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XML

+ XML: eXtensible Markup Language

— XML is able to represent a mix of structured and
text (unstructured) information

« XML applications: data interchange, digital
libraries, content management, complex
documentation, etc.

« XML repositories: Library of Congress
collection, SIGMOD DBLP, IEEE INEX
collection, LexisNexis, ...

(http://www.w3.org/XML/)




DB and IR view

Data-centric view

— XML as exchange format for structured data

— Used for messaging between enterprise applications
— Mainly a recasting of relational data

 Document-centric view

— XML as format for representing the logical structure of
documents

— Rich in text

* Now increasingly both views (DB+IR)

Document-centric XML retrieval

* Documents marked up as XML
— E.g., assembly manuals, journal issues ...

* Queries are user information needs

— E.g., give me the section (element) of the document
that tells me how to change a brake light

Different from well-structured XML queries
where one tightly specifies what he/she is
looking for.

« Structure improves precision
* Exploit visual memory




Queries

+ Content-only (CO) queries
+ Standard IR queries, but here we are retrieving document
components
— “Wine tasting in San Marino”

+ Content-and-structure (CAS) queries
 Put constraints on which types of components are to be
retrieved
— E.g. “Sections of an article about wine tasting in San Marino”

— E.g. Articles that contain sections about wine tasting in San
Marino, and that contain a picture of fortress, and return titles of
these articles”

XML retrieval vs. “flat” document retrieval

Book
» No predefined unit of retrieval @

» Dependency of retrieval units Chapters /\

i
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* Aims of XML retrieval:

— Not only to find relevant elements /N

— But those at the appropriate level of
granularity l
— Focused retrieval Sections

SEARCHING = QUERYING + BROWSING




Evaluation of XML retrieval: INEX

Evaluating the effectiveness of content-oriented XML retrieval
approaches

Collaborative effort = participants contribute to the development of
the collection

queries

relevance assessments

methodology
Similar methodology as for TREC, but adapted to XML retrieval

4
INg:

Initiative for the Evaluation ef¥ML retrieval }

http://inex.is.informatik.uni-duisburg.de/

Outline of the rest of the talk

» Challenges in XML retrieval

« Some approaches
— only some, and not covering all the challenges
— for all, see up-coming book (still being written)

» Beyond XML retrieval
— beyond a-la-INEX XML retrieval




Challenge 1: Term statistics

Article 2XML, ?retrieval ?authoring
Title Section 1 Section 2
0.9 XML 0.5 XML 0.2 XML
0.4 retrieval 0.7 authoring

No fixed retrieval unit + nested document components:
U how to obtain element and collection statistics (e.g. tf, idf)?
O inner or outer calculation?

Challenge 2: Relationship statistics

Article 2XML, ?retrieval
M Wuthoring
Title Section 1 Section 2
0.9 XML 0.5 XML 0.2 XML
0.4 retrieval 0.7 authoring

Relationship between elements:
U which sub-element(s) contribute best to content of its parent
element and vice versa?
U how to estimate (or learn) relationship statistics (e.g. size,
number of children, depth, distance)?




Challenge 3: Structure statistics

0.5
Article 2XML, ?retrieval
‘ﬂ \’.:authoring
0.6 Title Section 1 Section2 |4
0.9 XML 0.5 XML 0.2 XML
0.4 retrieval 0.7 authoring

Different types of elements:

U which element is a good retrieval unit?
U is element size an issue?

O how to estimate (or learn) structure statistics (frequency, user
studies, size, depth)?

Challenge 4: Overlapping elements

Article XML, retrieval
/ \atlthoring
Title Section 1 Section 2
XML XML XML
retrieval authoring

Nested (overlapping) elements:

U section 1 and article are both relevant to “XML retrieval”
O which one to return so that to reduce overlap?
O should the decision be based on user studies, size, types, etc?




Challenge 5: Expressing and interpreting
structural constraints

* lIdeally:
— There is one DTD/schema
— User understands DTD/schema

 In practice: rare

Many DTDs/schemas

DTDs/Schemas not known in advance

DTDs/Schemas change

Users do not understand DTDs/schemas

How to expect “users” to express structural constraints?

* Need to identify “similar/synonym” elements/tags
+ Strict or vague interpretation of the structure
* Relevance feedback/blind feedback?

Retrieval models ...

. Bayesian network
divergence from randomness

|| Retrleval units || machine learning
vector space model /

language model

Ranking —

iti 1
cognitive mode Combination of ewdence\

Boolean model — | Statistics — belief model

Parameters estimations
statistical model / \

logistic regression / probabilistic model
|| Post-processmg

extending DB model natural language processing

structured text models
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Retrieval units: What to Index?
« XML documents are B%
€5

trees
hierarchical structure Chapters

of nested elements = ﬂ
{ bl

(sub-trees) i

* What should we put Al
in the index? .

— there is no fixed unit /N

of retrieval
Subsections

Retrieval units: XML sub-trees

Assume a document like
<article>
<title>XXX</title>
<abstract>YYY</abstract> Index separately
<body>
<sec>ZZZ<[sec> +  <article>XXX YYY ZZZ 7ZZ </article>
<sec>ZZZ<[sec> <title>XXX</title>
</body> * <abstract>YYY</abstract>
</article> * <body>7Z77Z 777Z</body>
<sec>ZZZ</sec>
<sec>ZZZ</sec>




Retrieval units: XML sub-trees

 Indexing sub-trees is closest to traditional IR
— each XML elements is bag of words of itself and its descendants
— and can be scored as ordinary plain text document

+ Advantage: well-understood problem

* Negative:
redundancy in index
terms statistics

Led to the notion of fixed indexing nodes
Problem: how to select them?
» manually, frequency, relevance data

Retrieval units: Disjoint elements

Assume a document like

<article>

<title>XXX</title> Index separately
<abstract>YYY</abstract>

<body>
<sec>777</sec> o <title>XXX</title>
<sec>ZZ7</sec> * <abstract>YYY</abstract>
</body> * <sec>ZZZ<[sec>

</article> » <sec>ZZZ</sec>

Note that <body> and <article> have not been indexed




Retrieval units 2: Disjoint elements

Main advantage and main problem
— (most) article text is not indexed under /article
— avoids redundancy in the index

But how to score higher level (non-leaf)
elements?

— Propagation/Augmentation approach

— Element specific language models

Retrieval units: Distributed

Index separately particular types of elements

E.g., create separate indexes for
— articles )
— abstracts

— sections

— subsections

— subsubsections
— paragraphs ... _J

> structure statistics

Each index provides statistics tailored to particular types
of elements

— language statistics may deviate significantly
— queries issued to all indexes
— results of each index are combined (after score normalization)

20
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Retrieval units: Distributed

* Only part of the structure is used
— Element size
— Relevance assessment
— Others

+ Main advantages compared to disjoint element strategy:
— avoids score propagation which is expensive at run-time
— index redundancy is basically pre-computing propagation
— avoid non-trivial parameters to train needed for propragation

* Indexing methods and retrieval models are “standard” IR
— although issue of merging - normalization

Ranking: What and how to combine?

« XML documents are Book

trees @
elements are not Chapters /\
independent ’ - ==

3

* What should we use
to estimate the

relevance of an
element?

on

Sections

ubsections

=

b5
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Combination: Language model

element language model
collection language model
smoothing parameter A

|:> element score

high value of A leads to increase in size of retrieved elements

structure statistics

element size |+

element score | > rank element ﬁ

article score

T

relationship statistics

query expansion with blind feedback
ignore elements with < 20 terms

(Sigurbjoérnsson etal, INEX 2003, INEX 2004)
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Combination: Machine learning

+ Use of standard machine learning to train a function that

combines

structure statistics

4—_

Parameter|for a given element type
Parameter|+ score(element)

Parameter = score(parent(element))
Parameter = score (document)

L 1

\ relationship statistics

« Training done on relevance data (previous years)
+ Scoring done using OKAPI

(Vittaut & Gallinari, ECIR 2006)

24
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What have we learned?

Issue of how to start - what to index

XML retrieval can be viewed as a combination of
evidence problem

No “clear winner” in terms of retrieval models

— We still miss the benchmark/baseline approach

— Lots of heuristics

BUT WHAT SEEM TO WORK WELL ACROSS ALL
MODELS:

— Element

— Document

— Size

Thorough investigation for all ranking models, all
indexing approaches, and all evidence needed

25

Beyond XML retrieval

2
Focused retrieval j

Aggregated results @

Structural context /N
summarization [ D D

Beyond the logical /N
structure D

26
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Beyond XML retrieval:
Focused retrieval

» Best performance obtained using evidence from
element, document, and element size, and this
whatever the model.

— How can we apply this to other so-called “focused”
retrieval problem?

— What other evidence, e.g. semantic tags, should be
used?

— What combination formalism should be used?

Beyond XML retrieval:
Aggregated results

+ We know how to retrieve “snippets”.

* We know how to return “snippets” within a
document (e.g. heatmap).

* How to combine/mix snippets from across
documents to return meaningful aggregated
results?

— “Virtual” documents (from Chiaramella)
— Refer to Vanessa Murdock presentation

14



Heatmap

* Document ranking, and in each document, element

ranking

OntoSeek: Content-Based Access to the Web
Nicola Guarino, Claudio Masolo, Guido Vetere

article[1]

P[]
... and precision of content-based retrieval. Our OntoSeek system adopts ... large
ontology based on WordNet for content matching

baly[1]

sec[d] (THE ROLE OF LINGUISTIC ONTOLOGIES)
ss1[1] (Some advantages)
pl4]

The retrieval quality improves considerably if ... linguistic ontology such as
WordNet. For example, let's add WordNet to a simple matching ...
... linguistic ontologies such as WordNet and structured representation
formalisms can help an information-retrieval system to

secld] (ONTOSEEK)

...of a project on retrieval and reuse of object-oriented ... system designed for

content-based information retrieval from online yellow pages ... mostly resulting from

merging WordNet's thesaurus into the Penman ... broad ontology endowed with

WordNet's powerful lexical interface, which ...
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Beyond XML retrieval:
Structural context summarization

» Users require document context when viewing

an elements result

* We know how to summarize the structure (ToC)

of a document (depth, relevance, etc)

How can we summarize the structure of the
search results, to provide context for the whole
search.

— Not just clusters

30
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XML retrieval systems display:

in Baseline Search

query was: text classification naive bayes

H REX Results 1 - 10 of 100, y
y Result pages: 123456789 10 next LR EERIEE e e

System

Search Result

1: (0.247) Scalable Feature Mining for Sequential Data
Neal Lesh Mitsubishi Electric Research Lab Mohammed 3. Zaki Rensselasr folytechnic Institute Mitsunori
Ogthara University of Rochester
Result path: farticle [1] /bdy[4]/sec[5]
2:(0.204) Probability and Agents
Marco G, Waltarta University of South Carolina mgv@cse.sc.edu Michasl N. Huhns University of South
Caroling huhns@sc.edu
Result path: farticle [1]/bdy[4]/sec[3]
3:(0.176) Combi g Image Compression and Classification Using Yector Quantization
Karen L. Oshler Mernber IEEE Robert M. Gray Feliow IEEE
Result path: farticle [1]/bdy[4]/sec[4]/ss1[2]/s52[4]
4:(0.175) Text-Learning and Related Intelligent Agents: A Survey
Dunja Miadenic 3. Stefan Institute
Result path: farticle [1]/bm[5]/app[4]/fsec[5]
5:({0.175) Detecting Faces in Images: A Survey
Ming-Hsuan Yang Member IEEE David 1. Kriegman Senior Mamber IEEE Narendra Ahuja Fellow IEEE
Result path: farticle [1] /hdy [4] /sec[2]/ss1[9]/ss2[10]
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Providi text for the el t
2 =l close
g Document
Table of Contents To which extent this piece of information covers your problem or topic of interest:
Unspecified =] _submit
2.4.6 NaiveBayes Classifier
= 1 Introduction
2 Detecting faces in a single image In contrast to the methods in [[107] ], [[128] ], [[154] ] which model the global appearance of a face,
u 2.1 Knowledge-Based Schneiderman and Kanade described a NaiveBayes classifier to estimate the joint probability of local appearance
Top-Doven Mothods and position of face patterns (subregions of the face) at multiple resolutions [[140] ). They emphasize local
o Bttt appearance because some local patterns of an object are more unique than others; the intensity patterns around
P the eyes are much mare distinctive than the pattern found around the cheeks. There are two reasons for using a
Feature-Based Methods MaiveBayes classifier (i.e., no statistical dependency between the subregions). First, it provides better estimation
= 2.2.1 Facial Features of the conditional density functions of these subregions. Second, a NaiveBayes classifier provides a functional
@ 2.2.2 Texture form of the posterior probability to capture the joint statistics of local appearance and position on the object. At
® 2,23 5kin Golor each scale, a face image is decomposed into four rectangular subregions. These subregions are then projected to
®u 2.2.4 Multiple Features a lower dimensional space using PCA and quantized into a finite set of patterns, and the statistics of each
u 2.3 Template Matching projected subregion are estimated from the projected samples to encode local appearance. Under this
w 2.3.1 Predefined formulation, their method decides that a face is present when the likelinood ratio is larger than the ratio of prior
Templates probabilities. With an error rate of 93,0 percent on data set 1 in [[128] ], the propased Bayesian approach
w 2.3.2 Deformable shows comparable performance to [[128] ] and is able to detect some rotated and profile faces, Schneiderman
Templates and Kanade later extend this method with wavelet representations to detect profile faces and cars [[141]
u 2.4 Appearance-Based & related method using joint statistical models of local features was developed by Rickert et al. [[124] ]. Local
Methods features are extracted by applying multiscale and multiresolution filters to the input image. The msmbuuun of the
= 2.4.1 Eigenfaces features vectars (i.e., filter responses) is estimated by clustering the data and then forming a mixtu
= 2.4.2 Distribution-Based Gostiona. After the model it 1aamed and furthar refined, tet imaqes sro Flaseifiad by ~amaLting the hkahh\md of
Methods their feature vectors with respect to the model. Their experimental results on face and car detection sho
® 2.4.3 Neural Networks interesting and good results
= 2.4.4 Support Vector . o . . o
Machinos To which extent this piece of information covers your problem or topic of interest:
u 2.4.5 Sparse Network of Unspecified subrmit
Winnows Unspecified
® 2.4.6 Naive Bayes Very useful & Very speciic
Glassifier Very useful & Faifly specific
w 2.4 7 Hidden Markov Very useful & Marginally specific
Model
ussfu y fic
w248 . Fairly useful & Marginally specific
Information-Theoretical Marginally useful & Very specific
Approach Marginally useful & Fairly specific
® 2.4.9 Inductive Learning Marginally useful & Marginally specific
% 2.5 Discussion _I| Contains no relevant infarmation
% 3 Face image databases and
nerfarmance evaluation
32
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Beyond XML retrieval:
Beyond the logical structure

+ We know how to exploit the tags representing
the logical structure to provide focused retrieval.

« What about other tags, e.g. semantic tags,
formatting tags, template tags, etc?

33

Beyond XML Retrieval

Thank you
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