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Introduction to Multifaceted Search
and to 

On-Line Analytical Processing (OLAP)
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OLAP Cubes

� Primary tool for 
multidimensional analysis of 
structured and relational data –
qualitative insight into data

� Once computed, can answer 
selection and aggregation 
queries very efficiently

� Drill down
� Roll up
� Measures

Computing Cubes
is computationally

INTENSIVE!!!

Intro



Goal: General OLAP Cubing over 
Search Results

� Observation: faceted search with BI expressions is practically 
equivalent to having several “one-dimensional cubes” with measures

� Equivalently, cubes can be seen as aggregations over the cross-
product (Cartesian product) of several facets

� One cannot compute cubes accounting for free-text queries, since the 
space of possible queries is practically infinite

� Two natural approaches for combining free-text search and cubing:
� Pipe the search engine’s results into a cubing engine
� Extend a faceted search engine to aggregate by cross-products 

of facets
� We will actually do something different…

Intro



Interaction Paradigms

� Faceted search: ad-hoc discovery sessions of a multidimensional 
corpus using a mixture of keyword search and zoom-in/zoom-out 
browse operations

� Typically few browsing operations per keyword query
� Used by everyday users, in sessions lasting minutes

� OLAP Cubes: deep analysis of a fixed multidimensional corpus
� A dataset is fixed, the cube is defined and built, and many cubing 

queries are executed
� Used by professional analysts in sessions lasting days

� Mission: support cubing operations over subsets of a corpus defined 
by search-engine result sets

Intro



Cubing Queries:
Usage Scenario and Flow

Usage scenario: on the cube that was built over the documents and 
dimensions defined by some initial query, many subsequent slice-and-
dice operations will be performed.

IDEA

Submits selection query (text predicates + category and range constraints)
that defines the set of result documents to be considered by the cube

Also defines the requested dimensions over which to build the cube

1
Faceted
Search
Index

Cube

Search engine returns 
an object that

supports cubing queries

2
3

User now submits numerous slice & dice 
queries to this “cube”

What is the implementation behind this “cube”?
We will show it to be just another Faceted Search
index, built on altered and “massaged” input!



Multifaceted Search Implementation:
Data Model, Indexing and Runtime



Data Model (1)

� There’s some background (latent) multidimensional 
hierarchy – four dimensions in this example

Virtual root

Data
Model



Data Model (2)
� Each document is associated with a set of paths

� Perhaps several paths in some dimensions
� Perhaps no path in some dimensions
� Path may end not at a leaf Virtual root

Data
Model



Data Model (3)
� Actually, each document can be thought of logically as composed 

of three parts:
1. The collection of paths of categories/facets it is associated 

with
2. Some free text, in one or more fields
3. Several numeric attributes/fields that are associated with it

Title: Let it Be
Authors: J. Lennon, P. McCartney
Content: When I find myself

in times of trouble
mother Mary comes to me

Price: 10 (USD)
Length: 225 (seconds)
Sold: 108 (copies)

Data
Model



The Taxonomy Index

� Documents are ingested by the index one by one
� The taxonomy index component unions the set of paths 

associated with each document to form the overall 
taxonomy implied by the documents

� The taxonomy index provides the following services:
� Maps human readable labels of each taxonomy node to 

some internal ID
� Maps nodes to their ancestors
� Maps nodes to their children

Faceted
Indexing



The Inverted Index (1)
� Keeps postings lists per each text token
� Keeps postings lists per each path prefix, listing all documents that 

are associated with the path prefix
� Keeps numeric postings lists to support range-constraint queries
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Title: Let it Be
Authors: J. Lennon, P. McCartney
Content: When I find myself

in times of trouble
mother Mary comes to me

Price: 10 (USD)
Length: 225 (seconds)
Sold: 108 (copies)
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This document will be listed in the postings 
lists corresponding to these path prefixes

Faceted
Indexing



The Inverted Index (2)
� Keeps a special postings list that allows efficient access to the paths 

and numeric attributes associated with each document

Review
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Title: Let it Be
Authors: J. Lennon, P. McCartney
Content: When I find myself

in times of trouble
mother Mary comes to me

Price: 10 (USD)
Length: 225 (seconds)
Sold: 108 (copies)
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Price: 10 
Length: 225 
Sold: 108

The payload associated with the 
posting element of this document:

Faceted
Search
Faceted
Indexing

Note that only path tails are stored – higher-level nodes can be 
inferred using the taxonomy index



Faceted Queries
Faceted queries are comprised of two parts:
1. Selection criteria: text(hotels with internet access), 

categories(geo:US, chain=Hilton), numerics(price<200)
2. Facet Context: sub-trees where counts/aggregations are required

Review

Virtual root

Faceted
Search

Max. 
connection 
speed

Avg.
#rooms

Min. 
price



Faceted Query Evaluation
1. Given the selection portion of the faceted query, identify and rank 

the matching documents using the index
2. Access the special per-document entry (payload) corresponding to 

each matching document
3. For any category included in the facet context, aggregate 

counts/expressions
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Price: 10 
Length: 225 
Sold: 108
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Length: 215 
Sold: 107
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Price: 18 
Length: 185 
Sold: 106
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Price: 12 
Length: 220 
Sold: 108

Category:2 Count: 2 Average price: 6.5
Category:0 Count: 3 Max sold: 108

Faceted
Search

Note that per query, computation time scales linearly with size of 
result set (number of matching docs)



Building a Cubing Engine
by a Recursive Application

of Faceted Indexing



Cubing Queries
Same as faceted queries, 
except that the output counts 
and aggregations are to be 
computed for the Cartesian 
product of the given sub-trees

Cubing
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Cubing Queries

Naïve solution:
� Every cell can be computed by a single regular query, with the 

appropriate category constraints
� Every line can be computed by a single faceted query, given 

constraints on the other dimensions
� Problem: each such query runs in a time that is linear in the size of 

the result set, which is not acceptable for cubing queries
� So let’s look at a solution that trades-off some of the runtime cost 

with some preprocessing

Cubing
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Cubing Query Evaluation
1. Given the selection portion of the initial query, identify the matching 

documents
2. Access the special per-document payload corresponding to each 

matching document
3. Extract the Cube-DNA (CDNA) of each document, i.e. the 

sequence of categories to which the document belongs and which 
are part of the cube
� Example: if the cubed sub-trees are {1,2,3,4} x {7,8,9,10,11}, the 

CDNA sequences of the sample documents are as follows:

4. Aggregate counts and expressions per CDNA sequence

Cubing
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Price: 10 
Length: 225 
Sold: 108
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Length: 185 
Sold: 106
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Length: 220 
Sold: 108

{2,7,10} {2,8,10} {4,11} {1,2,9,10}

10
11
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CDNA Sequences - Notes
1. Each CDNA sequence affects a certain set of cube cells

� A cell may be affected by multiple CDNA sequences

2. Documents that share the same CDNA affect exactly the same set 
of cube cells

3. Assumption is that for large result sets, the plurality of CDNA 
sequences is much smaller than the size of the result set itself

� For small result sets, it doesn’t matter - number of CDNA 
sequences is always bounded by number of results

Cubing

CDNA {2,7,10} affects cells 
{(2,7), (2,10)}
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Price: 10 
Length: 225 
Sold: 108
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Length: 215 
Sold: 10710

CDNA {2,8,10} affects cells 
{(2,8), (2,10)}

{1,2,3,4}
x

{7,8,9,10,11}



CDNA Sequences – What Now?

� CDNA Sequences per-se aren’t 
quite what we need, as they don’t 
map 1:1 to cube cells

� To fill a cube cell, we need to 
aggregate the contributions of all 
CDNA sequences that affect the 
cell

� So what should we do?

Cubing

3*1071278{4,7,9,11}

5*1072534{1,7,8}

4*1071461{2,7}

2*10819123{1,8,10}

6*1062184{3,8,9}

9*10618100{4,9}

5*1071520{2,4,7}

Max.
Sold

Avg.
Price

CountSequence

Cell (2,7):
• Count = 20+61 = 81
• Avg. Price = (20*15+61*14)/81
• Max. Sold = Max{5*107, 4*107)= 5*107



Building the Cube Structure:
Indexing CDNA Sequences (1)

Idea: 
1. Create a virtual document from 

each CDNA sequence:
� No textual content
� Categories are the DNA 

elements
� Numeric attributes are the 

count, and the calculated 
expressions (measures)

2. Index the virtual documents by the 
same faceted search mechanism!

3. The resulting faceted index 
will serve as the “cube”

Cubing

3*1071278{4,7,9,11}

5*1072534{1,7,8}

4*1071461{2,7}

2*10819123{1,8,10}

6*1062184{3,8,9}

9*10618100{4,9}

5*1071520{2,4,7}

Max.
Sold

Avg.
Price

CountSequence



Building the Cube Structure:
Indexing CDNA Sequences (2)

Cubing

3*1071278{4,7,9,11}

5*1072534{1,7,8}

4*1071461{2,7}

2*10819123{1,8,10}

6*1062184{3,8,9}

9*10618100{4,9}

5*1071520{2,4,7}

Max.
Sold

Avg.
Price

CountSequence
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Count: 123
Avg. Price: 19
Max. Sold: 2*108

1
Count: 34
Avg. Price: 25
Max. Sold: 5*107
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Building the Cube Structure:
The Virtual CDNA Documents

Cubing

� The virtual documents represent aggregations of 
groups of original documents whose CDNA is identical, 
i.e. that are indistinguishable in the context of this cube

� Many-to-one relationship between original documents (in 
OLAP terminology - facts) and CDNA virtual documents:
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Title: Let it Be
When I find myself
in times of trouble
mother Mary comes…

Price: 10 (USD)
Length: 225 (seconds)
Sold: 108 (copies)
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Title: Yesterday
Yesterday, all my
troubles seemed
so far away

Price: 12 (USD)
Length: 190 (seconds)
Sold: 107 (copies)

Avg. Price: 11
Sum Length: 415
Max. Sold: 108
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Count: 2

Requested dimensions

Virtual doc



The CDNA Index – Operations
Cubing

� To fill the cell (2,9) – just query for documents 
containing category:2 category:9

� To fill the line (4,*), query for documents containing 
category:4 and treat categories 7-11 as a one-
dimensional facet
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� Queries on the CDNA index run 
in O( | CDNA result set |), i.e. 
the number of CDNA entries 
that affect the requested 
cell/hyper-plain



Recap of “Cubing” Scheme
Summary

� With one query over the original data (in the original faceted index), 
we can build a CDNA index in O( | result set | )

� Assumption: typically, the number of CDNA sequences per result 
set is not much greater than the number of populated cube cells in 
the requested hyper-plain

� Number of virtual documents in CDNA index is 
O(|populated cells|)

� Most cubes are sparse
� Number of populated cube cells is typically much less than the 

number of (real) documents over which the cube is being built
� CDNA index CDNA index is yet another faceted index that supports

cubing queries in O( | CDNA result set | )
� It may reside on disk, in which case it is persistent and requires 

practically no RAM overhead – in particular, no need to 
materialize a cube in memory



Summary and Roadmap

� Presented a “recursive” invocation of faceted indexing 
that can support cubing operations
� First invocation returns, as its result, a second index of the 

same type on which subsequent operations run
� Whether the performance tradeoffs implied by this 

approach make sense is subject to experiments
� But we like the algebraic idea nonetheless
� Use-case is real, and is yet another example of the 

merging between the structured, DB-oriented world 
and the semi-structured world of search engines

Summary

Thank You


