Efficient Cryptographic
 Constructions for Privacypreserving Applications

Dawn Song

UC Berkeley

Privacy-preserving Computation

- Privacy-preserving set operations
- Computation over encrypted data

Motivation (1)

- Many bodies of data can be represented as multisets
- The utility of data is greatly increased when shared, but there are often privacy and security concerns
-Do-not-fly list
-Airlines must determine which passengers cannot fly
-Government and airlines cannot disclose their lists

Motivation (2)

- Public welfare survey: how many welfare recipients are being treated for cancer?
-Cancer patients and welfare rolls are confidential
-To reveal the number welfare recipients
cancer, must
and intersection
operations

Motivation (3)

- Distributed network monitoring

-Nodes in a network identify anomalous behaviors, and filter out uncommon elements
-The nodes must privately element reduction and union operations
-If an element a appears b times in S, a appears $b-1$ times in the reduction of S

Anomalous Behaviors Per Node

Behaviors That Appear $\geq t$
Times Are Revealed

Motivation (4)

- Finding friends common in address books
- Finding common interest in social networks
- Finding popular items in social networks

Kissner-Song Construction

- Efficient, composable, privacy-preserving operations on multisets: intersection, union, element reduction
- We use these techniques to give efficient protocols (secure against HBC and malicious adversaries) for practical problems
- Other example applications:
-General computation on multisets
-Determining subset relations
-Evaluating distributed boolean formulas

Outline

- Techniques for privacy-preserving operations
-Polynomial representation
-Indistinguishable TTP security model
-Multiset operations
-Multiset operations without a TTP
- General computation with multisets

Sets as Polynomials

- To represent multiset S as a polynomial ring R, compute

$$
\prod_{a \in S}(\cdot r-a)
$$

- The elements of the set represented by polynomial f are the roots of \boldsymbol{f} of a certain form
-Random elements are not of this form (with overwhelming probability)
-Let elements of this form represent elements of P

Security for Techniques

- We define security (privacy-preservation) for the techniques we present as follows:
-The output of a trusted
party (TTP) can be probabilistic polynomial time to be distributed identically to a TTP using techniques

-This hides all information but the result

Multiset Union

- Let S, T be multisets represented by f, g
- We calculate $S \cup T$ as $f^{*} g$
- Theorem: There exists a PPT translation of the output of a TTP calculating $S \cup T$, such that the translation is distributed identically to $f^{*} g$.
- From this theorem we may conclude that our calculation of $S \cup T$ is secure
-Correct
-Exposes no additional information

Multiset Intersection

${ }^{-}$Let S, T be multisets represented by f, g,
$\operatorname{Deg}(f)=\operatorname{Deg}(g)$

- Let r, s be uniformly distributed polynomials from $\mathrm{R}^{\mathrm{Deg}(\mathrm{f}}[\mathrm{x}]$ (each coefficient chosen u.a.r. from R)
- We calculate $\mathrm{S} \cap \mathrm{T}$ as f*r+g*s
-Polynomial addition preserves shared roots of f, g
-The operation can use ≥ 2 multisets

Multiset Intersection

Lemma:
If $\operatorname{gcd}(v, w)=1$,
$\operatorname{Deg}(v)=\operatorname{Deg}(w)$,
$y \geq \operatorname{Deg}(v)$,
$r, s \leftarrow R^{y}[x]$,
then $v^{*} r+w^{*}$ s is uniformly distributed over $R^{\operatorname{Deg}(v)+y}[x]$

Multiset Intersection

- Theorem: There exists a PPT translation of the output of a TTP calculating $S \cap T$, such that the translation is distributed identically to $f^{*} r+g^{*} s$.
-By Lemma,
$f^{*} r+g^{*} s=g c d(f, g)^{*}\left(v^{*} r+w^{*} s\right)=g c d(f, g)^{*} u$, where u is uniformly distributed
-Note that $\operatorname{gcd}(\mathrm{f}, \mathrm{g})$ is the polynomial representation of $S \cap T$

Multiset Reduction

- Let S be a multiset represented by f, r_{i} be uniformly distributed polynomials from $\mathrm{R}^{\mathrm{Deg}(f)}[\mathrm{x}]$, Fi be a public random polynomial $\operatorname{Deg}\left(\mathrm{F}_{\mathrm{i}}\right)=\mathrm{i}$ (with a few other properties),
- We calculate $\mathrm{Rd}_{\mathrm{d}}(\mathrm{S})$ as $\sum_{0 \leq i \leq \mathrm{d}} \mathrm{f}^{(\mathrm{i}) *} \mathrm{~F}_{\mathrm{i}}^{*} \mathrm{r}_{\mathrm{i}}$

Multiset Reduction

- Theorem: There exists a PPT translation of the output of a TTP calculating $R d_{d}(S)$, such that the translation is distributed identically to $\sum_{0 \leq i \leq d}{ }^{(i) *} F_{\mathrm{i}}{ }^{*} \mathrm{r}_{\mathrm{i}}$

Outline

- Techniques for privacy-preserving operations
-Polynomial representation
-Indistinguishable TTP security model
-Multiset operations
-Multiset operations without a TTP
- General computation with multisets

Without TTP (1)

${ }^{\bullet}$ Encrypt coefficients of polynomial using a threshold additively homomorphic cryptosystem

- We can perform the calculations needed for our techniques with encrypted polynomials (examples use Paillier cryptosystem)
-Addition

$$
\begin{aligned}
h & =f+g \\
h_{i} & =f_{i}+g_{i} \\
E\left(h_{i}\right) & =E\left(f_{i}\right) * E\left(g_{i}\right)
\end{aligned}
$$

Without TTP (2)

- Formal derivative

$$
\begin{aligned}
h & =f^{\prime} \\
h_{i} & =(i+1) f_{i+1} \\
E\left(h_{i}\right) & =E\left(f_{i}\right)^{i+1}
\end{aligned}
$$

- Multiplication

$$
\begin{aligned}
h_{1} & =f * g \\
h_{i} & =\sum_{j=0}^{h} f_{j} * g_{i-j} \\
E\left(h_{i}\right) & =\prod_{j=0}^{k} E\left(f_{j}\right)^{g_{i-j}}
\end{aligned}
$$

Outline

- Techniques for privacy-preserving operations - General computation with multisets

General Functions

- Using our techniques, efficient protocols can be constructed for any function described by (let s be a privately held set):
$-\gamma::=s\left|R_{d}(\gamma)\right| \gamma \cap \gamma|s \cup \gamma| \gamma \cup s$
- Can less efficiently compute $\gamma::=\gamma \cup \gamma$
- Additional tricks can be used with our techniques to solve additional problems
- All example protocols deferred to paper

Summary (1)

- Efficient, composable techniques for privacypreserving multiset intersection, union, and element reduction
- Protocols for $n \geq 2$ players, $c<n$ dishonest
-Multiset intersection
-Cardinality of multiset intersection
-Over-threshold multiset-union
-Threshold multiset-union (and variants)

Summary (2)

- Protocols secure against malicious players
- Our protocols are fair, if fairness is enforced in threshold decryption
- Efficient computation of many functions over multisets
- General computation over multisets
- Determining subset relations
- Evaluating distributed boolean formulas

Related Work

- Two-party intersection (and related problems): [AES03] [FNP04]
-Disjointness of sets: [KM05]
-Single-element intersection: [FNW96] [NP99] [BST01] [L03]
- For most of the problems we address, the most efficient previous work is general MPC [Y82] [BGW88]

Computation over Encrypted Data

- General computation over encrypted data
- Fully homomorphic encryption by Craig Gentry

