Wireless Security gets Physical

Srdjan Čapkun

Department of Computer Science
ETH Zürich

SWING, Bertinoro, July 2008
Impact of jamming on (e.g. WiFi) networks
802.11b/g physical layer

- 2.4 GHz (2.4–2.4835 GHz) 14 channels
 - Central channel frequencies are 5 MHz apart
 - 13 used in EU, 11 US

- Supports two spread spectrum techniques
 - Direct Sequence Spread Spectrum (DSSS)
 - Frequency Hopping Spread Spectrum (FHSS)

- Coding and modulation schemes determine max. communication speeds (1, 2, 5, 11, 54Mbps, ...)
 - 802.11b at 11Mbps
 - Complementary Code Keying (CCK)
 - Differential Quadrature Phase Shift Keying (DQPSK)
 - 802.11g at 54Mbps
 - Orthogonal Frequency Division Multiplexing (OFDM)
Channel allocation (2-2.4835 GHz)

2400 MHz 2412 MHz 2422 MHz 2432 MHz 2442 MHz 2452 MHz 2462 MHz 2472 MHz 2483.5 MHz
1 2 3 4 5 6 7 8 9 10 11 12 13

CHANNEL 1
2400 MHz 2412 MHz

CHANNEL 7
2442 MHz

CHANNEL 13
2472 MHz 2483.5 MHz

Transmit Spectrum Mask
0 dBr

Unfiltered Sinx/x
-30 dBr
-50 dBr

fc -22 MHz fc -11 MHz fc fc +11 MHz fc +22 MHz
Direct Sequence Spread Spectrum (DSSS)

Basic operation:

Example:

publicly known (e.g. Barker) same for all channels
Jamming 802.11

• Spreading techniques in 802.11
 – spreading codes are publicly known
 – e.g. Barker sequence for 802.11b at 1Mbps and 2Mbps = “1 0 1 1 0 1 1 1 0 0 0”
 – spreading codes are the same for all channels

• Spreading codes in 802.11 are not used for confidentiality

• Jamming:
 – jammer knows the codes and therefore can jamm any channel by transmitting symbols using the same codes ...
 – even if the attacker uses adjacent channels the throughput will be affected (there are only 3 non-overlapping channels)
 – there is no solution for this DoS attack on 802.11
Communication between a client and AP

• AP communicates with the clients using a single channel (e.g. CH 2)
• Only one client communicates with an access point at a time (regulated by the 802.11 MAC protocol)
• The signal is filtered (fc ± 22MHz) to eliminate (part of the interferences from neighboring channels)
• Significant interference remains on the channel
 – from neighboring channels (channels are only 5MHz apart)
 – from the environment
• The use of DSSS provides some resilience to interference
802.11 physical layer security issues

- handles interference
- 802.11 PHY cannot cope with active jamming
 - it was not designed to be resistant to jamming
 - easy intercept
 - easy DoS attacks
 - the attacker still needs a high-power transmitter to cover a large area
 - an attacker with an directional antenna can ‘aim’ at the victim AP and disable it (line of sight (LoS))
Sensor network jamming

Shared spectrum – known codes
MAC-layer jamming
- Received GPS radio signal has a strength is about 1×10^{-16} W at the Earth’s surface.

- A stronger signal can cover GPS satellite signal and cause the device to register a position different from its true position.
Implications of Jamming – MITM on DH

\[K_{AB} = (g^b)^a \mod p \]

\[K_{AB} = (g^a)^b \mod p \]
Man in the middle attack

1: jam
2: g^{x_M}
3: jam
4: g^{x_M}
5: $K_A = g^{x_A x_M}$, $K_B = g^{x_B x_M}$

indoor space

A g^{x_A} B
MITM

- If A and B are in each others’ power range, and if they can detect jamming MITM is prevented

- If A and B are NOT in each others’ power range, MITM is possible even without jamming, using only eavesdropping and replay!
Implications of jamming on MITM

If jamming can be detected, MITM is prevented (if nodes are in each-others power range).

- Problem:
 - covert jamming
 - signal overshadowing

\[A: m_A = 101 \]
\[M: m_M \]
\[B: m_B = m_A + m_M = 001 \]

Deceptive jamming
Solution to the MITM: authentication of DH contributions

\[g^a \mod p \]
\[g^b \mod p, \ \text{sig}_B(g^b, g^a) \]
\[\text{sig}_A(g^a, g^b) \]

Uses signatures ... (DH contributions are authenticated)
Example attack: Skyhook (iPhone) localization

- Skyhook localization system - uses public WiFi access points and GSM stations

Figure 1: The Skyhook localization process.
1. The LN broadcasts a probe request frame.
2. APs reply with a response beacon frame.
3. The LN queries the LLT server. 4. The server returns data about observed APs. 5. The LN computes its location.
Example attacks: iPhone localization system

- Attack goal: device displays an incorrect location
- Attack: **Jam** signals from legitimate APs
 insert messages with MACs corresponding to other APs

- More attacks: database poisoning, ...
Conclusion on jamming

- Open problem
- Power, power, power
- Gains achieved using spread spectrum techniques ...
- Full protection is not really feasible (shared medium)

- If we cannot prevent, we can at least detect jamming
 - jammer location

- **Affected systems:** almost all
 - GPS, weak signals \((10^{-16} \text{ W})\)
 - 802.11 (known sequences)
 - GSM/UMTS/ ... feasible for all cellular standards
 - Sensor networks
 - Localization
References

• D. Adamy, A First Course on Electronic Warfare, book
• D. Adamy, A Second Course on Electronic Warfare, book
• ...
• ... other work: Radha Poovendran, Wenjun Xu, Wade Trappe, Guevara Noubir ...
Using Location for Authentication

- Authentication through presence awareness
- Authentication through absence awareness
Integrity-codes: authentication through presence awareness
Authentication through presence awareness

- Main idea:
 - Use special message encoding (Integrity coding)
 - Receiver(s) know that they are in range of the sender (presence awareness)
Integrity Coding

- k-bit Beacon1 spread to 2k bits (1->10, 0->01) ($H(m) = k/2$)
- transmitted using on-off keying (each “1” is a fresh random signal)

$H(m) = \text{the number of bits “1” in } m \text{ (Hamming weight)}$
Integrity Decoding

• Beacon detection:
 - presence of signal (>P₁) during T on CH1 interpreted as “1”
 - absence of signal (<P₀) during T on CH1 interpreted as “0”

• Beacon integrity and authenticity verification
 - IF H(m)=|m|/2 THEN “m” was not modified in transmission

10 → 1, 01 → 0 (Manchester)
Integrity Coding Analysis

- Message Hamming weight is a public parameter $H(m) = |m|/2 = 2$
- Attacker can change $0 \to 1$ and NOT $1 \to 0$ (except with ϵ)
- A can detect all modifications of the message on channel CH1
- A knows that BS is transmitting on CH1

$m = 110110$

$H(m)\neq |m|/2 \Rightarrow m$ is invalid
IC: Anti-blocking property of the wireless channel

- \((1 \rightarrow 0) \)
- phase shift

\[
r(t) = \cos(\omega_0 t) - \cos(\omega_0 t - \theta), \text{ where } \theta \in [0, 2\pi)
\]

\[
E_r = \int_0^{T_s} r^2(t) dt \\
\approx 2T_s \sin^2 \left(\frac{\theta}{2} \right)
\]

![Graph showing the relationship between phase shift and energy](image)

- Original signal energy
- Signal energy of the cumulative sender + attacker signal
- Error in distance estimation (by the attacker)
IC: Randomization At the Sender

- K-slotted signal (spreading)
- Φ random (e.g., choosen uniformly from $[0,2\pi)$)

$$R(t) = \cos(\omega_0 t + \Phi) - \cos(\omega_0 t - \Theta), \quad \Phi \in U [0, 2\pi)$$

sender receiver adversary

$$\mathbb{P}[K_{\text{attenuated}} \leq K_\varepsilon] \geq 1 - \varepsilon$$
IC: Synchronization via Incongruous (i) Delimiters

- Receiver does not have to know the length of the message in advance.
- “Correct” code, received between two subsequent i-delimiters is authentic.
- For Manchester coding, an optimal integrity-delimiter is simply 111000

```
BS_1  ... 111000 1010011001 111000 1010011001 111000  ...  B
    i-delimiter  i-delimiter  i-delimiter
```

- “111000” cannot be a part of any codeword.
Implementation
SecNav: Navigation Message Rate

- With 802.11-based implementation: 500b/s
- With custom-built devices (433 MHz, Atmel): 20kb/s
- Clock Synchronization
 - theoretically $O(ns)$ (signal cannot be shifted by the attacker)
 - with low-cost and off-the-self implementations $O(\mu s)$
Integrity Coding: Summary

BS
- sends Integrity-coded messages (e.g., localization beacons or time-synchronization timestamps) on a designated channel

Node/User
- knows the coverage area
- is aware of its presence in the covered area (e.g., ETHZ campus)

Attacks
- Overshadowing results in all 1s being received => incorrect H(m)
- Jamming results in all 1s being received => incorrect H(m)
- Replay results in an incorrect H(m)

Benefit
- Broadcast authentication and message integrity protection through presence awareness
Optimization

- Coping with the low-throughput of the Integrity (I-coded) channel
 - similar to the use of digital signatures $\text{sig}(h(m))$
Optimal Message Authenticator

- Hash functions are time-variant (e.g., 160b)
- Need for a flexible, time-invariant solution

\[\text{BS}_1 \]

\[\text{Bob} \]

Given \(m \)

Pick \(N_A \in \{0, 1\}^k \)

\((c, d) \leftarrow \text{commit}(m||N_A)\)

\(s_A \leftarrow N_A \oplus \tilde{N}_B \)

\(\tilde{m}||\tilde{N}_A \leftarrow \text{open}(\tilde{c}, \tilde{d}) \)

\(s_B \leftarrow N_B \oplus \tilde{N}_A \)

If \(s_A = s_B \), “Accept” \(\tilde{m} \)

- \(s_A \) transmitted using I-codes
- Free choice of size of \(s_A \) (security depends on \(|s_A|\))
- time-invariant
Integrity-regions: authentication through attackers absence awareness
Example: Distance bounding (Verification)

A node cannot pretend to be closer than it really is, only further !!!

$$d = c \frac{(t_3 - t_0)}{2}$$

$$t_p = \epsilon$$

Brands and Chaum, 1993

Many variants and implementations followed.
Key establishment – DH

\[K_{AB} = (g^b)^a \mod p \]

\[g^a \mod p \]

\[g^b \mod p \]

\[K_{AB} = (g^a)^b \mod p \]
Man in the middle attack

Diagram:

1: jam
2: g^{x_m}
3: jam
4: g^{x_m}
5: $K_A = g^{x_A x_M}$, $K_B = g^{x_B x_M}$

Indoor space

1: g^{x_A}
3: g^{x_B}

5: $K_A = g^{x_A x_M}$, $K_B = g^{x_B x_M}$
Solution to the MITM: authentication of DH contributions

\[g^a \mod p \]

\[g^b \mod p, \text{sig}_B(g^b, g^a) \]

\[\text{sig}_A(g^a, g^b) \]

Uses signatures ... (DH contributions are authenticated)

here are the public keys

06/27/08
Our goal: avoiding certificates

Visual recognition, conscious establishment of keys

\(g^a \mod p \)

\(g^b \mod p \)

\(h(g^a) \)

\(h(g^b) \)
Existing solutions

- Stajano and Anderson propose the *resurrecting duckling* security policy model *(physical contact)*
- Balfanz et al. *location-limited channel* (e.g., *an infrared link*)
- Asokan and Ginzboorg propose a solution based on a *shared password*
- Perrig and Song, hash visualization *(image comparison)*
- Maher presents several methods to verify DH public parameters *(short string comparison)*, found flawed by Jakobsson
- Jakobsson and Larsson proposed two solutions to derive a strong key from a *shared weak key*
- Dohrmann and Ellison propose a method for key verification that is similar to DH-SC *(short word comparison)*
- Gehrmann et al., *(short string comparison)*
- Cagalj et al. *(short string comparison (1/2 string size))*
- Capkun, et al. key establishment for self-organized mobile networks *(IR channel, mobility)*
- Castellucia, Mutaf *(device signal indistinguishability)*
- Cagalj, Capkun, Hubaux, *distance-based verification, channel anti-blocking*
- Cagalj, Capkun, *Integrity-codes (awareness of presence)
From Distance Verification to Message Auth. (I)

- Main idea:
 - bind messages to distances &
 - keep your friends close
- Authentication through (attacker) absence awareness
 - No reliance on propagation assumptions
Integrity region protocol

A:
1) Verify that the measured distance d' is within its (A's) integrity region d.
2) Verify (e.g., visually) that there are no devices at any distance $d'' \leq d'$ (i.e., closer to A than B is).

If the two verifications pass, A accepts that message g^b was generated by B and was not altered in transmission.
Short analysis of the implementation with US distance-bounding

\[(c', o') = \text{commit}(g^M)\]

\[(c, o) = \text{commit}(g^b)\]

\[N_A \oplus o' \rightarrow c, B\]

\[c', B \rightarrow N_A \oplus o'\]

\[A \rightarrow t_s \rightarrow N_A \rightarrow B\]

\[t_r \rightarrow N_A \oplus o \rightarrow B\]

\[RF \text{ channel}\]

\[US \text{ channel}\]
Main consequence of Integrity regions

- Forcing the attacker to be physically close to the devices to perform the MITM attack.

without integrity regions

06/27/08

with integrity regions
Integrity-regions with (omni)directional antennas
Summary/future work

• Physical presence of the attacker (i.e., the attacker cannot be omnipresent (physically))
• Honest devices (users) can have an awareness of presence (distance, space, surrounding devices)
References

- Brands, Chaum, Distance Bounding Protocols, Eurocrypt '93
- Capkun, Cagalj, Integrity Regions: Authentication Through Presence in Wireless Networks, WiSe'06
- Capkun, Cagalj et al., Integrity Codes: Message Integrity Protection and Authentication Over Insecure Channels, S&P(Oakland)'06, TDSC'08
- Tippenhauer, Rasmussen, Pöpper, Capkun, iPhone and iPod Location Spoofing: Attacks on Public WLAN-based Positioning Systems, Tr ETHZ'08