
1

Forward-Secure Sequential
Aggregate Authentication

Di Ma and Gene Tsudik

Computer Science Department
University of California, Irvine

(Extended Abstract, presented at IEEE S&P 2007)

2

Motivation

Collector

sensors

Goal:
 authenticate data accumulated during multiple intervals

Unattended sensors:
• Sensors do not network
• Sensors unable to communicate to sink at will (in real time)
• Collect data and wait for collector
• Collector not fully trusted

3

Two Issues
 Issue 1: Threat of Sensor Compromise

 Sensor characteristics:
 Low cost
 No tamper-resistance

 Adversarial and unattended environment
 Compromise Possible --> need Forward Security:

 Protect pre-compromise data
 Periodic key evolution

 Issue 2: Storage and Communication Overhead
 Sensors have limited on-board storage
 Forward-security requires one authentication tag per

message

4

Forward-Secure Sequential Aggregate (FssAgg) Authentication

 Reconcile minimal storage with mitigating potential sensor
(and its signing key) compromise

 Allow signer to combine multiple authentication tags
(generated within different time periods) into a single
constant-size tag

 Compromise of current key does not endanger authenticity of pre-
compromise data

 Verification of aggregate simultaneously verifies every component
signature

5

Definition

Component algorithms:

i,1
!

1,1 !i"

2. FssAgg.Asig: aggregate sign, generate a FssAgg signature

 on message mi and aggregate-so-far FssAgg signature with ki

3. FssAgg.Upd: key update, generate Ki from Ki-1, must be a one way
function, and securely erase Ki-1

4. FssAgg.Aver: aggregate verify, verify a FssAgg signature with the
verification key VK, accept or reject

1. FssAgg.Kg: key generation, generate the initial signing key K0 and the
verification key VK

6

Properties

 1. Correctness: any FssAgg signature produced by Asig
 must be accepted by Aver.

2. Unforgeability: without the knowledge of any signing
 keys, no adversary can compute an FssAgg signature

3. Forward-security: No adversary who breaks in i-th
 time period can generate a valid signature containing
 a signed message for any period j<i

7

MAC-based Scheme

!

b) "1,i = H("1,i#1||" i
)

1. FssAgg.Kg: any symmetric key generation algorithm to
generate k-bit secret s and set K0=VK=s

2. FssAgg.Asig: for new message mi:

3. FssAgg.Upd:

4. FssAgg.Aver: To verify

),()
iii
mKMACa =!

a) Ki+1 = H(Ki)

b) Remove Ki, move to time i+1

!

"
1,i
:

b) Re-compute

a) Re-compute (from VK): K1 … Ki,
c

i,1
!

c) Compare

!

"
1,i

c
? "

1,i

8

MAC-based Scheme

 Fast and space-efficient

 But:
 Either collector cannot authenticate tags

or
 Collector can cheat

 Two MAC-based aggregates?
 one for collector and one for sink
 or signatures…

9

Signature-based Scheme

1. FssAgg.Kg: pick random x0 from Zp, Compute pairs (xi,vi) s.t. xi=H(xi-1),
and vi=g1

xi, set K0=x0, VK={vi}

2. FssAgg.Asig: given: new message mi, current key Ki, and aggregate-so-far

!

b) "
1,i

="
1,i#1

•"
i

!

a) " i = BLS.sign(ki,mi)
1,1 !i"

3. FssAgg.Update: Ki+1 = H(Ki) , remove Ki

4. FssAgg.Aver: To verify !
=

i

t

tti vhege
1

2,1),(?),("

!

"
1,i

Based on BLS/BGLS signature scheme; works on groups with bilinear map e: G1x G2 -->
GT where : 1) G1 and G2 groups of order p; 2) |G1|=|G2|=|GT|;

3) g1,g2: generator of G1, G2

• Boneh/Lynn/Shacham. Asiacrypt 2001
• Boneh/Gentry/Lynn/Shacham, Eurocrypt 2003

10

 Size of aggregate signature
 Size of signing key
 Complexity of key update
 Complexity of aggregate signing

Performance Metrics

Signer efficiency

 Size of verification key
 Complexity of aggregate verification

Verifier efficiency

• Time

 Space

11

Performance Evaluation

 MAC scheme near-optimal

 Signature scheme is not

 Signer-friendly
 Constant private key and signature size
 Efficient signing and key update

 Not verifier-friendly
 Public key size - O(T)
 Costly pairing operations in verification

12

Summary and Future Work

 Motivated Forward-Secure Aggregate
authentication

 Two practical schemes:
 MAC-based scheme near-optimal
 Signature-based scheme not (yet) verifier-friendly

 Future work: more efficient schemes!

13

Thanks!

