
1

BitBlaze: a New Approach for
Computer Security via Binary Analysis

Dawn Song

Computer Science Dept.
UC Berkeley



2

Malicious Code---Critical Threat on the Internet

• Diverse forms
– Worms, botnets, spyware, viruses, trojan horses, etc.

• High prevelance
– CodeRed Infected 500,000 servers
– 61% U.S. computers infected with spyware [National Cyber 

Security Alliance06]
– Millions of computers in botnets

• Fast propagation
– Slammer scanned 90% Internet within 10 mins

• Huge damage
– $10billion annual financial loss [ComputerEconomics05]
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Defense is Challenging
• Software inevitably has bugs/security vulnerabilities

– Intrinsic complexity
– Time-to-market pressure
– Legacy code
– Long time to produce/deploy patches

• Attackers have real financial incentives to exploit them
– Thriving underground market

• Large scale zombie platform for malicious activities
• Attacks increase in sophistication

• We need more effective techniques and tools for defense
– Previous approaches largely symptom & heuristics based
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The BitBlaze Approach
• Semantics based, focus on root cause:

Automatically extracting security-related properties from binary code 
(vulnerable programs & malicious code) for effective defense

• Automatically create high-quality detection & defense mechanisms
– Automatic generation of vulnerability signatures to filter out exploits
– Automatic detection and classification of malware

» Spyware, keylogger, rootkit, etc.
– Automatic detection of botnet traffic

• Able to handle binary-only setting
– Important for COTS & malicious code scenarios
– Binary is truthful
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The BitBlaze Research Foci
1. Design and develop a unified binary analysis platform for 

security applications
– Identify & cater common needs of different security applications
– Leverage recent advances in program analysis, formal methods, 

binary instrumentation/analysis techniques to enable new 
capabilities

2. Introduce binary-centric approach as a powerful arsenal 
to solve real-world security problems
• COTS vulnerability discovery, diagnosis & defense
• Malicious code analysis & defense
• Automatic model extraction & analysis
• More than a dozen security applications & publications
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BitBlaze Binary Analysis Infrastructure: Architecture

• The first infrastructure:
– Novel fusion of static, dynamic analysis techniques, and formal

analysis techniques such as symbolic execution & abstract 
interpretation

– Capable of analyzing whole system (including OS kernel) 
– Capable of analyzing packed/encrypted/obfuscated code

Vine:
Static Analysis

Component

TEMU:
Dynamic Analysis

Component

Rudder:
Mixed Execution

Component

BitBlaze Binary Analysis Platform
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Outline

• BitBlaze in action: sample security applications
– Automatic patch-based exploit generation
– Automatic Signature Generation
– In-depth malware analysis

• BitBlaze Binary Analysis Infrastructure
– Challenges
– Design rationale
– Architecture
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Patch Tuesday
• On the surface: security patches fix vulnerabilities

• Beneath the surface:
– What’s the security consequence of a patch release?

• Our work:
– Current patch approach is dangerous
– Automatic exploit generation
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Automatic Patch-based Exploit Generation

• Given vulnerable program P, patched program P’,
automatically generate exploits for P

• Why care?
– Exploits worth money

» Typically $10,000 - $100,000
» Great source of research funding :-)

– Know thy enemy
» Security of patch distribution schemes?
» Can a patch make you more vulnerable?

– Patch testing
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Running Example

• All integers unsigned 32-bits
• All arithmetic mod 232

• Motivated by real-world vulnerabilityif input % 2==0

read input

s := input + 3 s := input + 2

ptr := realloc(ptr, s)

TF

P
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Running Example

if input % 2==0

read input

s := input + 3 s := input + 2

ptr := realloc(ptr, s)

TF

P input = 232-2

232-2 % 2 == 0

s := 0 (232-2 + 2 % 232)

ptr := realloc(ptr,0)

Using ptr is a problem
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Running Example

if input % 2==0

read input

s := input + 3 s := input + 2

ptr := realloc(ptr, s)

TF

P Integer Overflow when:
s < input
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Running Example

I didn’t think 
about overflow!

Safe inputsAll 32-bit integers

Exploits:
232-3,
232-2,
232-1

if input % 2==0

read input

s := input + 3 s := input + 2

ptr := realloc(ptr, s)

TF

P
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Safe InputsProgram
Inputs

Input Validation Vulnerability
• Programmer fails to sanitize inputs
• Large class of security-critical vulnerabilities

– “Buffer overflow”, “integer overflow”, “format string vulns”, etc. 
• Responsible for many, many compromised computers
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if input % 2==0

read input

s := input + 3 s := input + 2

ptr := realloc(ptr, s)

TF

P
if input % 2==0

read input

s := input + 3 s := input + 2

if s > input

TF

P’

ptr := realloc(ptr, s)

TF

Error

Patch leaks

1. Vulnerability point (where in code)

2. Vulnerability condition (under what conditions)

Patch

Overflow when 
s < input
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if input % 2==0

read input

s := input + 3 s := input + 2

if s > input

TF

P’

ptr := realloc(ptr, s)

TF

Error

Patch

if input % 2==0

read input

s := input + 3 s := input + 2

ptr := realloc(ptr, s)

TF

P

Exploits for P are inputs that fail 
vulnerability condition at vulnerability point

(s > input) = false
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if input % 2==0

read input

s := input + 3 s := input + 2

if s > input

TF

P’

ptr := realloc(ptr, s)

TF

Error

Patch

Exploit  Generation
1. Diff P and P’ to identify 

candidate vuln point and 
condition 

2. Create input that satisfy 
candidate vuln condition in P’

– i.e., candidate exploits
3. Check candidate exploits on P

Our Approach for Patch-based Exploit Generation (I)
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Our Approach for Patch-based Exploit Generation (II)

• Diff P and P’ to identify candidate vuln point and condition
– Currently only consider inserted sanity checks
– Use binary diffing tools to identify inserted checks

» Existing off-the-shelf syntactic diffing tools
» BinHunt: our semantic diffing tool

• Create candidate exploits
– i.e., input that satisfy candidate vuln condition in P’

• Validate candidate exploits on P
– E.g., dynamic taint analysis (TaintCheck)
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Create Candidate Exploits
• Given candidate vulnerability point & condition
• Compute Weakest Precondition over program paths

– Using vulnerability condition as post condition
– Construct formulas representing conditions on input

» Whose execution path included
» Satisfying the vulnerability condition at vulnerability point

• Solve formula using solvers
– E.g., decision procedures
– Satisfying answers are candidate exploits
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Different Approaches for Creating Formulas

• Statically computing formula
– Covering many paths (without explicitly enumerating them)
– Sometimes hard to solve formula

• Dynamically computing formula
– Formula easier to solve
– Covering only one path

• Combined dynamic and static approach
– Covering multiple paths
– Tune for formula complexity

• Experimental results
– Different approach effective for different scenarios

• Other techniques to make formulas smaller and easier 
to solve
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Experimental Results
• 5 Microsoft patches

– Mostly 2007
– Integer overflow, buffer overflow, information disclosure, DoS 

• Automatically generated exploits for all 5 patches
– In seconds to minutes
– 3 out of 5 have no publicly available exploits
– Automatically generated exploit variants for the other 2

• Diffing time
– A few minutes
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Exploit Generation Results

0.140.263.78N/A4.79Solver
104.1413.3125.29N/A6.72 Forumla
104.2813.5729.07N/A11.51Combined

N/AN/A21.42N/A81.15Solver
N/AN/A4.99N/A2.32Formula

N/AN/A26.41N/A83.47Static 
Total

N/AN/A0.016.930.17Solver
N/AN/A10.334.645.51Formula

N/AN/A10.3411.575.68Dynamic 
Total

PNGIGMPGDIASPNet
_Filter

DSA_SetItemTime (s)
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When could technique fail?
– Decision procedure cannot solve C
– Exploit depends on several conditions in P’

(works in some cases)
– etc.

However, security design must
conservatively estimate attackers 

capabilities
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Unique IP’s contacting Windows Automatic Update 
[GKPV06]

North America
Asia

Fast worms: ~10 minutes to infect all hosts [2003]

We generate exploits in seconds to minutes

+
=

Patch release can create serious threats
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Other Security Applications
• Effective new approaches for diverse security problems

– Over dozen projects
– Over 12 publications in security conferences

• Exploit detection, diagnosis, defense

• In-depth malware analysis
• Others: 

– Reverse engineering
– Deviation detection [Best Paper Award]
– Semantic binary diff

Filter
Generator

Vulnerability
InfoDiagnosis

Engine
Exploits

Exploit
Detector

Inputs
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Input-based 
Filtering

Popular Defense: Input-based Filtering---
Block out Exploits

Exploit 
dropped

• Input-based filtering
– Signature f: given input x, f(x) = exploit or benign
– Effective, widely-deployed defense

• Central question: 
How to generate signatures, esp. for new attacks?

Vulnerable Program

Benign
Traffic

Benign
Traffic

Exploit
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Signature Generation
• Current common practice: Manual signature generation

– Slow, esp. for zero-day attacks
– Labor-intensive
– Inaccurate
– Limited for scalability & complexity

• Our work: automatic generation of vulnerability signatures

Signature Generator

Signatures
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Previous Approaches Insufficient
• Previous approaches: pattern-extraction based

– Extract common patterns in worm samples, not in benign samples
» Common substring or combination thereof
» Honeycomb[Kreibich-Hotnets03]
» Earlybird[Singh-OSDI03]
» Autograph[Kim-USENIX05]
» Polygraph[Song-IEEE S&P05]

• Disadvantages
– Insufficient for polymorphic worms

» Can’t generate signatures for unseen variants
– No guarantee of signature quality
– Susceptible to adversarial learning [Song-RAID06]
– Purely bit-pattern syntactic approach, so no semantic 

understanding of vulnerability

Signature
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Automatic Generation of Vulnerability Signatures

• Instead of bit patterns, use root cause
– Generating signatures based on vulnerability

• Given an exploit, first identify vulnerability information
– Vulnerability Point: where the vulnerability is
– Vulnerability Condition: what triggers the vulnerability

» E.g., condition for buffer overflow
– Using a combination of static & dynamic analysis

• Then generate signatures with given vulnerability 
information

Signature
Generator

Vulnerability
InfoDiagnosis

Engine
Exploits Signatures
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Approach: Extracting Constraints Imposed by Vulnerability

• As exploits morph, they need to trigger vulnerability

• So, vulnerability puts constraints on exploits

• Problem reduction:
– Signature generation = 

constraints on inputs that trigger vulnerability

• Symbolic execution

• Soundness guaranteed (no false positives)
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if input % 2==0

read input

s := input + 3 s := input + 2

if s > input

TF

ptr := realloc(ptr, s)

TF

Error

Automatic Vulnerability Signature Generation

What should the signature be?
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Protocol-aware Signatures
• So far, symbolic constraint signatures operate on bits

• Given protocol parsing information (e.g., a parse tree),
– lift constraints to field-level
– Remove parsing related constraints
– Generate symbolic constraint signatures on field-level

• Effective for variable-length fields, iterative fields, etc.

• Used in conjunction with signature matching engine 
with protocol parsing capability
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Evaluation: Protocol-aware Signatures

• Automatically generated optimal or close to optimal 
signatures for real-world exploits

– SQL, GHttpd, AtpHttpd, GDI, Windows DCOM RPC vulnerabilities

• Signature for SQL:
– (FIELD_CMD==4) ^ length(FIELD_DB) > 64

• Signature for GHttpd:
– (strcmp(METHOD, “GET”) != 0 ^ length(METHOD) > 165) ||

(strcmp(METHOD, “GET) == 0 ^ strstr(URI, “/..”) !=0 ^ 
length(URI)>170) ||

(strcmp(METHOD, “GET”) == 0 ^ strstr(URI, “/..”) == 0 ^
length(URI) + length(ClientAddr) > 166)
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In-depth Malware Analysis
• High volume of new malware needs automatic malware analysis
• Given a piece of suspicious code sample,

– What malicious behaviors will it have?
– How to classify it?

» Key logger, BHO Spyware, Backdoor, Rootkit
– What mechanisms does it use?

» How does it steal information?
» How does it hook?

– Who does it communicate with? Where does it send information to?
– Does its communication exhibit certain patterns?
– Does it contain trigger-based behavior?

» Time bombs
» Botnet commands

• Can we design & develop a unified framework to answer these 
questions?
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BitScope: THE In-depth Malware Analysis infrastructure
• Identify/analyze malicious behavior based on root cause

– Privacy-breaching malware: spyware, keylogger, backdoor, etc.
– Malware perturbing system by hooking: rootkit, etc.

• Understand how malware get into the system
– What mechanisms/vulnerabilities does it exploit

• Explore hidden behavior, detect trigger-based behavior
– Automatically identifying botnet program commands, time bombs
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BitBlaze Malware Analysis Online
• A subset of our malware analysis functionalities

– Malware unpacking, IDA-Pro plug-in
– Extracting behaviors

• Parallel architecture for high-volume malware analysis

• Public service: 
– Submit malware samples and get results back
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Outline
• BitBlaze in action: sample security applications

– Automatic patch-based exploit generation
– In-depth malware analysis and other applications

• BitBlaze Binary Analysis Infrastructure
– Challenges
– Design rationale
– Architecture

• Future directions of binary analysis & beyond
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BitBlaze Binary Analysis Infrastructure: Challenges

• Complexity
– IA-32 manuals for x86 instruction set weights over 11 pounds

• Lack higher-level semantics
– Even disassembling is non-trivial

• Require whole-system view
– Operations within kernel and interactions btw processes

• Malicious code may obfuscate 
– Code packing
– Code encryption
– Code obfuscation & dynamically generated code
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• Accuracy
– Enable precise analysis, formally modeling instruction semantics

• Extensibility
– Develop core utilities to support different architecture and 

applications
• Fusion of static & dynamic analysis

– Static analysis
» Pros: more complete results
» Cons: pointer aliasing, indirect jumps, code obfuscation, kernel & 

floating point instructions difficult to model
– Dynamic analysis

» Pros: easier
» Cons: limited coverage

– Solution: combining both

BitBlaze Binary Analysis Infrastructure: Design Rationale
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BitBlaze Binary Analysis Infrastructure: Architecture

• The first infrastructure:
– Novel fusion of static, dynamic analysis techniques, and formal

analysis techniques such as symbolic execution & abstract 
interpretation

– Capable of analyzing whole system (including OS kernel) 
– Capable of analyzing packed/encrypted/obfuscated code

Vine:
Static Analysis

Component

TEMU:
Dynamic Analysis

Component

Rudder:
Mixed Execution

Component

BitBlaze Binary Analysis Platform
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Vine
• Static analysis component

Disassemble Converting
to IR

Control flow,
Data flow analysis,

Optimizations,
Value Set Analysis

Symbolic execution,
Computing WP 

Computing Chop, slicing
Program Transformation

Output
Program

Binary

Disassembly
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TEMU
• Work for both Windows & Linux, applications & kernel
• Build on QEMU
• OS-level semantics

Dynamic
Binary

Instrumentation

Log
instructions

Record Data
Dependency

(Taint Analysis)

Symbolic
Execution w

Symbolic
System

Environment

Annotated
Trace

Slicing

Layered,
Panoptic
Symbolic
Execution

Function
Call

Sequence
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Rudder
• Compute path predicate
• Obtain new path predicate by reverting branches
• Solve path predicate to obtain new input to go down a 

different path

Path predicate
generator Path Selector

Solving
New Path
Predicate

Input to 
New path

Rudder
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Outline
• BitBlaze Binary Analysis Infrastructure

– Challenges
– Design rationale
– Architecture

• BitBlaze in action: sample security applications
– Automatic patch-based exploit generation
– In-depth malware analysis

• Future directions of binary analysis & beyond
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The Vision
• Binary-only code audit and assurance

– Given a third-party program
– Does it have vulnerabilities?
– Does it have certain security guarantees?
– Does it contain trojans?

• Design and develop an infrastructure to accomplish this
– More advanced binary analysis and program verification 

techniques
– Annotated binaries
– Holistic solution including the software development cycle
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Conclusion
• BitBlaze binary analysis platform

– A unique fusion of dynamic, static analysis & formal analysis

• Solutions to broad spectrum of security applications
– Vulnerability discovery, diagnosis, defense
– In-depth malware analysis
– Automatic model extraction and analysis

• Important future research direction
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Contact

• http://bitblaze.cs.berkeley.edu

• dawnsong@cs.berkeley.edu

• BitBlaze team:
David Brumley, Juan Caballero, Ivan Jager, Cody Hartwig, 
Min Gyung Kang, Zhenkai Liang, James Newsome, 
Pongsin Poosankam, Prateek Saxena, Heng Yin


