
C=(FS)2 : Cubing by
Composition of Faceted Search

Ronny Lempel
Dafna Sheinwald

IBM Haifa Research Lab

Introduction to Multifaceted Search
and to

On-Line Analytical Processing (OLAP)

Multifaceted Search With
Aggregated Measures

Intro

query

search
results

other
dimensions

3 featured
dimensions

Drill-down
options

Result counts
and

aggregated
measures

OLAP Cubes

� Primary tool for
multidimensional analysis of
structured and relational data –
qualitative insight into data

� Once computed, can answer
selection and aggregation
queries very efficiently

� Drill down
� Roll up
� Measures

Computing Cubes
is computationally

INTENSIVE!!!

Intro

Goal: General OLAP Cubing over
Search Results

� Observation: faceted search with BI expressions is practically
equivalent to having several “one-dimensional cubes” with measures

� Equivalently, cubes can be seen as aggregations over the cross-
product (Cartesian product) of several facets

� One cannot compute cubes accounting for free-text queries, since the
space of possible queries is practically infinite

� Two natural approaches for combining free-text search and cubing:
� Pipe the search engine’s results into a cubing engine
� Extend a faceted search engine to aggregate by cross-products

of facets
� We will actually do something different…

Intro

Interaction Paradigms

� Faceted search: ad-hoc discovery sessions of a multidimensional
corpus using a mixture of keyword search and zoom-in/zoom-out
browse operations

� Typically few browsing operations per keyword query
� Used by everyday users, in sessions lasting minutes

� OLAP Cubes: deep analysis of a fixed multidimensional corpus
� A dataset is fixed, the cube is defined and built, and many cubing

queries are executed
� Used by professional analysts in sessions lasting days

� Mission: support cubing operations over subsets of a corpus defined
by search-engine result sets

Intro

Cubing Queries:
Usage Scenario and Flow

Usage scenario: on the cube that was built over the documents and
dimensions defined by some initial query, many subsequent slice-and-
dice operations will be performed.

IDEA

Submits selection query (text predicates + category and range constraints)
that defines the set of result documents to be considered by the cube

Also defines the requested dimensions over which to build the cube

1
Faceted
Search
Index

Cube

Search engine returns
an object that

supports cubing queries

2
3

User now submits numerous slice & dice
queries to this “cube”

What is the implementation behind this “cube”?
We will show it to be just another Faceted Search
index, built on altered and “massaged” input!

Multifaceted Search Implementation:
Data Model, Indexing and Runtime

Data Model (1)

� There’s some background (latent) multidimensional
hierarchy – four dimensions in this example

Virtual root

Data
Model

Data Model (2)
� Each document is associated with a set of paths

� Perhaps several paths in some dimensions
� Perhaps no path in some dimensions
� Path may end not at a leaf Virtual root

Data
Model

Data Model (3)
� Actually, each document can be thought of logically as composed

of three parts:
1. The collection of paths of categories/facets it is associated

with
2. Some free text, in one or more fields
3. Several numeric attributes/fields that are associated with it

Title: Let it Be
Authors: J. Lennon, P. McCartney
Content: When I find myself

in times of trouble
mother Mary comes to me

Price: 10 (USD)
Length: 225 (seconds)
Sold: 108 (copies)

Data
Model

The Taxonomy Index

� Documents are ingested by the index one by one
� The taxonomy index component unions the set of paths

associated with each document to form the overall
taxonomy implied by the documents

� The taxonomy index provides the following services:
� Maps human readable labels of each taxonomy node to

some internal ID
� Maps nodes to their ancestors
� Maps nodes to their children

Faceted
Indexing

The Inverted Index (1)
� Keeps postings lists per each text token
� Keeps postings lists per each path prefix, listing all documents that

are associated with the path prefix
� Keeps numeric postings lists to support range-constraint queries

1

2

76

3

4

8

9

5 0

Title: Let it Be
Authors: J. Lennon, P. McCartney
Content: When I find myself

in times of trouble
mother Mary comes to me

Price: 10 (USD)
Length: 225 (seconds)
Sold: 108 (copies)

1

2

6

3

4

8

9

5 0

1 3

4

5

3

4

3

7

3

4

5

8

9

8

This document will be listed in the postings
lists corresponding to these path prefixes

Faceted
Indexing

The Inverted Index (2)
� Keeps a special postings list that allows efficient access to the paths

and numeric attributes associated with each document

Review

1

2

76

3

4

8

9

5 0

Title: Let it Be
Authors: J. Lennon, P. McCartney
Content: When I find myself

in times of trouble
mother Mary comes to me

Price: 10 (USD)
Length: 225 (seconds)
Sold: 108 (copies)

2

7
6

0

Price: 10
Length: 225
Sold: 108

The payload associated with the
posting element of this document:

Faceted
Search
Faceted
Indexing

Note that only path tails are stored – higher-level nodes can be
inferred using the taxonomy index

Faceted Queries
Faceted queries are comprised of two parts:
1. Selection criteria: text(hotels with internet access),

categories(geo:US, chain=Hilton), numerics(price<200)
2. Facet Context: sub-trees where counts/aggregations are required

Review

Virtual root

Faceted
Search

Max.
connection
speed

Avg.
#rooms

Min.
price

Faceted Query Evaluation
1. Given the selection portion of the faceted query, identify and rank

the matching documents using the index
2. Access the special per-document entry (payload) corresponding to

each matching document
3. For any category included in the facet context, aggregate

counts/expressions

2

7
6

0

Price: 10
Length: 225
Sold: 108

2

8
6

0

Price: 3
Length: 215
Sold: 107

4

7
5

Price: 18
Length: 185
Sold: 106

5

9
8

0

Price: 12
Length: 220
Sold: 108

Category:2 Count: 2 Average price: 6.5
Category:0 Count: 3 Max sold: 108

Faceted
Search

Note that per query, computation time scales linearly with size of
result set (number of matching docs)

Building a Cubing Engine
by a Recursive Application

of Faceted Indexing

Cubing Queries
Same as faceted queries,
except that the output counts
and aggregations are to be
computed for the Cartesian
product of the given sub-trees

Cubing

7 8 9 10 11 1 2 3 4

65

Virtual root

1

2

3

4

7 10 118 9

65

Cubing Queries

Naïve solution:
� Every cell can be computed by a single regular query, with the

appropriate category constraints
� Every line can be computed by a single faceted query, given

constraints on the other dimensions
� Problem: each such query runs in a time that is linear in the size of

the result set, which is not acceptable for cubing queries
� So let’s look at a solution that trades-off some of the runtime cost

with some preprocessing

Cubing

1

2

3

4

7 10 118 9

Cubing Query Evaluation
1. Given the selection portion of the initial query, identify the matching

documents
2. Access the special per-document payload corresponding to each

matching document
3. Extract the Cube-DNA (CDNA) of each document, i.e. the

sequence of categories to which the document belongs and which
are part of the cube
� Example: if the cubed sub-trees are {1,2,3,4} x {7,8,9,10,11}, the

CDNA sequences of the sample documents are as follows:

4. Aggregate counts and expressions per CDNA sequence

Cubing

2

7
6

10

Price: 10
Length: 225
Sold: 108

2

8
6

Price: 3
Length: 215
Sold: 107

4
6

Price: 18
Length: 185
Sold: 106

1

9
2

Price: 12
Length: 220
Sold: 108

{2,7,10} {2,8,10} {4,11} {1,2,9,10}

10
11

10

CDNA Sequences - Notes
1. Each CDNA sequence affects a certain set of cube cells

� A cell may be affected by multiple CDNA sequences

2. Documents that share the same CDNA affect exactly the same set
of cube cells

3. Assumption is that for large result sets, the plurality of CDNA
sequences is much smaller than the size of the result set itself

� For small result sets, it doesn’t matter - number of CDNA
sequences is always bounded by number of results

Cubing

CDNA {2,7,10} affects cells
{(2,7), (2,10)}

2

7
6

10

Price: 10
Length: 225
Sold: 108

2

8
6

Price: 3
Length: 215
Sold: 10710

CDNA {2,8,10} affects cells
{(2,8), (2,10)}

{1,2,3,4}
x

{7,8,9,10,11}

CDNA Sequences – What Now?

� CDNA Sequences per-se aren’t
quite what we need, as they don’t
map 1:1 to cube cells

� To fill a cube cell, we need to
aggregate the contributions of all
CDNA sequences that affect the
cell

� So what should we do?

Cubing

3*1071278{4,7,9,11}

5*1072534{1,7,8}

4*1071461{2,7}

2*10819123{1,8,10}

6*1062184{3,8,9}

9*10618100{4,9}

5*1071520{2,4,7}

Max.
Sold

Avg.
Price

CountSequence

Cell (2,7):
• Count = 20+61 = 81
• Avg. Price = (20*15+61*14)/81
• Max. Sold = Max{5*107, 4*107)= 5*107

Building the Cube Structure:
Indexing CDNA Sequences (1)

Idea:
1. Create a virtual document from

each CDNA sequence:
� No textual content
� Categories are the DNA

elements
� Numeric attributes are the

count, and the calculated
expressions (measures)

2. Index the virtual documents by the
same faceted search mechanism!

3. The resulting faceted index
will serve as the “cube”

Cubing

3*1071278{4,7,9,11}

5*1072534{1,7,8}

4*1071461{2,7}

2*10819123{1,8,10}

6*1062184{3,8,9}

9*10618100{4,9}

5*1071520{2,4,7}

Max.
Sold

Avg.
Price

CountSequence

Building the Cube Structure:
Indexing CDNA Sequences (2)

Cubing

3*1071278{4,7,9,11}

5*1072534{1,7,8}

4*1071461{2,7}

2*10819123{1,8,10}

6*1062184{3,8,9}

9*10618100{4,9}

5*1071520{2,4,7}

Max.
Sold

Avg.
Price

CountSequence

7 8 9 10 11

65

1 2 3 4

1

2

3

4

7 10 118 9

65

1 5

8

6

10

Count: 123
Avg. Price: 19
Max. Sold: 2*108

1
Count: 34
Avg. Price: 25
Max. Sold: 5*107

87
5

Building the Cube Structure:
The Virtual CDNA Documents

Cubing

� The virtual documents represent aggregations of
groups of original documents whose CDNA is identical,
i.e. that are indistinguishable in the context of this cube

� Many-to-one relationship between original documents (in
OLAP terminology - facts) and CDNA virtual documents:

1

2

6

3

4

8

9

5 0

Title: Let it Be
When I find myself
in times of trouble
mother Mary comes…

Price: 10 (USD)
Length: 225 (seconds)
Sold: 108 (copies)

1

2

3

4

8

9

5 0

Title: Yesterday
Yesterday, all my
troubles seemed
so far away

Price: 12 (USD)
Length: 190 (seconds)
Sold: 107 (copies)

Avg. Price: 11
Sum Length: 415
Max. Sold: 108

1

2

8

9

0

7

Count: 2

Requested dimensions

Virtual doc

The CDNA Index – Operations
Cubing

� To fill the cell (2,9) – just query for documents
containing category:2 category:9

� To fill the line (4,*), query for documents containing
category:4 and treat categories 7-11 as a one-
dimensional facet

1

2

3

4

7 10 118 9
65

� Queries on the CDNA index run
in O(| CDNA result set |), i.e.
the number of CDNA entries
that affect the requested
cell/hyper-plain

Recap of “Cubing” Scheme
Summary

� With one query over the original data (in the original faceted index),
we can build a CDNA index in O(| result set |)

� Assumption: typically, the number of CDNA sequences per result
set is not much greater than the number of populated cube cells in
the requested hyper-plain

� Number of virtual documents in CDNA index is
O(|populated cells|)

� Most cubes are sparse
� Number of populated cube cells is typically much less than the

number of (real) documents over which the cube is being built
� CDNA index CDNA index is yet another faceted index that supports

cubing queries in O(| CDNA result set |)
� It may reside on disk, in which case it is persistent and requires

practically no RAM overhead – in particular, no need to
materialize a cube in memory

Summary and Roadmap

� Presented a “recursive” invocation of faceted indexing
that can support cubing operations
� First invocation returns, as its result, a second index of the

same type on which subsequent operations run
� Whether the performance tradeoffs implied by this

approach make sense is subject to experiments
� But we like the algebraic idea nonetheless
� Use-case is real, and is yet another example of the

merging between the structured, DB-oriented world
and the semi-structured world of search engines

Summary

Thank You

