

Selected Topics in Wireless Security

Bertinoro PhD. Summer School, July 2009

Radha Poovendran Network Security Lab Electrical Engineering Department University of Washington, Seattle, WA http://www.ee.washington.edu/research/nsl

Outline

- Securing Ad-Hoc Network Assets
- Threats in Ad-Hoc Environments
- Elementary Security Properties
- Challenges in Realizing Security Properties
- Building Blocks of Defense Mechanisms
- Topic Covered: Control Channel Jamming with node capture attack

Ad Hoc Network Features Interconnection of a (large) number of devices in the *absence of* infrastructure

Resource Constraints (Energy, CPU, Memory)

- **Rely on peer-to-peer communication and collaboration**
- **Dynamic Network Topology Mobility, Sleeping Patterns**
- Self-organized and Self-Adaptive to topology changes
- **Heterogeneous in device capabilities**

7/6/2009

Ad Hoc Networks - Span of Applications

Network must be Available, Reliable and Secure

What does it mean to "Secure" the network?

7/6/2009

Securing the Network Assets

1. How does an adversary know when and where in the network to mount an attack?

2. How does an adversary mount these attacks?

3. How do we reason about attack primitives?

7/6/2009

Threats in the Ad hoc Environment

Tapping on the Open Wireless Medium

• Eavesdrop, block, modify, decompose, insert, replay messages

Physical Attacks on Unattended Devices

• Compromise, clone, move nodes, modify software/hardware

What security properties can we use to defend against these threats?

7/6/2009

Elementary Security Properties

Challenges in Realizing Security Properties

- No Centralized Trusted Entity
 - Lack of infrastructure; node mobility
 - Need for collaboration among the nodes
- Heterogeneity in Resource Constraints
 Computation/communication efficient security mechanisms
- Nodes Have no Global View of the Network
 - **•** Have to rely on limited local information and collaborate
- Susceptible to Physical/Side-Channel Attacks
 - **Cryptography alone is not enough to secure the network**

Building Blocks of Defense Mechanisms

- 1. How to use the building blocks to detect, isolate and defend against the attacks encountered?
- 2. What type of approaches are suitable for such problems?
- **3.** What can be done when the attacker model is not known?

Today: Mitigation of Control Channel Jamming with node capture Attack

Impact of Jamming Control Channels

Jamming prevents reception of control messages and degrades network functionality

A control channel becomes the critical point-of-failure for any supported network functionality

7/6/2009

Why Control Channel?

□ GSM:

- FDMA:
- Carrier channels of 200KHz
 - Very few Beacon Frequencies
 - TDMA:
 - 8 time slots
 - TSO: carries most control traffic
 - Super Frame Structure:
 - Critical information such as FCCH, BCCH1 is only scheduled 1/51 frames
 - ⇒ 1 pulse every 400 timeslots on a 200KHz band prevents all communication

FN 0 1 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 3 3 4 5 6 7 8 9 10 11 12 3 3 3 4 5 6 7 8 9 10 11 12 3 3 4 5 6 7 8 9 10 11 12 3 5 7 8 9 10 11 12 3 5 7 8 9 10 11 11 12 3 11 11 11 11 11 11 11 11 11 11 11 11 1	TS 0 FCCH BCCH 1 BCCH 2 BCCH 3 BCCH 4 AGCH/PCH AGCH/FCH AGCH/FCH AGCH/FCH AGCH/FCH AGCH/FCH AGCH/FCH AG	TS 1 SDCCH 0 SDCCH 0 SDCCH 0 SDCCH 1 SDCCH 1 SDCCH 1 SDCCH 2 SDCCH 2 SDCCH 2 SDCCH 2 SDCCH 2 SDCCH 3 SDCCH 3 SDCCH 3 SDCCH 3 SDCCH 3 SDCCH 4 SDCCH 4 SDCCH 4 SDCCH 4 SDCCH 4 SDCCH 4 SDCCH 5 SDCCH 5 SDCCH 5 SDCCH 5 SDCCH 6 SDCCH 6 SDCCH 6 SDCCH 6 SDCCH 6 SDCCH 6 SDCCH 6 SDCCH 6 SDCCH 7 SDCCH 7 SACCH 0 SACCH 0 SACCH 0 SACCH 1 SACCH 1 S	FN 0 1 2 3 4 5 6 7 8 9 10 11 22 3 4 5 6 7 8 9 10 11 22 23 4 5 6 7 8 9 10 11 22 23 4 5 6 7 8 9 10 11 22 23 4 5 6 7 8 9 10 11 22 3 4 5 6 7 8 9 10 11 22 3 4 5 6 7 8 9 10 11 22 3 4 5 6 7 8 9 10 11 22 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 2 3 4 5 6 7 8 9 10 11 2 2 3 4 5 6 7 8 9 10 11 2 2 3 4 5 6 7 8 9 10 11 2 2 3 4 5 6 7 8 9 10 11 2 2 3 4 5 6 7 8 9 10 11 2 2 3 4 5 6 7 8 9 10 11 2 2 3 4 5 6 7 8 9 10 11 2 2 2 3 4 5 6 7 8 9 10 11 2 2 2 3 4 5 6 7 8 9 10 11 2 2 2 3 4 5 6 7 8 9 10 11 2 2 2 4 2 5 0 1 2 2 2 3 4 5 6 7 8 9 10 11 2 2 2 3 4 5 6 7 8 9 10 11 2 2 2 3 4 5 6 7 8 9 10 11 2 2 3 4 5 6 7 8 9 10 11 2 2 3 4 5 6 7 8 9 10 11 2 2 2 3 4 5 6 7 8 9 10 11 2 2 2 2 2 4 5 6 7 8 9 10 11 2 2 2 2 2 2 4 5 6 7 8 9 10 11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	TS 2 TCH TCH	26 Multiframee 26 Multiframee	TS 3 - 6	TS 7 TCH TCH	
---	--	--	--	--	--	----------	--	--

Control Channel Anti-Jamming

7/6/2009

How can we provide control availability in the presence of jamming using exposed synch keys?

7/6/2009

Main Idea: Channel Redundancy

Dynamic Jamming Mitigation for Wireless Broadcast Networks

Jerry Chiang and Yih-Chun Hu

Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

Results from the Infocom 2008 paper as well as the Mobicom 2007 papers

Outline

Background

- Jamming attack
- Spread spectrum
- **Code tree method**
- **Tree remerging optimization**
- **Theoretical results**

Broadcast System

A broadcast system has one transmitter and many receivers

Hard to efficiently extend point-to-point antijamming capability of spread spectrum to broadcast systems

Jerry Chiang and Yih-Chun Hu

Tree Keying Scheme

Each node of the tree corresponds to a spread spectrum code

[Chiang and Hu, Cross-layer jamming detection and mitigation in wireless broadcast networks, MobiCom 2007]

Tree Keying Scheme

Each user holds the codes corresponding to a leaf and its ancestors

[Chiang and Hu, Cross-layer jamming detection and mitigation in wireless broadcast networks, MobiCom 2007]

Cover

 A cover is a set of codes such that each user can decode using at least one spreading code

Test Codes

 A set of codes are called test codes if they are chosen from descendents of the cover

Detectable Codes

• The ancestors of the test codes in the cover are called *detectable codes*

Jamming Detection

- Control entity and the user nodes have to collaborate on detection of possible jamming
- Each node needs to check if it received same control information via two channels
- Transmitter simultaneously sends message on both the current minimal safe cover and a set of test codes
- Jamming detected when reception happens on test codes but not detectable codes

Response to Jamming Detection

• Jamming is detected on code C

• Replace C in the cover with its two children

Broadcast Control Channel Jamming: Resilience and Identification of Traitors

Agnes Chan, Xin Liu, Guevara Noubir, Bishal Thapa @ College of Computer & Information Science Northeastern University, Boston

Problem Definition

Traitor: A malicious user inside the system whose intension is to prevent the delivery of broadcast control information

• Goal:

- Fully Traitor-Resilient Control Channel Broadcast
- Identify all the traitors
- **Revoke the bad guys**

Resiliency: Ability to deliver control messages successfully to all users at least once during a bounded period of time

Outline

- Model
- Traitor Resilient Scheme
 - 1-Traitor Scheme
 - T-Traitor Scheme
- Performance Evaluation
 - Communication Cost
 - Delay
- Conclusion and Future Work

Model

- Network Model
 - Static: N users and T or less traitors
 - One-Time Preassigned Key Distribution
 - Server sends information over multiple channels
 - Channels are distributed over frequency & time
 - Users use a cryptographic hash function with keys as input to acquire channel information
- Adversary Model
 - Persistent Traitors/Jammers
 - Follow the key sequence prescribed
 - Can only jam one channel at a time
 - Server knows the jammed channels(only for ID)

NU Wireless Lab

TERM DEFINITION

- T Number of Traitors
- N Total Number of Network users
- p A Communication Frame divided into p timeslots
- *q* Number of control channels used in a timeslot
- k_i^j a message(key) assigned to an user j at timeslot i. A channel CH = f(k, i)
- K_i Set of Keys assigned to users at timeslot i
- F Set of all possible keys assigned to users (Key Pool). |F| = p * q.
- C Communication Cost

Binomial Based

Algorithm 1: BBK	Algorithm 2: Transmission for One Traitor Case			
Setup: N users, 1 traitor.	System Server:			
Result : distribution matrix $K = (K_i^{(j)})_{N \times \lceil \log_2 N \rceil}$.	$i \leftarrow 1$			
begin	for timeslot i do			
$F = \{k_1, k_2, \dots, k_{\lceil 1_{n-1}, n \rceil}, k'_1, k'_2, \dots, k'_n, \dots\}$	Channel-send ₁ = $f(k_{(i \mod \lceil \log_2 N \rceil)}, i)$			
for $i = 0$ to $N - 1$ do	Channel-send ₂ = $f(k'_{(i \mod \lceil \log_2 N \rceil)}, i)$			
$i \leftarrow (i_1 i_2 \cdots i_{\lceil \log_n N \rceil}) // \text{binary encoding}$	Send control information on two channels			
for $i=1$ to $\lceil \log_2 N \rceil$ do	$\lfloor i \leftarrow i + 1$			
	User: For each user $j \in \{0, 1, \cdots, N-1\}$			
$ \begin{bmatrix} & & \\ &$	$i \leftarrow 1$			
$ \begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $	for timeslot i do			
	Channel-listen = $f(K_{(i \mod \lfloor \log N \rfloor)}^{(j)}, i)$			
Assign keys from j^{th} row of K to user j	j listens to that channel			
end	$i \leftarrow i + 1$			

Example:

Communication Cost: 2log₂ N

Optimal One-Traitor Scheme

- Sperner's Lemma: Given F, choosing [^{|F|}/₂] subset of F gives the largest Anti-chain of F
- Key Distribution: Given N, pick F such that

$$N \leq {|F| \choose \lfloor \frac{|F|}{2} \rfloor}$$

- Communication Cost, F: (sterling's approx.)
- Optimality:

We know the lower bound, $\lceil \log_2 N \rceil$

Polynomial Based:

Algorithm 3: PBK-T	Algorithm 4: Transmission for Multi-Traitor Case		
Algorithm 3: PBK-1 Setup: N, key pool F Result: a $N \times p$ key-distribution matrix K noted K_{ji} or $K_i^{(j)}$ begin Initialize $K \leftarrow [0]_{N \times p}$ $S = \{ (c+1)$ -vector in GF(q) $\}$ for $j = 0$ to $N - 1$ do Pick unique $s_j \in S$ for $i = 0$ to $p - 1$ do	System Server: $i \leftarrow 1$ for timeslot i do $l = i \mod p$ for $j = 0$ to $q - 1$ do Channel-send = $f(K_l^{(j)}, i)$ Send access information on this channel $i \leftarrow i + 1$ User: for user $i \in \{0, 1, \dots, N - 1\}$		
$\begin{bmatrix} \gamma = \sum_{k=0}^{c} s_{k}^{(j)} i^{k} \\ K_{i}^{(j)} = k_{i}^{(\gamma)} \end{bmatrix}$ Send $\{K_{0}^{(j)}, K_{1}^{(j)}, \cdots, K_{p-1}^{(j)}\}$ to user j end	$i \leftarrow 1$ for timeslot i do $l = i \mod p$ Channel-listen = $f(K_l^{(j)}, i)$ Listen to that channel $i \leftarrow i + 1$		

Example:

Node	Polynomial	Eval	Eval	Eval	Key
j	Identifi er	$u_{j}(0)$	$u_j(1)$	$u_j(2)$	Assignment
0	0	0	0	0	$k_0^0 k_1^0 k_2^0$
1	1	1	1	1	$k_0^1 k_1^1 k_2^1$
2	2	2	2	2	$k_0^2 k_1^2 k_2^2$
3	x	0	1	2	$k_0^0 k_1^1 k_2^2$
4	1 + x	1	2	0	$k_0^{1} k_1^{2} k_2^{0}$
5	2+x	2	0	1	$k_0^{\Sigma} k_1^0 k_1^{I}$
6	2x	0	2	1	$k_0^0 k_1^2 k_2^{I}$
7	1 + 2x	1	0	2	$k_0^{\bar{1}} k_1^0 k_2^{\bar{2}}$
8	2 + 2x	2	1	0	$k_0^2 \ k_1^1 \ k_2^0$
TABLE II					
KEY ASSIGNMENT FOR A 9-NODE NETWORK WITH 2 TRAITORS.					

□ For user j at TS i, assign $k_i^j = polynom_j(i)$

NU Wireless Lab

Correctness: PBK-T resilient Scheme satisfies the sufficient conditions:

Identification:

- T-resilience => Unique Identification of all Traitors
- The assumption that server knows all the jammed channel information is used here
- Cost: table lookups, where c is the maximum degree of identifying polynomials

Conclusion and Future Work

- Extend Combinatorial Scheme of 1-Traitor Scheme to T-Traitor Scheme
- Study the optimal T-Traitor resilient scheme
- Probabilistic Method of defining a resilient scheme and identification for non-persistent traitors
- Suggestions...

Mitigating Control Channel Jamming using Random Key Assignment

Patrick Tague, Radha Poovendran

Network Security Lab (NSL) Department of Electrical Engineering University of Washington, Seattle

In collaboration with: Mingyan Li, Boeing Research & Technology

Control Channel Key Assignment

Global key *k*: capture of single node exposes *k*, compromises control channel anti-jamming

Unique key k_i per node: node capture has no effect on other nodes, but number of control channels is N (large)

Problem: design key assignment that balances trade-off between *number of channels* and *robust anti-jamming*

Network Security Lab -

Design for Graceful Degradation

Number of captured nodes

Network Security Lab http://www.ee.washington.edu/research/nsl/

Our Approach: Random Key Assignment

Redundancy in channels available to each node

Network

Nodes can join/leave

network without control

channel re-configuration

Ability to constrain/control number of nodes with each key

No deterministic structure to allow for strategic node capture attacks

7/6/2009

Random Control Channel

Key Assignment

*k*_{*t*,2}

k_{t.4}

 $k_{t.6}$

time slot t

*k*_{*t*,1}

*k*_{t.3}

*k*_{*t*,5}

Node *n* can access (or jam) channels #5 and #6

- Number of keys $q_t = |K^t|$ determines overhead
- Subset size $m_t = |K_n^t|$ and ratio m_t / q_t determine resilience to jamming at time t

Periodic Key Reuse

• Overhead and delay increase with *p*

Elimination of Captured Nodes

Detection of control channel jamming yields $(J^0, J^1, ..., J^{p-1})$

7/6/2009

Network Security Lab http://www.ee.washington.edu/research/nsl/

Identifying Captured Nodes

Node ID	Assigned Keys	Time Slot	Jammed Channels
1	$(\boldsymbol{K}^{0}_{l}, \boldsymbol{K}^{l}_{l}, \ldots, \boldsymbol{K}^{p-l}_{l})$	0	$\mathbf{J}^{0} = \{k_{0,1}, k_{0,4}\}$
2	$(\mathbf{K}^{0}_{2}, \mathbf{K}^{1}_{2}, \dots, \mathbf{K}^{p-1}_{2})$	1	$J^{1} = \{k_{1,2}, k_{1,3}\}$
N	$(\boldsymbol{K}^{0}_{N}, \boldsymbol{K}^{1}_{N}, \ldots, \boldsymbol{K}^{p-1}_{N})$	<i>p-1</i>	$oldsymbol{J}^{p\text{-}1}=\{k_{p\text{-}1,1},k_{p\text{-}1,3},k_{p\text{-}1,5}\}$

Captured node identification:

Estimate the set of captured nodes C given the jamming evidence {Jⁱ : i=0,...,p-1}

How to estimate the captured node set? How accurate is this estimation process?

Network Security Lab http://www.ee.washington.edu/research/nsl/

Captured Node Estimation

250 nodes, jamming on 90% of possible channels

Network Security Lab http://www.ee.washington.edu/research/nsl/

Challenges in Captured Node Detection

Assumption of adversarial behavior required for detection

Trade-offs between resilience to attack and detection capabilities

VS

Non-trivial false alarm and miss rates due to redundant key assignment

7/6/2009

Network Security Lab http://www.ee.washington.edu/research/nsl/

Acknowledgements

- Agnes Chan, Guevara Noubir : North Eastern University
- Yih-Chun Hu, Jerry Chang: UIUC
- Loukas Lazos: UoA, Tucson
- Patrick Tague: NSL
- http://www.ee.washington.edu/research/nsl

Reading list for the 1st lecture

Prof. Dawn Song

- **• A**
- **B**
- **C**

Prof. Poovendran

- P. Tague, M. Li, and R. Poovendran, <u>Mitigation of Control Channel</u> <u>Jamming under Node Capture Attacks</u>, IEEE Transactions on Mobile Computing.
- http://www.ccs.neu.edu/home/noubir/publications/CLNT07.pdf
- http://users.crhc.illinois.edu/yihchun/pubs/infocom08.pdf