authentication, a milestone in sensitive-data handling platforms like the mobile cloud computing,
is exhaustively reviewed in the survey in [25].

C.A. Ardagna et al. / Pervasive and Mobile Computing 36 (2017) 57–67 59

3. System and attack models

The goal of our proposal is to achieve (α, β)-anonymity, that is, given a sender s and a receiver r , an adversary Adv should
not be able to associate s to less than α users, and r to less than β users. In this section, we present the system and attack
models at the basis of our proposal.

System Model. Our system involves different entities, namely mobile devices and standalone apps belonging to users, cloud
providers hosting clones of the devices, telco operators, and a supporting proxy acting as a middleware between devices
and clones. Mobile devices communicate through both the cellular network infrastructure and short-range ad-hoc wireless
communication links (we will consider Wi-Fi from now on as a representative technology for this layer). Each device dk
of user k is mapped with a clone ck (i.e., a virtual machine) in the cloud, as well as with a standalone application stdk in
the Internet. Having clones in the cloud is an emergent practice for offloading computations and communications, and for
backup purposes. Hence, clones, connected through P2P links in the cloud, are likely to be entities already present and not
necessarily introduced for the sake of our protocol. Also, we assume that information on friendship relations involving the
system users are freely available (e.g., the public friendship information available in Facebook).

Key Distribution and User Registration. In our setting, all entities in the system (device, clone, cloud provider, standalone
application, and proxy) have a private/public key pair and can securely verify the authenticity of others public keys. The
clone keys are distributed by the hosting cloud provider, while the device and standalone public/private key pairs are locally
generated and then certified by the trusted proxy. To enter the system a user needs to first register its device with the proxy,
and certify device and standalone app keys. Then, the user registers its device with a cloud provider of her choice and have
a clone assigned to her. During the registration phase the device exchanges the public keys with her clone. Finally, each
device dk shares a secret key SK k with the corresponding standalone application stdk in the Internet, generated locally on
the corresponding device and distributed when necessary through appropriate encryption mechanisms.

The standalone application, the user device, and the proxy are not controlled by the cloud provider. So, their private and
secret keys are unknown to it.

Attack Model.We assume a strong adversarial model, where all communication channels in our protocol can be the target
of an attack. We consider attacks on wireless communications among devices, communications with the telco operator
and proxy, and communications between the clones in the cloud. We also assume different types of adversaries that are
either malicious (i.e., possibly diverging by the protocol flow) or just honest but curious (i.e., aiming to violate the privacy,
but without tampering with the exchanged messages). In particular, we consider malicious devices, malicious clones, and
malicious standalone applications, while we assume honest but curious cellular network operator and cloud provider.
Adversaries might collude among them and share their knowledge, such as for instance the device position within the
cellular network and keys stored within clones.

Adversaries aim to identify sender s and receiver r of the communication or, in other words, to reduce the anonymity to
(1, 1)-anonymity. We note that the proxy is trusted and does not collude with any of the adversaries, although our solution
is resilient to the scenario in which it is compromised bymalicious adversaries [11]. In addition, a device or clone can attack
or collude with an adversary to compromise the anonymity of a friend device or clone.

We underline that, when compared to the attack model considered in [11], our work considers a significantly stronger
adversary model. In particular, (i) we consider the ability of the cloud provider to look into the memory of the clones and
search for encryption keys; (ii) we depart from the assumption of having trusted friend clones (including cs and cr); (iii) files
can be stored by the clones in the clear.

4. Anonymity protocol

Our solution provides an end-to-end anonymity communication protocol betweenmobile devices accessing the Internet.
We assume a user carrying amobile device associatedwith a clone on the cloud, and installing a standalone application sup-
porting anonymity activities on its personal computer. Smartphone data are stored in the clear in the clone and synchronized
with it through an encrypted channel. This approach allows to support full computation offloading in addition to storage of-
floading,while reducing asmuch as possible the parties able to access private data of the users.Wenote that, although our fo-
cus is on (α, β) end-to-end anonymity with support for storage/remote offloading, the offloading can be balanced with data
confidentiality as discussed in Section 5. Clearly, the opposite scenario of full computation offloading is that of full data con-
fidentiality, which can be provided by encrypting all data stored in the clones at a price of a reduced/nullified computational
capability of the clones. An approach balancing full computation offloading (all data in the clear to the cloudprovider) and full
data confidentiality (all data encrypted) can selectively encrypt sensitive data, while storing the remaining data in the clear.

4.1. High-level overview of the protocol

Each communication between sender s and receiver r is composed of three phases as follows [11]: (i) Sender
communication; (ii) clone communication; (iii) receiver communication.

60 C.A. Ardagna et al. / Pervasive and Mobile Computing 36 (2017) 57–67

Fig. 1. Protocol flow for sender communication.

Sender communication implements an anonymous communication between the sender s and corresponding clone cs,
through the proxy and a set of clones. The sender s initially sends its message through a multi-hop WiFi communication
on an ad hoc WiFi network of devices. Randomly, a receiving device forwards the message to the proxy using the cellular
network. The proxy receiving the message forwards it to a friend clone of cs, which in turn broadcasts the message to all its
friends including cs. The last communications are carried out on the cloud.

Clone communication implements the part of the communication responsible for anonymously distributing a message
between cs and clone cr of receiver r . Each friend clone of cs involved in the sender communication forwards the received
message to its standalone app through the Internet. Standalone apps then forward the message to a friend clone, say cj, of
clone cr via the proxy. Clone cj finally uses cloud-based communications to broadcast the message to all its friends in the
cloud including cr .

Receiver communication implements the communication between cr and corresponding receiver r . It is the inverse of the
sender communication and involves a proxy, the cellular operator, and a device in the proximity of r . Each friend clone of cr
involved in the clone communication sends the received message to its standalone app through the Internet, which is then
forwarded to the proxy. The received messages are filtered by the proxy, which forwards only the real message of s to r via
a supporting device (WiFi peer of the destination). The last step uses a mix of cellular and wireless communications.

The following subsections formalize each of the aforementioned high-level phases by presenting, in details, the activities
carried out by all the parties involved. Figs. 1–3 summarize the distribution of packets among parties illustrating also the
content of each message in all three communication phases. Edges with a dotted line refer to wireless communications
carried out on either ad hoc WiFi network (between peers) or cellular network (between peers and the proxy); edges
with a dashed line refer to communications over the cloud (between clones and proxy); edges with a solid line refer to
communications over the Internet (between clones, standalone apps, and proxy). The edge labels denote the messages
exchanged on the corresponding links while the description at the bottom of each figure presents the messages in their
entirety.

4.2. Sender communication

Sender communication (Fig. 1) determines the activities carried out in order to anonymously send a message from s to
cs.

User. Similarly to [11], for each communication, user s defines preferences α and β at the basis of the anonymous
communication and selects: (i) One friend clone ci whose social network (Sci) has at least α members, that is, |Sci | ≥ α;
(ii) one friend clone cj of cr whose social network (Scj) has at least β members, that is, |Scj | ≥ β . This selection is done using
the friendship database. Then, user sprepares amessageM to be sent to cs that includes: (a) The id idcm of the communication,
preferences α and β , the identity of ci and cj, and two nonces nonce1 and nonce2 encrypted with K p

pr (the public key of pr);
(b) the id idf of the file to be sent, a number carrying no information neither on the user nor on the device; (c) the identifier
idcm of the communication encryptedwith K p

pr (the public key of pr); (d) the identity of cs and nonce1 encryptedwith SK s (the
secret key shared between s and its standalone app stds); (e) the identity of cr , parameterβ , and nonce nonce2 encryptedwith
SK s (the secret key shared between s and its standalone app stds).We note that, to counteract an attack by the cloud provider
that aims to uncover the sender s by identifying all clones with less than idf files, s exploits a concealed file identifier. The
same operation is performed by all involved clones to blindly identify the file to be sent according to the protocol. In this
way, all selected files will be valid (including the correct file by clone cs), and the attacker cannot gain any information on
the sender. We also note that nonce1 is used to let (i) standalone app stds know that it is the standalone app of sender s of
the communication and (ii) pr distinguish the correct messages among the received ones. Nonce nonce2 has the same role
as nonce1 when stdr and r are involved. In addition, it is used to allow replies from r to s over the same anonymized channel
(see Section 4.5).

C.A. Ardagna et al. / Pervasive and Mobile Computing 36 (2017) 57–67 61

Fig. 2. Protocol flow for clone-to-clone communication.

The message M , prepared by the user as described above and depicted in Fig. 1, is then sent to proxy pr using a
probabilistic multi-hop Wi-Fi forward to devices in its physical proximity. To guarantee α anonymity, s sends M only when
it is surrounded by at least α devices. This process prevents the re-identification from nearby devices [11]. To this aim, all
devices periodically broadcast a probe request with their identity to surrounding devices.

Device. Upon receiving M , device dt forwards the message to either another device dt+1 in its proximity, or to proxy pr ,
through the cellular network, using a probabilistic function. The same process is repeated by all involved peers.

Proxy. Upon receiving messageM , pr decrypts [idcm, α, β, ci, cj, nonce1, nonce2]Kp
pr
using its private key K s

pr and stores them
for future computations. It then forwardsMpr = {idf , [idcm]Kp

pr
, [cs, nonce1]SK s , [cr , β, nonce2]SK s} to ci.

Clone ci. It forwards the received message Mpr to all clones in its social network including cs. We note that, by sending Mpr
to all clones, α and β become lower bounds to anonymity, and ci and cj behavior is then independent from their value.

4.3. Clone-to-clone communication

Clone-to-Clone communication (Fig. 2) includes all activities aimed to anonymously send a message from cs to cr .

Clone. Each clone ck receiving Mpr blindly identifies the file to be sent by applying a function (e.g., a modulo operation) on
the received idf . It then replaces idf with f generating a new message M̃ = {f, [idcm]Kp

pr
, [cs, nonce1]SK s , [cr , β, nonce2]SK s},

and forwards it to the corresponding stdk on the Internet.
Each clone ck then sends a file in the clear with the same identifier to the corresponding standalone application, showing

the same behavior to all observing parties. We note that this approach based on blind file selection is robust to a scenario
where the clone cs is compromised and malicious (see Section 5 for more details). In this case in fact cs behaves as any
other clone in the system and is not able to understand what is going on in the communication, unless it also owns the
corresponding standalone app stds.

Standalone app. Upon receiving M̃ , a standalone app first decrypts [cs, nonce1]SK s using its secret key SK k. If SK k = SK s,
the decrypted ciphertext contains ck = cs, and stdk identifies itself as stds, that is, the application of the sender of a
communication. stds decrypts [cr , β, nonce2]SK s using its secret key SK s, encrypts [cr , β, nonce2] using K

p
stdr (the public key

of stdr), and encrypts nonce2 using K p
cj (the public key of cj). It also encrypts f using K

p
stdr (the public key of stdr) and adds

[idcm]Kp
pr
to the message. Nonce nonce1 is finally added to the new message and encrypted with K p

pr (the public key of pr).

After these activities have been completed, message M̃stds = {[f]Kp
stdr

, [cr , β, nonce2]Kp
stdr

, [nonce2]Kp
cj
, [idcm]Kp

pr
,

[nonce1]Kp
pr
} is generated and sent by stds to pr . The message sent by stdk ≠ stds involved in the communication is the

same as M̃stds with the only difference that [nonce1]Kp
pr
contains a random number rnd.

Proxy. Upon receiving a message M̃stdk sent by stdk, proxy pr decrypts the last two fields of M̃stdk using K s
pr . The first field

contains the identifier idcm of the communication to which M̃stdk belongs, while the second field either nonce1 in case
the decrypted message is the correct one (M̃stds) or a random number rnd otherwise. Upon identifying M̃stds , the proxy
waits until at least α messages belonging to the same communication id idcm are collected. It then prepares message
M̃pr = {[idcm]Kp

pr
, [f]Kp

stdr
, [cr , β, nonce2]Kp

stdr
, [nonce2]Kp

cj
}Kp

cj
and forwards it to cj.We note thatwaiting for at leastα messages

62 C.A. Ardagna et al. / Pervasive and Mobile Computing 36 (2017) 57–67

Fig. 3. Protocol flow for receiver communication.

and encrypting thewholemessagewith the public key K p
cj of cj forbids re-identification by attackers able to observe the cloud

and the standalone apps as discussed in Section 5. We also note that α and cj are identified using idcm previously stored by
the proxy with α, β , ci, cj, nonce1, and nonce2.

Clone cj. Upon receiving message M̃pr , cj first decrypts it using its private key K s
cj . It then decrypts nonce2 again with its

private key K s
cj . We note that nonce2 is used to support bidirectional communications as discussed in Section 4.5. Clone cj

then forwards message M̃cj = {[idcm]Kp
pr
, [f]Kp

stdr
, [cr , β, nonce2]Kp

stdr
} to all ck in its social network.

4.4. Receiver communication

Receiver communication (Fig. 3) includes all activities aimed to anonymously send a message from cr to r .

Clone. Each clone ck receiving M̃cj forwards the message to its corresponding stdk on the Internet.

Standalone app. Upon receiving M̃cj , a standalone app first decrypts [cr , β, nonce2]Kp
stdr

using its private key K
s
stdk . If

K
s
stdk = K

s
stdr , the decrypted ciphertext contains ck = cr , and stdk identifies itself as stdr , that is, the application of the

receiver of a communication. stdr decrypts [f]Kp
stdr

using K
s
stdr (the private key of stdr), and encrypts f and nonce2 using SK r

(the secret key of r). [idcm]Kp
pr
is then added to the message. Nonce nonce2 and dm are finally added to the new message and

encrypted with K p
pr (the public key of pr).

After these activities have been completed, message Mstdr = {[f, nonce2]SK r , [idcm]Kp
pr
, [nonce2, dm]Kp

pr
} is generated and

sent by stdr to pr . The message sent by stdk ≠ stds involved in the communication is the same as Mstdr with the only
difference that [nonces, dm]Kp

pr
contains a random number rnd. We assume the standalone application to know devices in

the proximity of r . Supporting device dm is then selected based on β by extending the probe request-based mechanism
used by user s to start the communication [11]. In particular, the probe request in sender communication phase is extended
with the information about the number of devices surrounding the sender of the probe request. Then, r periodically collects
and notifies stdr of neighboring devices around it, that is, the ones from which it received a Probe request including the
number of their neighboring devices. In fact, neighboring devices with less than β devices in their proximity would expose
the anonymity of r , whether selected as destination dm. If this privacy condition is not met, then stdr would simply ask pr
to stop the procedure (as for the scenario where cr is the final destination).

Proxy. Similarly to the previous phase, upon receiving a message Mstdk sent by stdk, pr decrypts the last two fields of Mstdk
using K s

pr (the private key of pr). The first field contains the identifier idcm of the communication to which Mstdk belongs,
while the second field either dm and nonce2 in case the decrypted message is the correct one (Mstds) or a random number
rnd otherwise. Upon identifying Mstds , the proxy waits until at least β messages belonging to the same communication id
idcm are received. It then prepares message M = {[f, nonce2]SK r }Kp

dr
and forwards it to dm, via the cellular operator. Again,

waiting for at least β messages and encrypting the whole message with the public key K p
dr of dr forbid re-identification by

attackers able to observe the cloud and the standalone apps as discussed in Section 5.

Device. Upon receiving messageM = {[f, nonce2]SK r }Kp
dr
, dm broadcasts the received message to the nearby devices. Among

other devices, r receives the broadcasted message, decrypts it with K s
dr and SK r , and reads the file.

C.A. Ardagna et al. / Pervasive and Mobile Computing 36 (2017) 57–67 63

4.5. Discussion

The proposed protocol provides an end-to-end anonymity approach for a mobile cloud environment, which supports
storage and computation offloading. It allows for a tunable tradeoff between the amount of computation that can be
offloaded to the clones in the cloud and the amount of data that are potentially disclosed to the cloud operator. In our
protocol, for easy of exposition, we considered one of the extreme scenarios where data in the clone’s memory are all stored
in the clear (high computation offloading, no confidentiality).

Our protocol employs encryption facilities to hide the two endpoints of a communication according toα andβ anonymity
preferences. Its behavior can slightly differ from the working discussed in this section depending on α and β . For preference
α = 1, sender s does not involve Wi-Fi neighbors in its proximity during the sender communication phase, while it directly
sends M to cs via pr . For preference β = 1, clone cr directly receives message M̃pr from pr in the clone-to-clone communi-
cation phase, and sends messageM = {[f, nonce2]SK r }Kp

dr
to r via pr , bypassing dm, in the receiver communication phase.

Bi-directional communications between s and r can be supported by adding a response communication phase to the
protocol. This phase can be implemented either as a one-way communication switching s with r or by re-using the
anonymous channel created for the communication from s to r . In the latter case, as discussed in [11], involved clones ci
and cj must be the same for both directions, r must keep track of the identity of cj, and in turn cj of the identity of ci. This
can be done by using nonce2 and the knowledge at the proxy.

Finally, there is a subtlety to consider when our anonymous protocol is executed. The file received by r using our protocol
is not synchronized with the corresponding clone cr to avoid sender–receiver re-identification by the cloud provider. If
synchronized, in fact, the cloud provider could be able to observe a file stored in cs that is then stored in cr . A file received
by r can be synchronized with cr , if and only if the file has been previously modified by r .

5. Security analysis

We assess the security of our protocol against possible adversarial entities aiming to reduce preserved anonymity to (1,
1)-anonymity. In particular, we focus on the novel security features introduced by our proposal and evaluate: (i) The security
of our solution against a malicious cloud operator that tampers with the memory of clones (Section 5.1), (ii) the security
against malicious clones and standalone apps (Section 5.2), (iii) the security against colluding cloud provider, clones, and
standalone apps (Section 5.3). We note that, as far as malicious devices, malicious cellular network operator, and adversary
tampering with the proxy are concerned, the security of the scheme proposed in this paper is the same as the one discussed
in [11].

5.1. Cloud operator tampering with clones’ memory

Adversary and capabilities.We consider an adversarial cloud operator that, beyond eavesdropping and analyzing all the traffic
going through his domain, can also tamper with the memory of the clones it hosts.
Execution of the attack. Since clones (e.g., Android virtual machines) are deployed in the physical architecture of the cloud
operator, a malicious cloud can indeed inspect the memory of the clones, retrieve cryptographic keys, and decrypt all the
communications involving the clone.
Defense. Our proposal is resilient against this attack, for a simple but effective reason: All clones involved in the protocol
(i.e., cs, cr , as well as the supporting clones) will ‘‘blindly’’ execute a set of operations according to the received messages.
Since these operation are, for all the clones involved, ‘‘meaningful’’ operations (e.g., selecting and sending one of the files they
store), the cloud operator cannot discern the actual cs and cr from the supporting nodes. More specifically, let us consider
the Sender Communication phase of our protocol, as discussed in Section 4.2. MessageMpr received by each clone involved in
this step does not require any computation. The clone just needs to select the file f corresponding to idf and send it (in the
Clone-to-Clone Communication phase) to the corresponding standalone application. Therefore, in the last step of Clone-to-
Clone Communication and the first step of Receiver Communication, each of the supporting clones acts simply as a forwarder
of message M̃cj , while cj only decrypts a random number nonce2 in M̃pr .
Result of the attack. Our protocol provides at least (α, β)-anonymity in the worst case.

5.2. Malicious clones and standalone apps

Adversary and capabilities. In this scenario the clones can be honest-but-curios or act in a malicious way by tampering with
the protocol. At the same time, the standalone apps can support the correspondingmalicious clone, or co-operatewith either
the sender s (receiver r) to identify the other party involved.
Execution of the attack. Honest-but-curious clones obeys to the protocol, while trying to understand whether they are cs and
cr . Malicious clones also tamper with the protocol by droppingmessages. Malicious standalone app of supporting clones can
only retrieve the information about the fact that it is the app of neither the sender nor the receiver of the communication.

64 C.A. Ardagna et al. / Pervasive and Mobile Computing 36 (2017) 57–67

On the other side, if the standalone app of the sender s (receiver r) is compromised, the standalone app knows it belongs to
s (r).

Defense. Similar to the previous scenario, nor the cloud provider neither honest-but-curios clones involved in a communica-
tion channel are able to infer the identity of cs or cr , and thus the one of the sender or the receiver. This simply follows by the
fact that the knowledge of the clones cannot be bigger than the one of the cloud provider that hosts them. Malicious clones
tamperingwith the protocol by droppingmessages do not endanger the anonymity of senders or receivers either—note that,
our protocol is general enough to forbid an adversarial clone from understanding its role in the protocol. All this attack could
achieve is at most a denial of service—the messages are dropped by either cs or cr . However, in this case the corresponding
users will eventually detect this behavior, and possibly change cloud provider to mitigate it.

If the standalone app of a malicious clone is also malicious, the user privacy is still preserved. In fact, even in the worst
case scenario, when this happens for the sender (receiver) standalone app, the identity of the sender (receiver) is protected
by the fact that the malicious std does not know the real identity of the corresponding clone. We achieve this by storing
random numbers in cs and cr of M̃ , which are pre-installed in the standalone app without any link to the real identities of
the involved parties.

Result of the attack. Our protocol provides at least (α, β)-anonymity in the worst case.

5.3. Colluding cloud provider, clones, and standalone apps

Adversary and capabilities. We consider the possibility of collusion among cloud provider, clones, and standalone apps.

Execution of the attack. The attacker controls the network on the cloud, and either the couple (cs, stds), the couple (cr , stdr),
or both.

Defense. The defense against this attack is given by the complexity of the attack itself. The attack might be very costly to
be implemented, while it might provide limited results in terms of retrieved information. In fact, it requires to compromise
clones and standalone apps of both sender and receiver, and have control of the cloud network (e.g., support by the cloud
provider), to access communications involving a single pair of sender and receiver.

Result of the attack. When only one among the couples (cs, stds) and (cr , stdr) is compromised by an attacker also controlling
the network in the cloud, our protocol can still guarantee (1, β)-anonymity when (cs, stds) is compromised, and (α,1)-
anonymity when (cr , stdr) is compromised. But, if the attacker compromises cs, cr , stds, and stdr at the same time, and have
the support of the cloud, it can violate the privacy of both sender and receiver. This is the only case in which the attacker
fully identifies both parties in a communication.

We note that the proposed attack is very expensive since standalone apps and cloud clones reside on different platforms
— the clones on the cloud, whereas the standalone apps on decoupledmachines on the Internet — and requires a supporting
cloud provider. Also, a single occurrence of this attack would uncover communications only involving a single pair s and
d. Thus, though possible, it is almost impossible for an attacker to simultaneously have a full control of both clones and
standalone apps for all possible sender–receiver couples in the system.

All remaining combinations including an attacker observing the cloud and the standalone apps are not able to achieve
(1, 1)-anonymity.

6. Experiments

In this sectionwe investigate on the possible overheads induced by our anonymity protocol. The evaluation focuses on the
entities that suffer fromhardware-related limits (the battery-limited smartphones), and on the proxy,which could introduce
bottlenecks that harm the usability of the system. The protocol is tested for messages with two types of content: A regular
text message of 160 Bytes (SMS) and a mp3 file of 3.87 MB (MP3). Each experiment is repeated 30 times and the results
are aggregated. To measure the energy-related costs on the phone side we used the Power Monitor1 meter. It samples the
smartphone batterywith high frequency (i.e., 5000Hz) so to yield accurate results on the battery power, current, and voltage.
The mobile devices in our testbed were Samsung Galaxy S+ devices, 1.4 GHz Scorpion CPU, and 512 MB of RAM running
Android 2.3. The proxy and the clones were running on a commodity laptop with the following characteristics: Ubuntu
14.04, Intel Core i7-4500U CPU, 1.80 GHzX4, 8 GB RAM. Algorithm AES with 192 bit key length was used for symmetric
encryption and RSA with 1024 bit key length for asymmetric encryption.2

1 https://www.msoon.com/LabEquipment/PowerMonitor/.
2 We note that, for convenience, we used 1024 bit length for asymmetric encryption though the latest NIST recommendations suggest using a 2048 bit

long RSA key (http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800–57Pt3r1.pdf). This choice does not affect our experimental results as the
RSA key is mostly used to encrypt the 192 bit long symmetric key in secret session communications.

https://www.msoon.com/LabEquipment/PowerMonitor/
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800--57Pt3r1.pdf

C.A. Ardagna et al. / Pervasive and Mobile Computing 36 (2017) 57–67 65

(a) SMS overhead. (b) MP3 overhead.

Fig. 4. Traffic overhead per message varying (α, β) anonymity preferences. The graphics include the max, min, and quartiles values.

6.1. Evaluation on the proxy-side

The proxy plays a crucial role in the system and its anonymity: It is responsible of ‘‘coupling’’ device traffic towards
clones and standard applications and vice versa. As such, it is important to study the amount of traffic per message the
proxy needs to handle during a single one-to-one communication among devices. Recall that the proxy is involved in all the
three steps of the protocol, while the traffic overhead is determined by the number of clones (standalone apps) involved
in a single communication. Indeed, the proxy needs to receive as many messages as clones (standalone apps) both in the
clone-to-clone and receiver communication steps, from which it discriminates the correct message to push forward in the
protocol (see Figs. 2 and 3). This number is strictly related to the (α, β) anonymity preferences of the communication: There
are at least α clones (standalone apps) involved in the clone-to-clone step, and at least β clones (standalone apps) involved
in the receiver communication step. For this reason, we have studied the traffic handled by the proxy varying α and β in
the set {1, 5, 10}. The corresponding results are shown in Fig. 4. As one might expect, the traffic handled by the proxy is
higher for higher values of α and β , for both types of content exchanged among devices. What is surprising, however, is that
the amount of traffic does not grow in a proportional way w.r.t. the anonymity parameters. This observation indicates that
higher anonymity guarantees can be met by our protocol without inducing severe traffic overheads to the proxy. Recall that
in our testbed the proxy runs on a commodity laptop. Nonetheless, we believe that in real deployments the proxy could be
efficiently implemented and deployed on a distributed set of high-performing servers, whichwill boost its performance and
that of the overall protocol.

6.2. Evaluation on the device-side

The anonymity protocol involves costly encryption/decryption operations as well as sending message bundles that in-
clude the file index to be transmitted and other data necessary to guarantee the anonymity of the communication. In this
section we discuss these costs from the perspective of the devices and compared them with the ones of a plain email pro-
tocol. Although the email protocol does not involve the cloud and does not guarantee any anonymity properties to users, it
served as a benchmark in our evaluation.

6.2.1. Overhead on sender device
We start with the energetic costs on the sender device. They include the costs of (i) the generation of the bundle M to

be forwarded to the next hop by short ad hoc links (sender communication step) and (ii) the communication through WiFi
direct. We note that these costs are content-independent. Indeed, according to our protocol, the content is already on the
cloud, and only the id of the corresponding file is sent within the message bundle to identify the corresponding file within
the cloud and forward it anonymously towards destination. The results are presented in Fig. 5(a). It is clear how, despite the
several cryptographic operations involved, the energetic overhead on the source-side is less than 1.25 J.3 When compared to
the plain email protocol the sender spends 2 times less for short messages (comparable to SMS) and up to around 20 times
less for larger content (mp3 file).

6.2.2. Overhead on receiver device
Now let us consider the costs on the receiver side. Again, they include the energy spent for receiving the message bundle

by dm (receiver communication step), and for decrypting the bundle to finally read the content. We note that, in this case,
the file is included in the bundle. This makes the costs dependent on the type of content that is being sent. The results are
presented in Fig. 5(b) and show that the consumption of our anonymity protocol is again considerably lower than that of the

3 When fully charged, the capacity of the battery of the devices involved in the testbed contains around 22 kJ of energy.

66 C.A. Ardagna et al. / Pervasive and Mobile Computing 36 (2017) 57–67

(a) Energetic overhead on the source device:
Anonymity protocol (AN) vs E-mail (EM).

(b) Energetic overhead on the receiving device:
Anonymity protocol (AN) vs E-mail (EM).

Fig. 5. Energetic overhead on the source and destination devices. The graphics include the max, min, and quartiles values.

plain email protocol. In particular, it results 0.78 J for the short text case and around 6 J for the mp3 audio file. Considering
the capacity of almost 22 kJ of the battery of the involved devices, these values are particularly low. Most importantly,
when compared to the plain email protocol the consumption is 3.5 times lower for the short text case, and around 2 times
lower for the mp3 file. Our investigation showed that this difference is mostly due to the considerably longer download
time of the email content, which is certainly dependent on the mailing server. This forces the destination device to keep
its communication interface up for a longer time, which induces considerably more energy consumption. Differently, in
our protocol, the communication is ad hoc between the receiving device and dm. The communication link exploits the WiFi
direct protocol for device-to-device communication, which results more efficient from the receiving device’s perspective.

6.2.3. Overhead on relay devices
The anonymity protocol involves also other devices—those that behave as relays through ad hoc links on both the sender

and the receiver communication steps of the protocol. The devices involved in the sender communication step, however,
have a much easier job than those involved in the latter. Indeed, they only need to forward the bundle M generated by
the source a step further. According to our experiments, the energetic cost is less than 1 J. Differently, in the receiver
communication step, we distinguish two types of devices: The dm, in charge of broadcasting the message bundle to all β
devices in its proximity, and a given device dx which is not the destination of the message, but does not know it yet. It is
clear that the cost induced to dx is similar to that of the receiver. However, the cost of dm is dependent on the parameter β of
the protocol,which determines the number ofWiFi-direct transmissions dm needs to perform. According to our experiments,
dm will spend 1.8 J, 8.9 J, and 17.8 J for β = 1, β = 5, and β = 10. Again, these values are very low w.r.t. the 22 kJ battery
capacity of the devices involved in the testbed.

7. Conclusions

Wepresented a protocol for anonymous end-to-end communications among users in amobile cloud environment,where
the cloud clones handle part of the communication towards destination. The attack model considered is unprecedented. It
includes devices, network operators, and the cloud provider behaving as malicious entities, and the possibility of all of them
to collude. In this scenario, we built a delay-tolerant solution that provably guarantees (α, β)-anonymity, and evaluated
its performance on a real-life testbed. Our future work will extend our approach to scenarios where exchanged files may
contain information on sender/receiver, will depart from the assumption of having a standalone app available for each user
in the Internet, and will provide a formal security analysis of our protocol using automatic cryptographic protocol verifiers,
such as ProVerif.

References

[1] B.G. Chun, S. Ihm, P. Maniatis, M. Naik, A. Patti, Clonecloud: elastic execution between mobile device and cloud, in: EuroSys’11.
[2] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu, R. Chandra, P. Bahl, Maui: making smartphones last longer with code offload, in:

MobiSys’10.
[3] S. Kosta, A. Aucinas, P. Hui, R. Mortier, X. Zhang, Thinkair: Dynamic resource allocation and parallel execution in the cloud for mobile code offloading,

in: IEEE INFOCOM’12.
[4] M.V. Barbera, S. Kosta, A. Mei, V.C. Perta, J. Stefa, Mobile offloading in the wild: Findings and lessons learned through a real-life experiment with a

new cloud-aware system, in: IEEE INFOCOM’14.
[5] M.V. Barbera, S. Kosta, J. Stefa, P. Hui, A. Mei, CloudShield: Efficient anti-malware smartphone patching with a P2P network on the cloud, in: IEEE

P2P’12.
[6] G. Portokalidis, P. Homburg, K. Anagnostakis, H. Bos, Paranoid android: versatile protection for smartphones, in: ACSAC’10.
[7] M.V. Barbera, S. Kosta, A. Mei, J. Stefa, To offload or not to offload? The bandwidth and energy costs of mobile cloud computing, in: IEEE INFOCOM’13.
[8] S. Kosta, C. Perta, J. Stefa, P. Hui, A. Mei, Clone2Clone (C2C): Peer-to-Peer Networking of Smartphones on the Cloud, in: HotCloud’13.
[9] S. Kosta, V.C. Perta, J. Stefa, P. Hui, A. Mei, CloneDoc: Exploiting the Cloud to Leverage Secure Group Collaboration Mechanisms for Smartphones, in:

IEEE INFOCOM’13.

C.A. Ardagna et al. / Pervasive and Mobile Computing 36 (2017) 57–67 67

[10] M. Van Dijk, A. Juels, On the impossibility of cryptography alone for privacy-preserving cloud computing, in: USENIX HotSec’10.
[11] C. Ardagna, M. Conti, M. Leone, J. Stefa, An anonymous end-to-end communication protocol for mobile cloud environments, IEEE TSC 7 (3) (2013).
[12] M.V. Barbera, S. Kosta, A. Mei, V.C. Perta, J. Stefa, CDroid: Towards a Cloud-Integrated Mobile Operating System, in: IEEE INFOCOM’13.
[13] C. Ardagna, S. Jajodia, P. Samarati, A. Stavrou, Providing users’ anonymity in mobile hybrid networks, ACM TOIT 12 (2013) 1–33.
[14] P. Mittal, M. Wright, N. Borisov, Pisces: Anonymous communication using social networks, 2012, arXiv:1208.6326.
[15] A. Mohaisen, Y. Kim, Dynamix: anonymity on dynamic social structures, in: ASIACCS’13.
[16] A. Mohaisen, H. Tran, A. Chandra, Y. Kim, Trustworthy distributed computing on social networks, in: ACM ASIACCS’13.
[17] K. Puttaswamy, A. Sala, O. Egecioglu, B. Zhao, Rome: Performance and anonymity using route meshes, in: IEEE INFOCOM’09.
[18] K. Puttaswamy, A. Sala, B. Zhao, Starclique: guaranteeing user privacy in social networks against intersection attacks, in: CoNEXT’09.
[19] S. Seys, B. Preneel, ARM: anonymous routing protocol for mobile ad hoc networks, Int. J. Wirel. Mob. Comput. 3 (2009) 145–155.
[20] Y. Zhang, W. Liu, W. Lou, Y. Fang, MASK: Anonymous on-demand routing in mobile ad hoc networks, IEEE TWC 21 (2006) 2376–2385.
[21] L. Chaum, Untraceable electronic mail, return addresses, and digital pseudonyms, CACM 24 (1981) 84–90.
[22] R. Dingledine, N. Mathewson, P. Syverson, Tor: The second–generation onion router, in: USENIX Security’04.
[23] M. Senftleben, M. Bucicoiu, E. Tews, F. Armknecht, S. Katzenbeisser, A.-R. Sadeghi, Mop-2-mop—mobile private microblogging, in: Financial

Cryptography and Data Security, Vol. 8437, 2014, pp. 384–396.
[24] J. Daubert, L. Bock, P. Kikirasy, M. Muhlhauser, M. Fischer, Twitterize: Anonymous micro-blogging, in: AICCSA’14.
[25] M. Alizadeh, S. Abolfazli, M. Zamani, S. Baharun, K. Sakurai, Authentication in mobile cloud computing: A survey, J. Netw. Comput. Appl. 61 (2015)

59–80.

http://refhub.elsevier.com/S1574-1192(16)30196-1/sbref11
http://refhub.elsevier.com/S1574-1192(16)30196-1/sbref13
http://arxiv.org/1208.6326
http://refhub.elsevier.com/S1574-1192(16)30196-1/sbref19
http://refhub.elsevier.com/S1574-1192(16)30196-1/sbref20
http://refhub.elsevier.com/S1574-1192(16)30196-1/sbref21
http://refhub.elsevier.com/S1574-1192(16)30196-1/sbref23
http://refhub.elsevier.com/S1574-1192(16)30196-1/sbref25

	Anonymous end-to-end communications in adversarial mobile clouds
	Introduction
	Related work
	System and attack models
	Anonymity protocol
	High-level overview of the protocol
	Sender communication
	Clone-to-clone communication
	Receiver communication
	Discussion

	Security analysis
	Cloud operator tampering with clones' memory
	Malicious clones and standalone apps
	Colluding cloud provider, clones, and standalone apps

	Experiments
	Evaluation on the proxy-side
	Evaluation on the device-side
	Overhead on sender device
	Overhead on receiver device
	Overhead on relay devices

	Conclusions
	References

