
1

BitBlaze: a New Approach for
Computer Security via Binary Analysis

Dawn Song

Computer Science Dept.
UC Berkeley

2

Malicious Code---Critical Threat on the Internet

• Diverse forms
– Worms, botnets, spyware, viruses, trojan horses, etc.

• High prevelance
– CodeRed Infected 500,000 servers
– 61% U.S. computers infected with spyware [National Cyber

Security Alliance06]
– Millions of computers in botnets

• Fast propagation
– Slammer scanned 90% Internet within 10 mins

• Huge damage
– $10billion annual financial loss [ComputerEconomics05]

3

Defense is Challenging
• Software inevitably has bugs/security vulnerabilities

– Intrinsic complexity
– Time-to-market pressure
– Legacy code
– Long time to produce/deploy patches

• Attackers have real financial incentives to exploit them
– Thriving underground market

• Large scale zombie platform for malicious activities
• Attacks increase in sophistication

• We need more effective techniques and tools for defense
– Previous approaches largely symptom & heuristics based

4

The BitBlaze Approach
• Semantics based, focus on root cause:

Automatically extracting security-related properties from binary code
(vulnerable programs & malicious code) for effective defense

• Automatically create high-quality detection & defense mechanisms
– Automatic generation of vulnerability signatures to filter out exploits
– Automatic detection and classification of malware

» Spyware, keylogger, rootkit, etc.
– Automatic detection of botnet traffic

• Able to handle binary-only setting
– Important for COTS & malicious code scenarios
– Binary is truthful

5

The BitBlaze Research Foci
1. Design and develop a unified binary analysis platform for

security applications
– Identify & cater common needs of different security applications
– Leverage recent advances in program analysis, formal methods,

binary instrumentation/analysis techniques to enable new
capabilities

2. Introduce binary-centric approach as a powerful arsenal
to solve real-world security problems
• COTS vulnerability discovery, diagnosis & defense
• Malicious code analysis & defense
• Automatic model extraction & analysis
• More than a dozen security applications & publications

6

BitBlaze Binary Analysis Infrastructure: Architecture

• The first infrastructure:
– Novel fusion of static, dynamic analysis techniques, and formal

analysis techniques such as symbolic execution & abstract
interpretation

– Capable of analyzing whole system (including OS kernel)
– Capable of analyzing packed/encrypted/obfuscated code

Vine:
Static Analysis

Component

TEMU:
Dynamic Analysis

Component

Rudder:
Mixed Execution

Component

BitBlaze Binary Analysis Platform

7

Outline

• BitBlaze in action: sample security applications
– Automatic patch-based exploit generation
– Automatic Signature Generation
– In-depth malware analysis

• BitBlaze Binary Analysis Infrastructure
– Challenges
– Design rationale
– Architecture

8

Patch Tuesday
• On the surface: security patches fix vulnerabilities

• Beneath the surface:
– What’s the security consequence of a patch release?

• Our work:
– Current patch approach is dangerous
– Automatic exploit generation

9

Automatic Patch-based Exploit Generation

• Given vulnerable program P, patched program P’,
automatically generate exploits for P

• Why care?
– Exploits worth money

» Typically $10,000 - $100,000
» Great source of research funding :-)

– Know thy enemy
» Security of patch distribution schemes?
» Can a patch make you more vulnerable?

– Patch testing

10

Running Example

• All integers unsigned 32-bits
• All arithmetic mod 232

• Motivated by real-world vulnerabilityif input % 2==0

read input

s := input + 3 s := input + 2

ptr := realloc(ptr, s)

TF

P

11

Running Example

if input % 2==0

read input

s := input + 3 s := input + 2

ptr := realloc(ptr, s)

TF

P input = 232-2

232-2 % 2 == 0

s := 0 (232-2 + 2 % 232)

ptr := realloc(ptr,0)

Using ptr is a problem

12

Running Example

if input % 2==0

read input

s := input + 3 s := input + 2

ptr := realloc(ptr, s)

TF

P Integer Overflow when:
s < input

13

Running Example

I didn’t think
about overflow!

Safe inputsAll 32-bit integers

Exploits:
232-3,
232-2,
232-1

if input % 2==0

read input

s := input + 3 s := input + 2

ptr := realloc(ptr, s)

TF

P

14

Safe InputsProgram
Inputs

Input Validation Vulnerability
• Programmer fails to sanitize inputs
• Large class of security-critical vulnerabilities

– “Buffer overflow”, “integer overflow”, “format string vulns”, etc.
• Responsible for many, many compromised computers

15

if input % 2==0

read input

s := input + 3 s := input + 2

ptr := realloc(ptr, s)

TF

P
if input % 2==0

read input

s := input + 3 s := input + 2

if s > input

TF

P’

ptr := realloc(ptr, s)

TF

Error

Patch leaks

1. Vulnerability point (where in code)

2. Vulnerability condition (under what conditions)

Patch

Overflow when
s < input

16

if input % 2==0

read input

s := input + 3 s := input + 2

if s > input

TF

P’

ptr := realloc(ptr, s)

TF

Error

Patch

if input % 2==0

read input

s := input + 3 s := input + 2

ptr := realloc(ptr, s)

TF

P

Exploits for P are inputs that fail
vulnerability condition at vulnerability point

(s > input) = false

17

if input % 2==0

read input

s := input + 3 s := input + 2

if s > input

TF

P’

ptr := realloc(ptr, s)

TF

Error

Patch

Exploit Generation
1. Diff P and P’ to identify

candidate vuln point and
condition

2. Create input that satisfy
candidate vuln condition in P’

– i.e., candidate exploits
3. Check candidate exploits on P

Our Approach for Patch-based Exploit Generation (I)

18

Our Approach for Patch-based Exploit Generation (II)

• Diff P and P’ to identify candidate vuln point and condition
– Currently only consider inserted sanity checks
– Use binary diffing tools to identify inserted checks

» Existing off-the-shelf syntactic diffing tools
» BinHunt: our semantic diffing tool

• Create candidate exploits
– i.e., input that satisfy candidate vuln condition in P’

• Validate candidate exploits on P
– E.g., dynamic taint analysis (TaintCheck)

19

Create Candidate Exploits
• Given candidate vulnerability point & condition
• Compute Weakest Precondition over program paths

– Using vulnerability condition as post condition
– Construct formulas representing conditions on input

» Whose execution path included
» Satisfying the vulnerability condition at vulnerability point

• Solve formula using solvers
– E.g., decision procedures
– Satisfying answers are candidate exploits

20

Different Approaches for Creating Formulas

• Statically computing formula
– Covering many paths (without explicitly enumerating them)
– Sometimes hard to solve formula

• Dynamically computing formula
– Formula easier to solve
– Covering only one path

• Combined dynamic and static approach
– Covering multiple paths
– Tune for formula complexity

• Experimental results
– Different approach effective for different scenarios

• Other techniques to make formulas smaller and easier
to solve

21

Experimental Results
• 5 Microsoft patches

– Mostly 2007
– Integer overflow, buffer overflow, information disclosure, DoS

• Automatically generated exploits for all 5 patches
– In seconds to minutes
– 3 out of 5 have no publicly available exploits
– Automatically generated exploit variants for the other 2

• Diffing time
– A few minutes

22

Exploit Generation Results

0.140.263.78N/A4.79Solver
104.1413.3125.29N/A6.72 Forumla
104.2813.5729.07N/A11.51Combined

N/AN/A21.42N/A81.15Solver
N/AN/A4.99N/A2.32Formula

N/AN/A26.41N/A83.47Static
Total

N/AN/A0.016.930.17Solver
N/AN/A10.334.645.51Formula

N/AN/A10.3411.575.68Dynamic
Total

PNGIGMPGDIASPNet
_Filter

DSA_SetItemTime (s)

23

When could technique fail?
– Decision procedure cannot solve C
– Exploit depends on several conditions in P’

(works in some cases)
– etc.

However, security design must
conservatively estimate attackers

capabilities

24

Unique IP’s contacting Windows Automatic Update
[GKPV06]

North America
Asia

Fast worms: ~10 minutes to infect all hosts [2003]

We generate exploits in seconds to minutes

+
=

Patch release can create serious threats

25

Other Security Applications
• Effective new approaches for diverse security problems

– Over dozen projects
– Over 12 publications in security conferences

• Exploit detection, diagnosis, defense

• In-depth malware analysis
• Others:

– Reverse engineering
– Deviation detection [Best Paper Award]
– Semantic binary diff

Filter
Generator

Vulnerability
InfoDiagnosis

Engine
Exploits

Exploit
Detector

Inputs

26

Input-based
Filtering

Popular Defense: Input-based Filtering---
Block out Exploits

Exploit
dropped

• Input-based filtering
– Signature f: given input x, f(x) = exploit or benign
– Effective, widely-deployed defense

• Central question:
How to generate signatures, esp. for new attacks?

Vulnerable Program

Benign
Traffic

Benign
Traffic

Exploit

27

Signature Generation
• Current common practice: Manual signature generation

– Slow, esp. for zero-day attacks
– Labor-intensive
– Inaccurate
– Limited for scalability & complexity

• Our work: automatic generation of vulnerability signatures

Signature Generator

Signatures

28

Previous Approaches Insufficient
• Previous approaches: pattern-extraction based

– Extract common patterns in worm samples, not in benign samples
» Common substring or combination thereof
» Honeycomb[Kreibich-Hotnets03]
» Earlybird[Singh-OSDI03]
» Autograph[Kim-USENIX05]
» Polygraph[Song-IEEE S&P05]

• Disadvantages
– Insufficient for polymorphic worms

» Can’t generate signatures for unseen variants
– No guarantee of signature quality
– Susceptible to adversarial learning [Song-RAID06]
– Purely bit-pattern syntactic approach, so no semantic

understanding of vulnerability

Signature

29

Automatic Generation of Vulnerability Signatures

• Instead of bit patterns, use root cause
– Generating signatures based on vulnerability

• Given an exploit, first identify vulnerability information
– Vulnerability Point: where the vulnerability is
– Vulnerability Condition: what triggers the vulnerability

» E.g., condition for buffer overflow
– Using a combination of static & dynamic analysis

• Then generate signatures with given vulnerability
information

Signature
Generator

Vulnerability
InfoDiagnosis

Engine
Exploits Signatures

30

Approach: Extracting Constraints Imposed by Vulnerability

• As exploits morph, they need to trigger vulnerability

• So, vulnerability puts constraints on exploits

• Problem reduction:
– Signature generation =

constraints on inputs that trigger vulnerability

• Symbolic execution

• Soundness guaranteed (no false positives)

31

if input % 2==0

read input

s := input + 3 s := input + 2

if s > input

TF

ptr := realloc(ptr, s)

TF

Error

Automatic Vulnerability Signature Generation

What should the signature be?

32

Protocol-aware Signatures
• So far, symbolic constraint signatures operate on bits

• Given protocol parsing information (e.g., a parse tree),
– lift constraints to field-level
– Remove parsing related constraints
– Generate symbolic constraint signatures on field-level

• Effective for variable-length fields, iterative fields, etc.

• Used in conjunction with signature matching engine
with protocol parsing capability

33

Evaluation: Protocol-aware Signatures

• Automatically generated optimal or close to optimal
signatures for real-world exploits

– SQL, GHttpd, AtpHttpd, GDI, Windows DCOM RPC vulnerabilities

• Signature for SQL:
– (FIELD_CMD==4) ^ length(FIELD_DB) > 64

• Signature for GHttpd:
– (strcmp(METHOD, “GET”) != 0 ^ length(METHOD) > 165) ||

(strcmp(METHOD, “GET) == 0 ^ strstr(URI, “/..”) !=0 ^
length(URI)>170) ||

(strcmp(METHOD, “GET”) == 0 ^ strstr(URI, “/..”) == 0 ^
length(URI) + length(ClientAddr) > 166)

34

In-depth Malware Analysis
• High volume of new malware needs automatic malware analysis
• Given a piece of suspicious code sample,

– What malicious behaviors will it have?
– How to classify it?

» Key logger, BHO Spyware, Backdoor, Rootkit
– What mechanisms does it use?

» How does it steal information?
» How does it hook?

– Who does it communicate with? Where does it send information to?
– Does its communication exhibit certain patterns?
– Does it contain trigger-based behavior?

» Time bombs
» Botnet commands

• Can we design & develop a unified framework to answer these
questions?

35

BitScope: THE In-depth Malware Analysis infrastructure
• Identify/analyze malicious behavior based on root cause

– Privacy-breaching malware: spyware, keylogger, backdoor, etc.
– Malware perturbing system by hooking: rootkit, etc.

• Understand how malware get into the system
– What mechanisms/vulnerabilities does it exploit

• Explore hidden behavior, detect trigger-based behavior
– Automatically identifying botnet program commands, time bombs

36

BitBlaze Malware Analysis Online
• A subset of our malware analysis functionalities

– Malware unpacking, IDA-Pro plug-in
– Extracting behaviors

• Parallel architecture for high-volume malware analysis

• Public service:
– Submit malware samples and get results back

37

Outline
• BitBlaze in action: sample security applications

– Automatic patch-based exploit generation
– In-depth malware analysis and other applications

• BitBlaze Binary Analysis Infrastructure
– Challenges
– Design rationale
– Architecture

• Future directions of binary analysis & beyond

38

BitBlaze Binary Analysis Infrastructure: Challenges

• Complexity
– IA-32 manuals for x86 instruction set weights over 11 pounds

• Lack higher-level semantics
– Even disassembling is non-trivial

• Require whole-system view
– Operations within kernel and interactions btw processes

• Malicious code may obfuscate
– Code packing
– Code encryption
– Code obfuscation & dynamically generated code

39

• Accuracy
– Enable precise analysis, formally modeling instruction semantics

• Extensibility
– Develop core utilities to support different architecture and

applications
• Fusion of static & dynamic analysis

– Static analysis
» Pros: more complete results
» Cons: pointer aliasing, indirect jumps, code obfuscation, kernel &

floating point instructions difficult to model
– Dynamic analysis

» Pros: easier
» Cons: limited coverage

– Solution: combining both

BitBlaze Binary Analysis Infrastructure: Design Rationale

40

BitBlaze Binary Analysis Infrastructure: Architecture

• The first infrastructure:
– Novel fusion of static, dynamic analysis techniques, and formal

analysis techniques such as symbolic execution & abstract
interpretation

– Capable of analyzing whole system (including OS kernel)
– Capable of analyzing packed/encrypted/obfuscated code

Vine:
Static Analysis

Component

TEMU:
Dynamic Analysis

Component

Rudder:
Mixed Execution

Component

BitBlaze Binary Analysis Platform

41

Vine
• Static analysis component

Disassemble Converting
to IR

Control flow,
Data flow analysis,

Optimizations,
Value Set Analysis

Symbolic execution,
Computing WP

Computing Chop, slicing
Program Transformation

Output
Program

Binary

Disassembly

42

TEMU
• Work for both Windows & Linux, applications & kernel
• Build on QEMU
• OS-level semantics

Dynamic
Binary

Instrumentation

Log
instructions

Record Data
Dependency

(Taint Analysis)

Symbolic
Execution w

Symbolic
System

Environment

Annotated
Trace

Slicing

Layered,
Panoptic
Symbolic
Execution

Function
Call

Sequence

43

Rudder
• Compute path predicate
• Obtain new path predicate by reverting branches
• Solve path predicate to obtain new input to go down a

different path

Path predicate
generator Path Selector

Solving
New Path
Predicate

Input to
New path

Rudder

44

Outline
• BitBlaze Binary Analysis Infrastructure

– Challenges
– Design rationale
– Architecture

• BitBlaze in action: sample security applications
– Automatic patch-based exploit generation
– In-depth malware analysis

• Future directions of binary analysis & beyond

45

The Vision
• Binary-only code audit and assurance

– Given a third-party program
– Does it have vulnerabilities?
– Does it have certain security guarantees?
– Does it contain trojans?

• Design and develop an infrastructure to accomplish this
– More advanced binary analysis and program verification

techniques
– Annotated binaries
– Holistic solution including the software development cycle

46

Conclusion
• BitBlaze binary analysis platform

– A unique fusion of dynamic, static analysis & formal analysis

• Solutions to broad spectrum of security applications
– Vulnerability discovery, diagnosis, defense
– In-depth malware analysis
– Automatic model extraction and analysis

• Important future research direction

47

Contact

• http://bitblaze.cs.berkeley.edu

• dawnsong@cs.berkeley.edu

• BitBlaze team:
David Brumley, Juan Caballero, Ivan Jager, Cody Hartwig,
Min Gyung Kang, Zhenkai Liang, James Newsome,
Pongsin Poosankam, Prateek Saxena, Heng Yin

