
1

Forward-Secure Sequential
Aggregate Authentication

Di Ma and Gene Tsudik

Computer Science Department
University of California, Irvine

(Extended Abstract, presented at IEEE S&P 2007)

2

Motivation

Collector

sensors

Goal:
 authenticate data accumulated during multiple intervals

Unattended sensors:
• Sensors do not network
• Sensors unable to communicate to sink at will (in real time)
• Collect data and wait for collector
• Collector not fully trusted

3

Two Issues
 Issue 1: Threat of Sensor Compromise

 Sensor characteristics:
 Low cost
 No tamper-resistance

 Adversarial and unattended environment
 Compromise Possible --> need Forward Security:

 Protect pre-compromise data
 Periodic key evolution

 Issue 2: Storage and Communication Overhead
 Sensors have limited on-board storage
 Forward-security requires one authentication tag per

message

4

Forward-Secure Sequential Aggregate (FssAgg) Authentication

 Reconcile minimal storage with mitigating potential sensor
(and its signing key) compromise

 Allow signer to combine multiple authentication tags
(generated within different time periods) into a single
constant-size tag

 Compromise of current key does not endanger authenticity of pre-
compromise data

 Verification of aggregate simultaneously verifies every component
signature

5

Definition

Component algorithms:

i,1
!

1,1 !i"

2. FssAgg.Asig: aggregate sign, generate a FssAgg signature

 on message mi and aggregate-so-far FssAgg signature with ki

3. FssAgg.Upd: key update, generate Ki from Ki-1, must be a one way
function, and securely erase Ki-1

4. FssAgg.Aver: aggregate verify, verify a FssAgg signature with the
verification key VK, accept or reject

1. FssAgg.Kg: key generation, generate the initial signing key K0 and the
verification key VK

6

Properties

 1. Correctness: any FssAgg signature produced by Asig
 must be accepted by Aver.

2. Unforgeability: without the knowledge of any signing
 keys, no adversary can compute an FssAgg signature

3. Forward-security: No adversary who breaks in i-th
 time period can generate a valid signature containing
 a signed message for any period j<i

7

MAC-based Scheme

!

b) "1,i = H("1,i#1||" i
)

1. FssAgg.Kg: any symmetric key generation algorithm to
generate k-bit secret s and set K0=VK=s

2. FssAgg.Asig: for new message mi:

3. FssAgg.Upd:

4. FssAgg.Aver: To verify

),()
iii
mKMACa =!

a) Ki+1 = H(Ki)

b) Remove Ki, move to time i+1

!

"
1,i
:

b) Re-compute

a) Re-compute (from VK): K1 … Ki,
c

i,1
!

c) Compare

!

"
1,i

c
? "

1,i

8

MAC-based Scheme

 Fast and space-efficient

 But:
 Either collector cannot authenticate tags

or
 Collector can cheat

 Two MAC-based aggregates?
 one for collector and one for sink
 or signatures…

9

Signature-based Scheme

1. FssAgg.Kg: pick random x0 from Zp, Compute pairs (xi,vi) s.t. xi=H(xi-1),
and vi=g1

xi, set K0=x0, VK={vi}

2. FssAgg.Asig: given: new message mi, current key Ki, and aggregate-so-far

!

b) "
1,i

="
1,i#1

•"
i

!

a) " i = BLS.sign(ki,mi)
1,1 !i"

3. FssAgg.Update: Ki+1 = H(Ki) , remove Ki

4. FssAgg.Aver: To verify !
=

i

t

tti vhege
1

2,1),(?),("

!

"
1,i

Based on BLS/BGLS signature scheme; works on groups with bilinear map e: G1x G2 -->
GT where : 1) G1 and G2 groups of order p; 2) |G1|=|G2|=|GT|;

3) g1,g2: generator of G1, G2

• Boneh/Lynn/Shacham. Asiacrypt 2001
• Boneh/Gentry/Lynn/Shacham, Eurocrypt 2003

10

 Size of aggregate signature
 Size of signing key
 Complexity of key update
 Complexity of aggregate signing

Performance Metrics

Signer efficiency

 Size of verification key
 Complexity of aggregate verification

Verifier efficiency

• Time

 Space

11

Performance Evaluation

 MAC scheme near-optimal

 Signature scheme is not

 Signer-friendly
 Constant private key and signature size
 Efficient signing and key update

 Not verifier-friendly
 Public key size - O(T)
 Costly pairing operations in verification

12

Summary and Future Work

 Motivated Forward-Secure Aggregate
authentication

 Two practical schemes:
 MAC-based scheme near-optimal
 Signature-based scheme not (yet) verifier-friendly

 Future work: more efficient schemes!

13

Thanks!

