BitBlaze: a New Approach for
Computer Security via Binary Analysis

Dawn Song

Computer Science Dept.
UC Berkeley

Malicious Code---Critical Threat on the Internet

Diverse forms
— Worms, botnets, spyware, viruses, trojan horses, etc.

High prevelance
— CodeRed Infected 500,000 servers

— 61% U.S. computers infected with spyware [National Cyber
Security Alliance06]

— Millions of computers in botnets
Fast propagation
— Slammer scanned 90% Internet within 10 mins

Huge damage
— $10billion annual financial loss [ComputerEconomics05]

Defense I1s Challenging

Software inevitably has bugs/security vulnerabilities
— Intrinsic complexity
— Time-to-market pressure
— Legacy code
— Long time to produce/deploy patches
Attackers have real financial incentives to exploit them
— Thriving underground market

Large scale zombie platform for malicious activities
Attacks increase in sophistication

We need more effective techniques and tools for defense
— Previous approaches largely symptom & heuristics based

The BitBlaze Approach

Semantics based, focus on root cause;

Automatically extracting security-related properties from binary code
(vulnerable programs & malicious code) for effective defense

Automatically create high-quality detection & defense mechanisms
— Automatic generation of vulnerability signatures to filter out exploits

— Automatic detection and classification of malware
» Spyware, keylogger, rootkit, etc.
— Automatic detection of botnet traffic

Able to handle binary-only setting
— Important for COTS & malicious code scenarios
— Binary is truthful

The BitBlaze Research Foci

Design and develop a unified binary analysis platform for
security applications

— Identify & cater common needs of different security applications

— Leverage recent advances in program analysis, formal methods,
binary instrumentation/analysis techniques to enable new
capabilities

Introduce binary-centric approach as a powerful arsenal
to solve real-world security problems

« COTS vulnerability discovery, diagnosis & defense

e« Malicious code analysis & defense

 Automatic model extraction & analysis

« More than a dozen security applications & publications

BitBlaze Binary Analysis Infrastructure: Architecture

e The first infrastructure:

— Novel fusion of static, dynamic analysis techniques, and formal
analysis techniques such as symbolic execution & abstract
Interpretation

— Capable of analyzing whole system (including OS kernel)
— Capable of analyzing packed/encrypted/obfuscated code

Vine: TEMU: Rudder:
Static Analysis] |Dynamic Analysis| | Mixed Execution
Component Component Component

BitBlaze Binary Analysis Platform

Outline

* BitBlaze in action: sample security applications
— Automatic patch-based exploit generation
— Automatic Signature Generation
— In-depth malware analysis

« BitBlaze Binary Analysis Infrastructure
— Challenges
— Design rationale
— Architecture

Patch Tuesday

 On the surface: security patches fix vulnerabilities

 Beneath the surface:
— What's the security consequence of a patch release?

 Our work:
— Current patch approach is dangerous
— Automatic exploit generation

LA

Automatic Patch-based Exploit Generation

e Given vulnerable program P, patched program P’,
automatically generate exploits for P

« Why care?
— Exploits worth money
» Typically $10,000 - $100,000
» Great source of research funding :-)

— Know thy enemy
» Security of patch distribution schemes?
» Can a patch make you more vulnerable?

— Patch testing

Running Example

read input | | |
: « All integers unsigned 32-bits

\ 4 e All arithmetic mod 232
If input 0 2==0 * Motivated by real-world vulnerability

F/ \T

S:=input+3| |s:=input+2

~ N

ptr := realloc(ptr, s)

10

Running Example

n read input

A 4

iInput = 232-2

< 232.2 0 2 ==

if input % 2==0

'

\T

S :=input + 3

S :=input + 2 [+—— s:=0(2%2-2 + 2 % 2%)

~

N

ptr := realloc(ptr, s) |« ptr := realloc(ptr,0)

™~

Using ptr is a problem

7

11

Running Example

E read input

. . *
If iInput % 2==0

"/

S :=input + 3

Integer Overflow when:
S < Input

S = input + 2

/

ptr .= realloc(ptr, s)

12

Running Example

E read input

A 4
If input % 2==0

F/ \T

S:=input+ 3| |[s:=input+ 2

~ e

ptr := realloc(ptr, s)

%

—

about overflowI

N—

| didn’t think

All 32-bit integers

Exploits:
232-3,
232-2,
232-1

™~

2 K
X

13

Program

Inputs

Input Validation Vulnerability &

* Programmer fails to sanitize inputs

e Large class of security-critical vulnerabilities
— “Buffer overflow”, “integer overflow”, “format string vulns”, etc.

 Responsible for many, many compromised computers

14

Patch

E reao_l Input P’ read input
H H

If input % 2== if input % 2==

/N N

S:=input+3] |s:=input+2 || |g:=input+3| |s:=input+ 2

ptr := realloc(ptr, §) |f s > input
/ F T
[Overflow when l//\ \
S < input Err ptr\grealloc(ptr S)
/ N\
~ Patch leaks —~~

1. Vulnerability point (where in code)

~—_2. Vulnerability condition (under what conditions) ___~

15

Patch

E reao_l Input P’ read input
H H

If input % 2== if input % 2==

"/ \ ' "/ \ '

S:=input+ 3| [s:=input+2|||s:=input+3| |s:=input+2

ptr := realloc(ptr, s) if s > input
"/ N
Error ptr := realloc(ptr, s)

Exploits for P are inputs that fail

vulnerability condition at vulnerability point
(s > Input) = false

Our Approach for Patch-based Exploit Generation (1)

Exploit Generation

1. Diff P and P’ to identify
candidate vuln point and
condition

2. Create input that satisfy
candidate vuln condition in P’

— l.e., candidate exploits
3. Check candidate exploits on P

Patch

P1

read input

v

If input % 2==

"/

\T

=input + 3

= input + 2

~

P

If s > input

"/

\T

Error

ptr := realloc(ptr, s)

17

Our Approach for Patch-based Exploit Generation (Il)

« Diff P and P’ to identify candidate vuln point and condition
— Currently only consider inserted sanity checks

— Use binary diffing tools to identify inserted checks
» Existing off-the-shelf syntactic diffing tools
» BinHunt: our semantic diffing tool

 Create candidate exploits
— I.e., input that satisfy candidate vuln condition in P’

 Validate candidate exploits on P
— E.g., dynamic taint analysis (TaintCheck)

18

Create Candidate Exploits

e Given candidate vulnerability point & condition

« Compute Weakest Precondition over program paths
— Using vulnerability condition as post condition
— Construct formulas representing conditions on input
» Whose execution path included
» Satisfying the vulnerability condition at vulnerability point
e Solve formula using solvers
— E.g., decision procedures
— Satisfying answers are candidate exploits

19

Different Approaches for Creating Formulas

Statically computing formula
— Covering many paths (without explicitly enumerating them)
— Sometimes hard to solve formula

Dynamically computing formula
— Formula easier to solve
— Covering only one path

Combined dynamic and static approach
— Covering multiple paths
— Tune for formula complexity

Experimental results
— Different approach effective for different scenarios

Other techniques to make formulas smaller and easier
to solve

20

Experimental Results

* 5 Microsoft patches
— Mostly 2007
— Integer overflow, buffer overflow, information disclosure, DoS

« Automatically generated exploits for all 5 patches
— In seconds to minutes
— 3 out of 5 have no publicly available exploits
— Automatically generated exploit variants for the other 2
« Diffing time
— A few minutes

21

Exploit Generation Results

Time (s) DSA_Setltem | ASPNet | GDI IGMP PNG
_Filter
Dynamic 5.68 11.57 10.34 N/A N/A
Total
Formula 5.51 4.64 10.33 N/A N/A
Solver 0.17 6.93 0.01 N/A N/A
Static 83.47 N/A 26.41 N/A N/A
Total
Formula 2.32 N/A 4.99 N/A N/A
Solver 81.15 N/A 21.42 N/A N/A
Combined 11.51 N/A 29.07 13.57 104.28
Forumla 6.72 N/A 25.29 13.31 104.14
Solver 4,79 N/A 3.78 0.26 0.14

22

When could technique fail?
— Decision procedure cannot solve C

— Exploit depends on several conditions in P’
(works in some cases)

— efc.

However, security design must
conservatively estimate attackers
capabilities

23

We generate exploits in seconds to minutes

+

Fast worms: ~10 minutes to infect all hosts [2003]

Patch release can create serious threats

4
=

)
E

North America
Asia

“a 16 24 8 16 24 &8 18 24 B
UTC time {hours)

Unique IP’s contacting Windows Automatic Update
[GKPV06] 20

Fresh |Ps per 1 sec
Id
A

%

Other Security Applications

Effective new approaches for diverse security problems

— Over dozen projects

— Over 12 publications in security conferences
Exploit detection, diagnosis, defense

Exploits

Inputs Exploit Diagnosis

" Detector

Engine

Vulnerability
Info

In-depth malware analysis

Others:
— Reverse engineering

— Deviation detection [Best Paper Award]

— Semantic binary diff

Filter
Generator

25

Popular Defense: Input-based Filtering---
Block out Exploits

Benign W - 1TE) Benign
Traffic mm—) —)7')% Traffic

| 1) —)
Exploit N = 172N

Inputb‘;lsed Vulnerable Program
Filtering

N Exploit
dropped

 Input-based filtering
— Signature f: given input x, f(x) = exploit or benign
— Effective, widely-deployed defense

e Central question:
How to generate signatures, esp. for new attacks?

26

Signature Generation

e Current common practice: Manual sighature generation
— Slow, esp. for zero-day attacks
— Labor-intensive
— Inaccurate
— Limited for scalability & complexity

e Our work: automatic generation of vulnerability signatures

=
e} Signatures

—
Signature Generator

27

Previous Approaches Insufficient

* Previous approaches: pattern-extraction based

— Extract common patterns in worm samples, not in benign samples
» Common substring or combination thereof

Honeycomb[Kreibich-Hotnets03]
Earlybird[Singh-OSDIO3] NM N
Autograph[Kim-USENIX05]
Polygraph[Song-IEEE S&P05] \ 1 /
|

. Disadvantages Signature

— Insufficient for polymorphic worms
» Can’t generate signatures for unseen variants
— No guarantee of signature quality
— Susceptible to adversarial learning [Song-RAIDO06]

— Purely bit-pattern syntactic approach, so no semantic
understanding of vulnerability

>

\4

>

\4

>

4

>

A4

28

Automatic Generation of Vulnerability Signatures

Instead of bit patterns, use root cause
— Generating signatures based on vulnerability

Given an exploit, first identify vulnerability information
— Vulnerability Point: where the vulnerability is

— Vulnerability Condition: what triggers the vulnerability
» E.g., condition for buffer overflow

— Using a combination of static & dynamic analysis

 Then generate signatures with given vulnerability
Information

Vulnerability

Diagnosis Info Signature k- signatures
Engine Generator

Exploits

29

Approach: Extracting Constraints Imposed by Vulnerability

As exploits morph, they need to trigger vulnerability
So, vulnerability puts constraints on exploits

Problem reduction:
— Signature generation =
constraints on inputs that trigger vulnerability

Symbolic execution

Soundness guaranteed (no false positives)

30

Automatic Vulnerability Signature Generation

What should the signature be?

read input

v

If input % 2==

F/ \T

S:=input+3| |[Ss:=input+2

~ e

If s > input

"/ AV

Error

ptr := realloc(ptr, s)

31

Protocol-aware Signatures

So far, symbolic constraint signatures operate on bits

Given protocol parsing information (e.g., a parse tree),
— lift constraints to field-level
— Remove parsing related constraints
— Generate symbolic constraint signatures on field-level

Effective for variable-length fields, iterative fields, etc.

Used in conjunction with signature matching engine
with protocol parsing capability

32

Evaluation: Protocol-aware Signatures

« Automatically generated optimal or close to optimal
signatures for real-world exploits

— SQL, GHttpd, AtpHttpd, GDI, Windows DCOM RPC vulnerabilities

e Signature for SQL.:
— (FIELD_CMD==4) ” length(FIELD_DB) > 64
e Signature for GHttpd:

— (strcmp(METHOD, “GET"”) =0 ” length(METHOD) > 165) ||
(strcmp(METHOD, “GET) == 0 » strstr(URI, “/..”) =0 "
length(URI)>170) ||
(strcmp(METHOD, “GET”) == 0 ” strstr(URI, “/..”)==0"
length(URI) + length(ClientAddr) > 166)

33

In-depth Malware Analysis

 High volume of new malware needs automatic malware analysis

 Given a piece of suspicious code sample,
— What malicious behaviors will it have?
— How to classify it?
» Key logger, BHO Spyware, Backdoor, Rootkit
— What mechanisms does it use?
» How does it steal information?
» How does it hook?
— Who does it communicate with? Where does it send information to?
— Does its communication exhibit certain patterns?
— Does it contain trigger-based behavior?

» Time bombs
» Botnet commands

« Can we design & develop a unified framework to answer these
guestions?

34

BitScope: THE In-depth Malware Analysis infrastructure

 |dentify/analyze malicious behavior based on root cause
— Privacy-breaching malware: spyware, keylogger, backdoor, etc.
— Malware perturbing system by hooking: rootkit, etc.

« Understand how malware get into the system
— What mechanisms/vulnerabilities does it exploit

 Explore hidden behavior, detect trigger-based behavior
— Automatically identifying botnet program commands, time bombs

BitScope

Extractor

Symbolic >
system
environment —»

» CFG

Rudder: » Solutions / Inputs
Malici > . —>
gi:falous Mixed —» Impacts / Behaviors
Y Path execution
Selector engine » Single-path Dependency Info
T \F

o O

—» Multi-path Dependency Info.
35

BitBlaze Malware Analysis Online

* A subset of our malware analysis functionalities
— Malware unpacking, IDA-Pro plug-in
— Extracting behaviors

« Parallel architecture for high-volume malware analysis

* Public service:
— Submit malware samples and get results back

36

Outline

« BitBlaze in action: sample security applications
— Automatic patch-based exploit generation
— In-depth malware analysis and other applications

« BitBlaze Binary Analysis Infrastructure
— Challenges
— Design rationale
— Architecture

* Future directions of binary analysis & beyond

37

BitBlaze Binary Analysis Infrastructure: Challenges

Complexity
— 1A-32 manuals for x86 instruction set weights over 11 pounds

Lack higher-level semantics
— Even disassembling is non-trivial

Require whole-system view

— Operations within kernel and interactions btw processes
Malicious code may obfuscate

— Code packing

— Code encryption

— Code obfuscation & dynamically generated code

38

BitBlaze Binary Analysis Infrastructure: Design Rationale

 Accuracy
— Enable precise analysis, formally modeling instruction semantics

* Extensibility
— Develop core utilities to support different architecture and
applications

* Fusion of static & dynamic analysis

— Static analysis
» Pros: more complete results

» Cons: pointer aliasing, indirect jumps, code obfuscation, kernel &
floating point instructions difficult to model

— Dynamic analysis
» Pros: easier
» Cons: limited coverage

— Solution: combining both

39

BitBlaze Binary Analysis Infrastructure: Architecture

e The first infrastructure:

— Novel fusion of static, dynamic analysis techniques, and formal
analysis techniques such as symbolic execution & abstract
Interpretation

— Capable of analyzing whole system (including OS kernel)
— Capable of analyzing packed/encrypted/obfuscated code

Vine: TEMU: Rudder:
Static Analysis] |Dynamic Analysis| | Mixed Execution
Component Component Component

BitBlaze Binary Analysis Platform

40

Vine

e Static analysis component

Control flow,
Data flow analysis,
Optimizations,
Value Set Analysis

Binar . | i
—»y' Disassemble p—— Cor:;/elgmg

Disassembl
Y Symbolic execution,

Computing WP

Computing Chop, slicing
Program Transformation

Output
Program

41

TEMU

 Work for both Windows & Linux, applications & kernel
 Build on QEMU

: Function
 OS-level semantics Call
Sequence
Log
instructions
Slicing
Dynamic
Binary Record Data Annotated
Instrumentation Dependency Trace Layerec_al,
(Taint Analysis) Panoptl_c
Symbolic
Execution
Symbolic
Execution w
Symbolic
System

Environment 42

Rudder

« Compute path predicate
* Obtain new path predicate by reverting branches
* Solve path predicate to obtain new input to go down a

different path

Path predicate
generator

Solving
Path Selector » New Path
Predicate

, Inputto

Rudder

New path

43

Outline

« BitBlaze Binary Analysis Infrastructure
— Challenges
— Design rationale
— Architecture

« BitBlaze in action: sample security applications
— Automatic patch-based exploit generation
— In-depth malware analysis

e Future directions of binary analysis & beyond

44

The Vision

e Binary-only code audit and assurance
— Given athird-party program
— Does it have vulnerabilities?
— Does it have certain security guarantees?
— Does it contain trojans?

* Design and develop an infrastructure to accomplish this

— More advanced binary analysis and program verification
techniques

— Annotated binaries
— Holistic solution including the software development cycle

45

Conclusion

e BitBlaze binary analysis platform
— A unique fusion of dynamic, static analysis & formal analysis

e Solutions to broad spectrum of security applications
— Vulnerability discovery, diagnosis, defense
— In-depth malware analysis
— Automatic model extraction and analysis

* Important future research direction

46

Contact

* http://bitblaze.cs.berkeley.edu

« dawnsong@cs.berkeley.edu

e BitBlaze team:

David Brumley, Juan Caballero, Ivan Jager, Cody Hartwig,
Min Gyung Kang, Zhenkali Liang, James Newsome,
Pongsin Poosankam, Prateek Saxena, Heng Yin

47

