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Abstract

This report presents a simple example to demonstrate that the composition of a
“fault-tolerant” service and a “secure” service does not necessarily provide a secure
and fault-tolerant service.

The example is originally due to Peleska, who argues that to achieve the com-
bined service, it is necessary to strengthen one of the individual services to address
both concerns. In contrast, I argue that the individual services should be “decon-
structed” into smaller and weaker components that can be reassembled in different
ways, and I show that the combined service can be achieved by composing the
fault-tolerant service with a weaker version of the secure service.

The report also provides an introduction to the use of mechanized formal state
exploration methods (specifically, the Mur¢ system from Stanford) for the purpose
of examining and debugging protocols.
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Chapter 1

Introduction

In an earlier report [11], I described some of the characteristics of systems that are
designed to satisfy critical properties such as dependability, safety, security, and
real-time operation, and I discussed some of the techniques used in developing and
providing assurance for these systems. I also examined some of the issues in building
systems to satisfy two or more of these critical properties simultaneously.

In this report, I focus on a very small tutorial example. Suppose we know
how to satisfy each of two requirements separately, how might we satisfy them
jointly? The example I use is based on one by Jan Peleska [10], who presents one
communications protocol that can tolerate message loss and another that can defeat
message corruption, and considers how to develop a protocol that can deal with both
problems simultaneously. Peleska suggests that the first protocol may be considered
“fault tolerant,” and the other “secure,” so that the exercise is paradigmatic of
the construction of fault-tolerant and secure systems. It might be hoped that the
combined requirement could be satisfied by stacking the fault tolerant protocol on
top of the secure one or vice versa, but it turns out that neither of these approaches
is successful; it is necessary either to synthesize a single protocol that addresses the
combined requirements, or to “deconstruct” the two protocols to provide weaker
services whose combination is, paradoxically, stronger than the combination of the
originals.

A second objective of this report is to exemplify the use of formal methods in
examining the behavior of systems under different assumptions. This topic was also
examined by Peleska, but whereas he used CSP [6] and the FDR model checker [5],
I use a notation based on Unity [3] and the Mur¢ state exploration tool [8].






Chapter 2

Informal Description and
Analysis

A protocol specification must describe the service to be provided, the assumptions
on the environment in which it executes, and the procedural rules governing the
behavior of the participants to the protocol and the messages exchanged between
them. When protocols are “stacked” one on top of another, the assumptions of the
upper protocol must match the service provided by the lower one.

The service provided by the protocols considered here is to move messages reli-
ably from a sender to a receiver, despite various faults that may afflict the underly-
ing communications medium. This medium is assumed to provide separate transmit
(i.e., sender to receiver) and reply (i.e., receiver to sender) channels. The particular
kinds of faults that may afflict these channels constitute the major assumptions on
the protocols. In this chapter, I present the protocols informally and explain the
difficulties in combining them.

2.1 Fault Tolerance: The Alternating Bit Protocol

The alternating bit protocol (ABP) is one of the simplest and earliest protocols
designed to overcome message loss in the underlying communications medium [1].
It operates as follows.

Sender: The sender attaches a single control bit to each message, alternating the
value of the bit on successive messages. The sender transmits the message
and its attached control bit and waits for a reply message carrying the same
control bit. If no reply is received within some interval, or a reply is received
that carries the wrong control bit, then the sender repeats the transmission
until a satisfactory reply is received.
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Figure 2.1: Alternating Bit Protocol

Receiver: The receiver replies to every message received with a message carrying
the same control bit as the incoming message. After replying, the receiver
discards messages carrying the same control bit as the previous one received,
and retains those whose control bit differs from the previous one.

The ABP has only one unacknowledged message outstanding at a time. More ef-
ficient “sliding window” protocols allow several unacknowledged messages to be
outstanding at a time.

The claim for ABP is that it works correctly even when messages and their replies
can be lost arbitrarily. By “works correctly,” I mean that the sequence of messages
retained by the receiver is the same as that sent by the sender, with no messages
lost, duplicated, or reordered. The assumptions are that the underlying transmit
and reply channels may have several messages and replies in transit simultaneously,
and can lose messages and replies but cannot change or reorder them. Despite its
simplicity, the ABP is not completely straightforward to analyze: the sender may
perform actions based on the absence of a reply when the reply (or several replies)
is actually in transit.



2.2 Security: The Checksum Protocol

A simple way to detect message corruption is to attach a checksum to each message.
The receiver can recalculate the checksum of each message received and verify that
it matches the checksum that was sent with the message. Suitably sophisticated
checksums can detect all corruptions within a given class (e.g., any m-bit error).
The checksum protocol (CP) operates as follows.
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Figure 2.2: Checksum Protocol

Sender: The sender attaches a checksum to each message transmitted and awaits
a reply carrying a positive or negative acknowledgment. If a positive acknowl-
edgment is received, the sender moves on to the next message; if a negative
acknowledgment is received, it retransmits the message and its attached check-
sum.

Receiver: The receiver checks the checksum of each message received. If it is cor-
rect, the receiver sends a reply containing a positive acknowledgment; other-
wise, it sends one containing a negative acknowledgment. The receiver removes
the checksum and retains those messages that it acknowledges positively, and
discards those messages that it acknowledges negatively.

The claim for this protocol is that it works correctly (in the same sense as ABP)
under the assumptions that the transmit channel can corrupt, but not lose messages,



and that the reply channel is perfectly reliable. It is also assumed that the checksum
allows message corruption to be detected with perfect reliability. These are strong
(and unrealistic) assumptions, but they will serve our purpose here.

2.3 Combining Fault Tolerance and Security

We have one protocol that tolerates message loss, and another that withstands
message corruption. Suppose we require a reliable message service that works in
the face of both threats: it might seem that we should be able to achieve this by
“stacking” one protocol on top of the other. We can do this in two ways. I will
consider each separately.

2.3.1 The Checksum Protocol Above the Alternating Bit Protocol

The idea here is to use the ABP to provide the transmit channel for the CP; the
ABP and CP will each have its own reply channel (see Figure 2.3). The underlying
transmit channel used by the ABP is assumed to both lose and corrupt messages.
Although the ABP (when used alone) can tolerate a lossy reply channel, T will
assume here that both reply channels are perfectly reliable.

It seems plausible that the ABP will overcome message losses in the underlying
transmit channel and thereby present the CP with a transmit service that matches
its assumptions. Unfortunately, this is not so. The underlying transmit service can
change, as well as lose, messages, and in particular it can change the control bit
attached to messages by the ABP. This bit is not protected by the CP, since it is
provided at a lower level of the protocol hierarchy. Corruption of the control bit
violates the assumptions of the ABP, and it is not hard to see that it can lose or
duplicate messages under these circumstances. This behavior, in turn, violates the
assumptions of the CP, causing it to fail also.
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Figure 2.3: Checksum Protocol Above Alternating Bit Protocol




2.3.2 The Alternating Bit Protocol Above the Checksum Protocol

This arrangement reverses the order of the protocols: the CP provides the transmit
channel for the ABP. The underlying transmit channel used by the CP is assumed
to both lose and corrupt messages. As before, the CP and ABP will each have its
own reply channel, which is assumed to be perfectly reliable.

sending receiving

A

Y

ABP sender ABP receiver]

ack channel (error-free)

Y

CP sender CP receiver

ack channel (error-free)

message channel (lossy and corrupt)

Figure 2.4: Alternating Bit Protocol Above Checksum Protocol

The problem with this arrangement is that the CP sender expects to receive
a reply for every message sent. This expectation is violated when the underlying
transmit channel can lose messages. In this case, the CP protocol deadlocks, with
its sender waiting for a reply that will never arrive.



2.3.3 A Correct Solution

In retrospect, it is obvious that neither arrangement of one protocol stacked on
top of the other can be expected to work correctly, since the underlying transmit
channel does not satisfy the assumptions of either protocol. Peleska [10] argues
that this means we cannot expect to solve the overall problem by stacking two
individually inadequate protocols, but must design a protocol to deal specifically
with the combined threat.

This is certainly one approach, but I believe there is a better one. Rather than
consider that the individual protocols are too weak, or that they do too little, an
alternative approach is to consider the possibility that they do too much. Both
the individual protocols provide reliable transmission, subject to their particular
assumptions. When we stack the protocols, it is unnecessary for the lower one to
provide reliable transmission: all that is needed is that it should provide a service
that satisfies the assumptions of the upper protocol. In particular, if we stack the
ABP above the CP, then all that is required of the CP is that it provides uncorrupted,
though possibly lossy, transmissions.

We can accomplish this by simply deleting the reply channel and its associated
procedural rules from CP to yield the following modified protocol CP’ .

Sender: The sender attaches a checksum to each message transmitted.

Receiver: The receiver checks the checksum of each message received. If it is
correct, the receiver removes the checksum and retains the remainder of the
message. Otherwise, it discards the message.

The service specification for CP’ is that the sequence of messages retained is a
subsequence of those transmitted (i.e., the protocol provides a lossy, but noncorrupt-
ing channel). The assumptions are that the transmit channel may lose or corrupt
messages, but not reorder them (there is no reply channel).

Since the assumptions of CP’ match those of the lossy, corrupting transmit chan-
nel that we wish to deal with, and its service specification matches the assumptions
on the transmit channel for ABP, it follows that stacking ABP above CP’ satisfies
our requirements.
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2.4 Discussion

Increasingly, systems are required to satisfy several critical system properties simul-
taneously, or to withstand multiple types of threat. The most promising way to
maintain intellectual control in the face of such complexity is to “divide and con-
quer,” that is, to construct the system from components that individually address
only a single property or threat, but whose composition satisfies all the requirements.
The difficulty with this approach, exemplified by the simple case study presented
here, is that the composition of two components, each adequate to its individual
purpose, does not necessarily yield a synthesis that achieves the combined purpose:
the whole is less than the sum of its parts.

To overcome this difficulty, it is necessary to reexamine the service specifications
and assumptions of the components and to adjust them so that they compose more
effectively. As demonstrated by the example considered here, the most effective ad-
justment may sometimes be to weaken a component’s service specification. Indeed,
it seems to me likely that the demands of versatile composition will require that
some familiar building blocks are “deconstructed” into smaller and weaker compo-
nents that can be reassembled in many different ways. This approach is already
being explored in the fields of protocols and fault tolerance, where Schlichting, and
others are developing “RISC-like” building blocks for tailoring fault-tolerant systems
to particular constraints and assumptions [7,9]. My belief is that it will be neces-
sary to extend this approach to include small building blocks for security, real-time,
and safety properties, to enlarge the range of attributes (assumptions and service
properties) considered for each component (e.g., real-time as well as fault-tolerance
properties), and to make them more realistic (e.g., to consider average-case as well
as worst-case behavior).
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Chapter 3

Formal State Exploration of
Protocol Properties

This chapter presents a tutorial description of how the protocols and their compo-
sitions considered in the previous chapter can be explored, systematically and with
automated assistance, using formal methods.

Our ultimate goal is to develop a protocol that works in the presence of message
corruption as well as loss, so at this stage in the development of the example I am less
interested in formulating and verifying classical correctness of ABP, than in exploring
its behavior under different assumptions and in discovering the circumstances under
which it fails. For these purposes, explicit state exploration is a very effective tool.
The idea in state exploration is to model the protocol as a finite-state transition
system, and then to explore the reachable states of the model systematically and
completely. We can mark certain states as errors and can also specify invariants that
should hold for all reachable states, and can then run the state exploration to see
if the invariants really do hold, and whether any error states can be reached. State
exploration is similar to model checking: in both cases we completely explore a finite
state model to determine whether it satisfies certain properties. The difference is
that for model checking the properties are specified as logical formulas (usually in a
modal logic such as “Computation Tree Logic” [CTL]) independently of the model,
whereas for state exploration the properties are described through direct annotation
of the model.

State exploration, model checking, and related techniques such as language in-
clusion differ from simulation in that they explore all the states of a system descrip-
tion; they differ from formal verification in that they can consider only finite-state
systems. It is the ability to explore very large numbers of states in a reasonable
time that makes state exploration techniques useful: brute-force methods can often
explore millions of states in a few hours, while symbolic methods based on Binary
Decision Diagrams (BDDs) can explore even larger systems (numbers such as 1020 [2]
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and 101390 [4] appear in the literature). Nonetheless, it is often necessary to con-
sciously “downscale” a system description in order to reduce it to a size that can
be explored effectively. The evidence seems to be that exploring all the states of a
downscaled system model is often more efficient for debugging and learning about
a system than visiting some of the states of the full system through simulation or
testing. In the following section, I will describe exploration of ABP using the Mur¢
state exploration system.

3.1 Exploring ABP with Murg¢

Mur¢ is a state exploration system developed by David Dill’s group at Stanford
University [8]. Mur¢ “programs” are written in a language based on Unity [3],
with a C-like syntax. The Mur¢ compiler generates a C++ program, which is then
compiled and run to perform brute-force state exploration on the Mur¢ program
presented to the compiler.

The states of a Mur¢ program consist of all possible assignments to the variables
appearing in the program. To avoid the state explosion problem, we may need
consciously to downscale the range of some of these variables. In the case of the ABP,
we will need several variables that record the values of messages stored by the sender
and receiver, and in transmission over the underlying communications medium. Now
a real message might be, say, 8 bytes in length, giving rise to 264 possible different
values. With several (say n) variables recording the states of various messages, these
variables alone will give rise to a state space having n x 264 states an excessively
large number to explore. Now the protocol is mainly concerned with managing the
control bit that it attaches to each message and is largely indifferent to the actual
content of the messages transmitted, so we lose little by downscaling the size of
messages to, say, one or two bits. We must be careful not to downscale too far,
however, by making the messages constant (i.e., zero bits), because all messages will
then look alike and we will be unable to test for delivery of wrong messages. Because
the control bit alternates in value, we should probably arrange for the messages to
follow a different pattern. In the program developed below, I will cause the messages
produced by the sender to cycle through the values 1,2,..., M, where M is a small
number relatively prime to 2 (e.g., 3).

Another aspect of the problem that needs to be downscaled is the number of
messages that can be in transit in the communications medium at any one time.
The simple way to model the movement of messages is as a queue of some length
N—this in turn can be programmed as an array where the sender places messages
in at one end, the receiver removes them from the other, and the “network” moves
all the messages along whenever there is space at the receiving end. The state
space of this array will be on the order of M~. A real communications medium,
such as a wide-area network, might have a very large number N of messages in
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transit simultaneously, but for state exploration purposes, a small number such as
two is probably sufficient. Note that eliminating the queuing altogether (i.e., setting
N = 1) is probably not a good idea, as some classes of behaviors (and with them,
the chance to detect some potential bugs) will thereby be eliminated.

The decisions described so far can be cast into Mur¢ as follows.

const M: 3; —-- Number of different messages. Must be >=2
type msg: 0..M+1; -- 0 is used for empty, M+1 for bad value
const empty_msg: O;

const bad_msg: M+1;

const ack_msg: 1;

type bit: 0..1;

const dont_care: 0;

type packet: record
control: Dbit;

data: msg;
end;
var empty_packet: packet; -- initialized to [# 0, O #]
const N: 2; -- Max number of messages buffered in the network
type index: 1..N; -- 1 is sender’s end, N is receiver’s end

type channel: array [ index ] of packet;
var msg_channel, ack_channel: channel;

The msg_channel and ack_channel are modeled as arrays of packets, where a packet
(modeled as a record) consists of a message with a control bit attached. We will
need a way to indicate that a particular slot in the array is empty, and I will use a
packet with data field equal to the empty msg (i.e., 0) to do this. “Real” packets
will have data fields with values in the range 1,... ,M. Mur¢ does not provide a way
to specify a record constant, so the empty_packet must be specified as a variable
and initialized later in the startstate declaration.

Next, we need to describe how the “network” moves messages along the channels,
and the kinds of faults that can arise. These are described by Mur¢ “rules,” which
are constructions of the form condition = action. A Mur¢ program “executes” in
simulation mode by selecting some rule whose condition is satisfied in the current
state, then executing the corresponding action to create a new current state, and so
on, repeatedly. In simulation mode, Mur¢ selects nondeterministically from among
the enabled rules at each step; in state exploration mode, it examines all possible
execution sequences. Functions and procedures are structuring constructs that can
be called by rules.

15



function is_empty_packet(p:packet): boolean;
begin

return p.data = empty_msg;
end;

procedure move(var c:channel);
-- Moves the messages in c along by one
-—- If efficiency matters, would be better
-- to use pointers in a circular queue
begin
for i := N to 2 by -1 do c[i]:=c[i-1]; endfor;
c[1] := empty_packet;
end;

rule "move msg channel"
is_empty_packet (msg_channel [N]) ==>
begin move(msg_channel); end;

rule "move ack channel"
is_empty_packet (ack_channel [N]) ==>
begin move(ack_channel); end;

Notice that the procedure move overwrites the packet at position N and does not
check that it is an empty packet. In this program, we can see that move is called
only by rules whose conditions ensure this property; in general, we might want to
cause Mur¢ to check it at run time by adding an assert statement to the beginning
of the move procedure.

The ABP is required to work in the presence of arbitrary packet loss on both
the message and acknowledgment channels; messages cannot be reordered or altered,
however. We can specify this behavior of lossy channels with rules that simply re-
place the packet at some arbitrary position in each channel with the empty packet—a
Mur¢ ruleset could be used to nondeterministically select the position. To down-
scale this action, however, I have chosen to delete the message at the final position
in the channel concerned. This can be specified as follows.

rule "lose msg" begin msg_channel [N] empty_packet; end;

rule "lose ack" begin ack channel [N] empty_packet; end;

Since these rules have no conditions, they are always enabled for execution and Mur¢
can choose, at each stage, whether or not to execute them. In state exploration
mode, Mur¢ will consider all possible combinations of these choices.

In later protocols, and also so that we can explore the behavior of ABP outside
its intended domain, we will wish to allow messages to be corrupted as well as lost.
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These simple rules therefore need to be extended somewhat. We begin by intro-
ducing the type phys_char that records the physical characteristics of a channel
(either lossy, corrupt, lossy_corrupt, or good) and the variables phys_char m,
phys_char_a that record the characteristics of the message and ack channels, re-
spectively.

type phys_char: enum {lossy, corrupt, lossy_corrupt, good};
var phys_char_m, phys_char_a: phys_char;

Then we can adjust the lose msg and lose ack rules to apply only when the
corresponding channels are lossy or lossy_corrupt.

rule "lose msg"
phys_char_m = lossy | phys_char_m = lossy_corrupt ==>
begin msg_channel[N] := empty_packet; end;

rule "lose ack"
phys_char_a = lossy | phys_char_a = lossy_corrupt ==>
begin ack_channel[N] := empty_packet; end;

We can also add rules for corrupting messages in both the msg and ack channels we
use two rules for each channel: one that flips the control bit, and one that changes
the data field to an identifiable bad message. As before, we corrupt messages only
in the final position of the channel concerned.

17



rule "corrupt msg data"
(phys_char_m = corrupt | phys_char_m = lossy_corrupt)
& !is_empty_packet (msg_channel[N]) ==>
begin
msg_channel[N] .data := bad_msg;
end;

rule "corrupt msg control"
(phys_char_m = corrupt | phys_char_m = lossy_corrupt)

& !'is_empty_packet (msg_channel[N]) ==>
begin
msg_channel[N].control := 1 - msg_channel[N].control;
end;

rule "corrupt ack data"
(phys_char_a = corrupt | phys_char_a = lossy_corrupt)
& !is_empty_packet(ack_channel[N]) ==>
begin
ack_channel[N] .data := bad_msg;
end;

rule "corrupt ack control"
(phys_char_a = corrupt | phys_char_a = lossy_corrupt)
& !is_empty_packet(ack_channel[N]) ==>
begin
ack_channel[N].control := 1 - ack_channel[N].control;
end;

Next, we need to provide interface procedures for sending and receiving packets
(send and receive, respectively) and functions for testing whether it is permissible
to perform those operations (ready-to-send and ready-to-receive, abbreviated rtr
and rts, respectively). In order to be able to stack protocols on top of each other,
it will be useful to parameterize these operations in terms of the service providing
them. To start, we will have just three services: abp (the alternating-bit protocol
the service we are in the process of constructing), and physical m and physical_a
(the underlying physical message and acknowledgment channels, respectively). To
start, I will specify these operations for the physical channels only.
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type service: enum {abp, physical_m, physical_a};

function rtr(svc: service): boolean;
begin
switch svc

case physical_m: return !is_empty_packet (msg_channel[N]);
case physical_a: return !is_empty_packet(ack_channel[N]);

end;
end;

function rts(svc: service): boolean;
begin
switch svc

case physical_m: return is_empty_packet(msg_channel[1]);
case physical_a: return is_empty_packet(ack_channel[1]);

end;
end;

procedure send(svc: service; p: packet);
begin
assert rts(svc);
switch svc
case physical_m: msg_channel[1] := p;
case physical_a: ack_channel[1l] := p;
end;
end;

procedure receive(svc: service; var p: packet);
begin

assert rtr(svc);

switch svc

case physical_m: p := msg_channel[N]; msg_channel[N]
case physical_a: p := ack_channel[N]; ack_channel[N]
end;
end;

empty_packet;
empty_packet;

Our task now is to use these low-level primitives to construct higher-level opera-
tions that provide reliable transmission using the ABP. The sending operation will
work as follows. After accepting a new message to transmit, it generates the “next”
control bit value b, attaches it to the message, and transmits the resulting packet.
The sender then waits for an acknowledgment packet. There are three possibilities.

e An acknowledgment packet arrives carrying bit value b—in which case the
sender marks the message as received, and is ready to accept the next message.

e An acknowledgment packet arrives carrying the “wrong” bit value ’ in which

case the sender simply throws it away.
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e The sender decides (probably because a timeout has expired) to send the
packet again.

The receiving operation works as follows. If an incoming packet is available, the
operation removes it, and sends back an acknowledgment carrying the same control
bit as the incoming packet. If the control bit is different from the last one received,
the message is saved; otherwise, it is discarded.

This informal presentation reveals that certain state variables must be main-
tained by the sender and receiver: the sender must record whether it is currently
in the process of sending a message, and if so it must remember the value of that
message and the current control bit; the receiver must remember the last control bit
received. We can specify these variables by means of packets sval_a and rval_a,
which record the packets sent and received, respectively, by the ABP: sval_a will
be empty if there is no sending operation in progress, otherwise it will record the
packet that is being sent; rval_a will likewise record the packet (if any) that has
been received. The bits sbit_a and rbit_a will record the last control bit used
by the sender and received by the receiver, respectively. In addition, a msg is used
to remember the last message sent. These state variables are specified in Mur¢ as
follows.

var a_msg: msg;
var sval_a, rval_a: packet;
var sbit_a, rbit_a: bit;

We can now extend the rts, rtr, send, and receive functions to the case of the
ABP service.
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function
begin
switch
case
case
case
end;
end;

function
begin
switch
case
case
case
end;
end;

rtr(svc: service):

svc
physical_m: return
physical_a: return
abp: return

rts(svc: service):

svc
physical_m: return
physical_a: return
abp: return

boolean;

lis_empty_packet (msg_channel[N]) ;
lis_empty_packet (ack_channel[N]) ;
!is_empty_packet (rval_a);

boolean;

is_empty_packet (msg_channel[1]);
is_empty_packet (ack_channel[1]);
is_empty_packet(sval_a);

procedure send(svc: service; p: packet);

begin

assert rts(svc);

switch
case
case
case

end;
end;

sSvC

physical m: msg_channel[1] := p;

physical_a: ack_channel[1] := p;
abp: sval_a := p; sbit_a := next_bit(sbit_a);
sval_a.control := sbit_a;

procedure receive(svc: service; var p: packet);

begin
assert
switch
case
case
case
end;
end;

rtr(svc);

svc

physical _m: p :=
physical_a: p :=
abp: p:= rv

msg_channel[N]; msg_channel[N] :=
ack_channel[N]; ack_channel[N]
al_a; rval_a := empty_packet;

empty_packet;
empty_packet;

The function next_bit computes the next control bit to use.

function next_bit(b: bit): bit;

begin

return 1 - b; —- flip the bit

end;
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Now we can program the high-level rules. The sending rule represents the user
of the protocol. It generates and sends a new message whenever the previous one
has been sent. It generates the new message by adding 1 modulo M to the previous
message, and saves it in sval_a. It then creates a packet containing the message
just generated and a clear control bit and calls the send function (which will set the
correct control bit).

function next_msg(m: msg): msg;
begin

return (m = M) ? 1 : m+1;
end;

rule "sending"

rts(abp) ==>
var p: packet;
begin
a_msg := next_msg(a_msg);
clear p.control;
p.data := a_msg;
send (abp, p);
end;

Notice that the rule “sending” just initiates the sending of a new message. We need
another rule to actually send its packet out over the message channel and to handle
the retransmission after a timeout. Both these actions are performed by the rule
sender_a, which can fire whenever sval_a is nonempty (i.e., when !'rts(abp)) and
the message channel used by ABP is ready to send.

rule "sender_a"
'rts(abp) & rts(physical_m) ==>
begin send(physical_m, sval_a); end;

The receiving user of the ABP is able to fire whenever a message is available.

rule '"receiving"
rtr(abp) ==>
var p: packet;
begin
receive(abp, p);
end;

The lower-level message reception is enabled whenever the previous message has
been removed (i.e., 'rtr(abp)), the physical message channel is ready to receive,
and the physical ack channel is ready to send. It returns a packet with the same
control bit as the one just received (the message in the packet is irrelevant, but I
will set it to ack_msg); if that bit is different than the control bit of the previous
message, it places in rval_a and sets rbit_a to the value of that bit.
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rule "receiver_a"
'rtr (abp) & rtr(physical_m) & rts(physical_a) ==>
var p, q: packet;

begin
receive(physical_m, p);
q :=p;

q.data := ack_msg;
send (physical_a, q);

if p.control != rbit_a then
rval_a := p;
rbit_a := p.control;
end;
end;

Back at the sending end, we need a rule to deal with the returned acknowledg-
ment packet. This rule is enabled whenever a packet is available on the physical
acknowledgment channel and the ABP is in the process of sending a message (i.e.,
'rts(abp)). (If a packet becomes available when the ABP is not in the process of
sending a message, it will just sit there until a new message transmission begins.)

rule '"check abp ack"
'rts(abp) & rtr(physical_a) ==>

var p: packet;

begin
receive(physical_a, p);
if p.control = sval_a.control then

sval_a := empty_packet;

end;

end;

To start things off, we need to initialize the various state variables.

startstate
begin
empty_packet.data := empty_msg;
clear empty_packet.control;
for i: index do msg_channel[i] := empty_packet;

ack channel[i] empty_packet;
endfor;
clear rbit_a;
clear sbit_a;
clear a_msg;
sval_a := empty_packet;
rval_a := empty_packet;
phys_char_m := lossy;
phys_char_a := lossy;
end;
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At this stage we have enough specified to run Mur¢ in simulation mode and
can check from its trace that things seem to be working properly. To do significant
debugging, however, we must provide some invariants and assertions that can be
tested under full state exploration. One key property required of the protocol is
that no messages should be lost or reordered. This can be partially ensured by
checking that each message received is indeed the message that was sent—and this
check can be performed by adding the assertion

assert rval_a.data = a_msg;

to the rule receiver_a.

In state exploration mode, Mur¢ verifies this assertion in 4.93 seconds after
visiting 2113 states and firing 9,305 rules. However, it also verifies the assertion
when we modify the program so that the control bit does not alternate (i.e., when
the body of next bit is changed from return 1-b to return b)! It is clear that
we need some additional and stronger assertions if we are to gain confidence in the
correctness of our model of ABP.

Now the intuitive correctness requirement for ABP is that it masks message loss
and presents a service that is equivalent to a perfect buffer. Because it is possible
for the transmitter to start sending a new message before the receiver has collected
the previous one, the buffer may contain as many as two messages. Therefore, one
way to check correctness of ABP is to compare its top-level behavior against that of
a two-place buffer. Klaus Havelund of the University of Paris VI first suggested this
approach to me, and he also suggested how it can be implemented in Mur¢. The
idea is to describe the required behavior of the protocol by the following three-state
automaton.

send send

receive receive
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Any attempt to receive in state 1, or to send in state 3 is an error; furthermore a
receive in state 3 should return the message sent in the transition from state 2, and
a receive in state 2 should return the message sent in the transition from state 1.
This can be programmed in Mur¢ as follows.

procedure automaton(x: action; m: msg);
begin
switch state
case 1:
if x=snd then the_msg := m; state := 2;
else error "*** receive in state 1";

end;
case 2:
if x=snd then another_msg := m; state := 3;
else
if m != the_msg then error "*** wrong message received(1)"; end;
state := 1;
end;
case 3:

if x=snd then error "*** send in state 3";

else
if m != the_msg then error "**x* wrong message received(2)"; end;
the_msg := another_msg; state := 2;
end;
end;
end;

We then place the call automaton(snd, amsg) in the rule sending, and the call
automaton(rcv, p.data) in the rule receiving.

In this way we establish a simulation, or abstraction, relation between the mod-
eled implementation of ABP and its requirement specification. With this more
sophisticated correctness check, Mur¢ detects the error in the protocol that does
not alternate the bit (in 0.56 second after exploring 48 states and firing 176 rules).
Mur¢ reports the error “send in state 3”7 and its backtrace indicates that one cir-
cumstance that triggers the incorrect behavior is when the sender retransmits a
message that has already been received resulting in duplicate reception. When
the alternation of the control bit is restored, Mur¢ verifies correctness as before
in 4.93 seconds after visiting 2113 states and firing 9,305 rules. If we change the
characteristics of the channels by, for example, changing phys_char m := lossy to
phys_char m := corrupt in the startstate, Mur¢g again detects an error (wrong
message received in state 1; 0.52 second, 26 states explored, and 72 rules fired),
thereby demonstrating that ABP cannot cope with corrupt channels.
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3.2 Exploring CP with Mur¢

To explore the CP protocol, we must add some additional state variables to our
Mur¢ program. First, we need to extend the packet type to include a checksum bit.

type packet: record
checksum: bit;
control: bit;
data: msg;
end;

The checksum is set to 1 to model a good packet, and to 0 to model one that has
been (detectably) corrupted. The rules for corrupting messages are then changed
to the following.

rule "corrupt msg data"
(phys_char_m = corrupt | phys_char_m = lossy_corrupt)
& !is_empty_packet (msg_channel[N]) ==>
begin
msg_channel[N] .data := bad_msg;
msg_channel[N].checksum := 0;
end;

rule "corrupt msg control"
(phys_char_m = corrupt | phys_char_m = lossy_corrupt)
& !'is_empty_packet (msg_channel[N]) ==>
begin
msg_channel[N].control := 1 - msg_channel[N].control;
msg_channel[N].checksum := 0;

end;

Because there is no checksum protection on the acknowledgment channel, the rules
corrupt ack data and corrupt ack control are not changed from their previous
definitions.

As with the ABP, we need state variables to remember the packets being sent
and received, and a bit to record whether the protocol is busy.

var sval_c, rval_c: packet;

var busy_c: boolean;

These are initialized in the startstate, together with the characteristics of the
physical channels.
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startstate

busy_c

:= false;
sval_c := empty_packet;
rval_c := empty_packet;
phys_char_m := corrupt;

phys_char_a := good;

-- can be corrupt

-- must be good

Then we extend rtr and rts.

function rtr(svc: service): boolean;

begin
switch
case
case
case
case
end;
end;

function
begin
switch
case
case
case
case
end;
end;

svc
physical_m:
physical_a:
abp:

cp:

return
return
return
return

!is_empty_packet (msg_channel[N]) ;
!is_empty_packet (ack_channel[N]);
'is_empty_packet (rval_a);
lis_empty_packet(rval_c);

rts(svc: service): boolean;

svc
physical_m:
physical_a:
abp:

cp:

return
return
return
return

is_empty_packet (msg_channel[1]);
is_empty_packet (ack_channel[1]);
is_empty_packet(sval_a);
is_empty_packet(sval_c);

And, similarly, we extend send and receive.
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procedure send(svc: service; p: packet);
begin
assert rts(svc);
switch svc
case physical_m: msg_channel[1] := p;
case physical_a: ack_channel[l] := p;

case abp: sval_a := p; sbit_a := next_bit(sbit_a);
sval_a.control := sbit_a;
case cp: sval_c := p; sval_c.checksum := 1;
end;

end;

procedure receive(svc: service; var p: packet);
begin

assert rtr(svc);

switch svc

case physical_m: p msg_channel[N]; msg_channel[N]
case physical_a: p ack_channel[N]; ack_channel[N]
case abp: p:= rval_a; rval_a := empty_packet;
case cp: P rval_c; rval_c empty_packet;
end;

end;

empty_packet

empty_packet

The CP sender rule is enabled when the protocol is not busy. It marks the
protocol as busy and calls the send procedure.

rule "sender_c"
'is_empty_packet(sval_c) & rts(physical_m) & !busy_c ==>

begin

busy_c := true;

send (physical_m, sval_c);
end;

The receiver examines the checksum on any packet received and returns either a pos-
itive or negative acknowledgment packet according to whether or not the checksum
is good.
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const nack_msg: 2;

rule "receiver_c"
is_empty_packet (rval_c) & rtr(physical_m) & rts(physical_a) ==
var p, q: packet;
begin
receive(physical_m, p);
q = P;
if p.checksum = 0 then
q.data := nack_msg;

else
rval_c := p;
g.data := ack_msg;
end;
send (physical_a, q);
end;

When the sender receives an acknowledgment packet, it turns off its busy flag if the
acknowledgment is positive; otherwise, it retransmits the packet.

rule '"check cp ack"
busy_c & rtr(physical_a) & rts(physical_m) ==
var p: packet;
begin
receive(physical_a, p);
if p.data = ack_msg then

sval_c := empty_packet;
busy_c := false;
else

send (physical_m, sval_c);
end;
end;

To complete the protocol, we must modify the sending and receiving rules to
use the CP rather than ABP protocol. We parameterize this by means of the top
state variable, which is initialized to cp in the startstate.

29



var top: service;

rule "sending"
rts(top) ==>
var p: packet;
begin
a_msg := next_msg(a_msg);
automaton(snd, a_msg);
clear p.control;

p.data := a_msg;
send(top, p);
end;

rule "receiving"
rtr(top) ==>
var p: packet;
begin
receive(top, p);
automaton(rcv, p.data);
end;

We also need to make sure that the ABP receiver_a rule does not grab a packet
off the physical m channel. We can do this by making sure rval_a is initialized to
a nonempty packet. (The ABP sending a and check abp ack rules will not get in
the way because sval_a is initialized to an empty packet.)

var empty_packet, nonempty_packet: packet;
startstate

nonempty_packet.data := ack_msg;

clear nonempty_packet.control;

clear nonempty_packet.checksum;

rval_a := nonempty_packet;

top := cp;

Exploration with Mur¢ quickly establishes that the CP protocol is correct as
described (exploration visits 226 states and fires 684 rules in 1.12 seconds). It also
reveals that the protocol cannot cope with a lossy as well as corrupt message channel
(deadlock found after exploring 14 states and firing 33 rules in 0.6 second), nor with
a corrupt acknowledgment channel (an erroneous “receive in state 17 is detected
after exploring 53 states and firing 151 rules in 0.73 second).
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3.3 Exploring the Combined Protocols with Mur¢

We now have sufficient machinery in place to explore the behavior of ABP above CP,
and vice versa, in the face of a lossy and corrupt message channel. In order to allow
one protocol to use the other as its message channel, we introduce abp_m, abp_a, cp_m,
cp-a as names for the services used by ABP for messages and acknowledgments,
and by CP for messages and acknowledgments, respectively. Then, all references
to physical_a and physicalm in the rules for ABP and CP are changed to use
these names, which are initialized appropriately in the start state: for example,
the initialization for ABP above the CP protocol reads, in part, as follows (where
physical_a2 is a second acknowledgment channel, defined identically to the first).

phys_char_m := lossy_corrupt;
phys_char_a := good;
phys_char_a2 := good;

top := abp;

abp_m := cp;

abp_a := physical_aZ2;

cp_m := physical_m;

cp_a := physical_a;;

An important change must be made to the rule for corrupting the ABP control bit
on the message channel: this is detected (i.e., the checksum bit is set to zero) only
if CP provides the message channel for ABP (i.e., if abpm = cp.

rule "corrupt msg control"
(phys_char_m = corrupt | phys_char_m = lossy_corrupt)
& !'is_empty_packet (msg_channel[N]) ==>

begin
msg_channel[N].control := 1 - msg_channel[N].control;
if abp_m = cp then msg_channel[N].checksum := 0; end;
end;

The Mur¢ program for the combinations of the two protocols is shown in Ap-
pendix A.

Mur¢ quickly establishes that neither combination of ABP and CP works in the
presence of a lossy and corrupt message channel and good acknowledgment channels.
When ABP is above CP, Mur¢ reports a deadlocked state after exploring only 15
states and firing 46 rules in 0.65 second. The backtrace provides the following
scenario that manifests the problem: the very first message sent is lost by the
message channel, causing the CP sender to deadlock waiting for an acknowledgment
that will never arrive.

When CP is above ABP, Mur¢ explores 595 states and fires 2419 rules in 2.81
seconds before reporting “receive in state 1.” The backtrace provides the following
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scenario that manifests the fault: a message is sent and correctly received; before
its acknowledgment is received, the ABP sender times out and sends another copy;
the control bit of this message is corrupted (since this is below the protection of the
CP, this is not detected), causing the receiver to mistake it for a new message.

3.3.1 Exploring a Correct Protocol with Mur¢

By simply deleting the ack channel and its associated checks and retransmissions
from CP, we obtain the protocol CP’. Mur¢ is able to establish that ABP above CP’
correctly solves the problem of tolerating a lossy corrupt message channel, although
the number of states it must explore for this purpose is quite large:

e 28,273 states explored and 180,053 rules fired in 149.08 seconds when the
acknowledgment channel is good, and

e 30,577 states explored and 226,182 rules fired in 179.27 seconds when the
acknowledgment channel is lossy.

When the acknowledgment channel is corrupt, Mur¢ detects a fault (“send in state
37) after exploring 4,826 states and firing 30,714 rules in 24.87 seconds. The scenario
that manifests the fault is 27 transitions long. If CP’ is used on the ack channel
as well as the message channel, then the combined protocol can tolerate loss and
corruption on both channels.
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Chapter 4

Conclusion

We have seen, by means of simple examples, that it is not straightforward to com-
bine mechanisms for separate problems to achieve a mechanism for the combined
problem, and that formal state exploration can be an effective tool for debugging
and exploring the behavior of systems that involve complex interactions.

The most interesting result of our experiment involving the ABP and CP proto-
cols is the discovery that one of these protocols needs to be weakened, rather than
strengthened, to provide the most suitable building block for larger compositions.
Interesting work for the future lies in characterizing those system specifications and
assumptions that are suitable for composition and distinguishing them from those
that are not.

Our examination of these protocols with Mur¢ demonstrates the utility of the
simple technology of explicit state exploration. More sophisticated forms of analysis
for finite systems include model checking with respect to temporal logic specifica-
tions and testing language containment on w-automata. Neither of these techniques
permits as simple or complete a specification of required behavior as the method
due to Klaus Havelund—that we employed in Mur¢: namely, direct comparison
against an automaton that implements the requirements specification. Further-
more, the explicit state enumeration employed by Mur¢ (as opposed to the BDD
representations used in more sophisticated systems) is fully adequate for the simple
protocols considered here.
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Appendix A

Listing of the full Murphi
Program

const M: 3; —-- Number of different messages. Must be >=2
type msg: 0..M+1; -- 0 is used for empty, M+l for bad value
const empty_msg: O;

const ack_msg: 1;

const nack_msg: 2;

const bad_msg: M+1;

type bit: 0..1;
const dont_care: 0;
type packet: record
checksum: bit;
control: Dbit;
data: msg;
end;
var empty_packet, nonempty_packet: packet;

const N: 2; -- Max number of messages buffered in the network xx
type index: 1..N; -- 1 is sender’s end, N is receiver’s end
type channel: array [ index ] of packet;

var msg_channel, ack_channel, ack2_channel: channel;

var sval_c, rval_c: packet;
var busy_c: boolean;

type phys_char: enum lossy, corrupt, lossy_corrupt, good;
var phys_char_m, phys_char_a, phys_char_a2: phys_char;

type service: enum not_used, abp, cp, physical_m, physical_a, physical_aZ2;
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var top, abp_m, abp_a, cp_m, cp_a: service;

var a_msg: msg;
var sval_a, rval_a: packet;
var sbit_a, rbit_a: bit;

type states: 1..3;

type action: enumsnd, rcv;

var state: states; -- initially 1

var the_msg, another_msg: msg; -- initially clear
type err: 1..4;

procedure squawk(n:err) ;

begin
switch n
case 1: error "xx**xx receive in state 1";
case 2: error " x**xx wrong message received(1)";
case 3: error " x**x* send in state 3"; -- xx
case 4: error 'kk**xxx wrong message received(2)";
end;
end;

procedure automaton(x: action; m: msg);
begin
switch state
case 1:
if x=snd then the_msg := m; state := 2;
else squawk(1);
end;
case 2:
if x=snd then another_msg := m; state := 3;
else
if m != the_msg then squawk(2); end;
-- assert m = the_msg;
state := 1;
end;
case 3:
if x=snd then squawk(3);
else
if m != the_msg then squawk(4); end;
- assert m = the_msg;
the_msg := another_msg; state := 2;
end;
end;
end;
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function is_empty_packet(p:packet): boolean;

begin

return p.data = empty_msg;

end;

procedure move(var c:channel);

-- Moves the messages in c along by one
-- If efficiency matters, would be better
-- to use pointers in a circular queue

begin
for i
cl1]

end;

:= N to 2 by -1 do c[i]l:=c[i-1]; endfor;

empty_packet;

function next_bit(b: bit): bit;

begin
-- return b;
return 1 - b; -- flip the bit
end;
function next_msg(m: msg): msg;
begin
return (m = M) 7 1 : m+1;
end;
function rtr(svc: service): boolean;
begin
switch svc
case physical_m: return !is_empty_packet(msg_channel[N]);
case physical_a: return !is_empty_packet (ack_channel[N]);
case physical_a2: return !is_empty_packet (ack2_channel[N]);
case abp: return !is_empty_packet(rval_a);
case cp: return !is_empty_packet(rval_c);
end;
end;
function rts(svc: service): boolean;
begin
switch svc
case physical_m: return is_empty_packet(msg_channel[1]);
case physical_a: return is_empty_packet(ack_channel[1]);
case physical_a2: return is_empty_packet(ack2_channel[1]);
case abp: return is_empty_packet(sval_a);
case cp: return is_empty_packet(sval_c);
end;
end;
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procedure send(svc: service; p: packet);

begin
assert rts(svc);
switch svc

case physical_m: msg_channel[1] := p;
case physical_a: ack_channel[1] := p;
case physical_a2: ack2_channel[1] := p;
case abp: sval_a := p; sbit_a := next_bit(sbit_a);
sval_a.control := sbit_a;
case cp: sval_c := p; sval_c.checksum := 1;
end;

end;

procedure receive(svc: service; var p: packet);

begin
assert rtr(svc);
switch svc
case physical m: p := msg_channel[N]; msg _channel[N] := empty_packet;
case physical_a: p := ack_channel[N]; ack_channel[N] := empty_packet;
case physical_a2: p := ack2_channel[N]; ack2_channel[N] := empty_packet;
case abp: p:= rval_a; rval_a := empty_packet;
case cp: p:= rval_c; rval_c := empty_packet;
end;
end;

procedure init_abp();

begin
phys_char_m := lossy;
phys_char_a := lossy;
top := abp;
abp_m := physical_m;
abp_a := physical_a;
cp_a := not_used;
cp_m := not_used;
rval_c := nonempty_packet;

put "Alternating Bit Protocol";
end;

procedure init_cp();

begin
phys_char_m := corrupt;
phys_char_a := good;
top := abp;
abp_m := not_used;
abp_a := not_used;
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cp_a := physical_m;;

cp_m := physical_a;

rval_a := nonempty_packet;

put "Checksum Protocol";
end;

procedure init_abp_cp();
begin
phys_char_m := lossy_corrupt;
phys_char_a := good;
phys_char_a2 := good;
top := abp;
abp_m := cp;
abp_a := physical_a2;
cp_m := physical_m;
cp_a := physical_a;;
put "Alternating Bit above Checksum Protocol";
end;

procedure init_cp_abp();
begin
phys_char_m := lossy_corrupt;
phys_char_a := good;
phys_char_a2 := good;
top := cp;
abp_m := physical_m;
abp_a := physical_a;
cp_m := abp;
cp_a : physical_a2;;

put "Checksum above Alternating Bit Protocol";
end;

rule "move msg channel"
is_empty_packet (msg_channel [N]) ==>
begin move(msg_channel); end;

rule "move ack channel"
is_empty_packet (ack_channel [N]) ==>
begin move(ack_channel); end;

rule "move ack2 channel”

is_empty_packet (ack2_channel[N]) ==>
begin move(ack2_channel); end;
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rule "lose msg"
phys_char_m = lossy | phys_char_m = lossy_corrupt ==>
begin msg_channel[N] := empty_packet; end;

rule "lose ack"
phys_char_a = lossy | phys_char_a = lossy_corrupt ==>
begin ack_channel[N] := empty_packet; end;

rule "lose ack2"
phys_char_a2 = lossy | phys_char_a2 = lossy_corrupt ==>
begin ack2_channel [N] := empty_packet; end;

rule "corrupt msg data"
(phys_char_m = corrupt | phys_char_m = lossy_corrupt)
& !'is_empty_packet (msg_channel[N]) ==>

begin
msg_channel[N] .data := bad_msg;
msg_channel[N].checksum := 0;
end;

rule "corrupt msg control"
(phys_char_m = corrupt | phys_char_m = lossy_corrupt)
& !'is_empty_packet (msg_channel[N]) ==>
begin
msg_channel[N].control := 1 - msg_channel[N].control;
if abp_m = cp then msg_channel[N].checksum := 0; end;
end;

rule "corrupt ack data"
(phys_char_a = corrupt | phys_char_a = lossy_corrupt)
& !'is_empty_packet (ack_channel[N]) ==>
begin
ack_channel[N] .data := bad_msg;
end;

rule "corrupt ack control"
(phys_char_a = corrupt | phys_char_a = lossy_corrupt)
& !is_empty_packet(ack_channel[N]) ==>
begin
ack_channel[N].control := 1 - ack_channel[N].control;
end;

rule "corrupt ack2 data"
(phys_char_a2 = corrupt | phys_char_a2 = lossy_corrupt)
& !'is_empty_packet (ack2_channel[N]) ==>
begin
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ack2_channel[N] .data := bad_msg;
end;

rule "corrupt ack2 control"
(phys_char_a2 = corrupt | phys_char_a2 = lossy_corrupt)
& !'is_empty_packet (ack2_channel[N]) ==>
begin
ack2_channel[N].control := 1 - ack2_channel[N].control;
end;

rule "sending"
rts(top) ==>
var p: packet;
begin
a_msg := next_msg(a_msg);
automaton(snd, a_msg);
clear p.control;
p.data := a_msg;
send (top, p);
end;

rule "sender_a"
'rts(abp) & rts(abp_m) ==>
begin send(abp_m, sval_a); end;

rule '"receiving"
rtr(top) ==>
var p: packet;
begin
receive(top, p);
automaton(rcv, p.data);
end;

rule '"receiver_a"
!rtr(abp) & rtr(abp_m) & rts(abp_a) ==>

var p, q: packet;

begin
receive(abp_m, p);
q = P
q.data := ack_msg;
send(abp_a, q);

if p.control != rbit_a then
rval_a := p;
rbit_a := p.control;
end;
end;
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rule '"check abp ack"
'rts(abp) & rtr(abp_a) ==>

var p: packet;

begin
receive(abp_a, p);
if p.control = sval_a.control then

sval_a := empty_packet;

end;

end;

rule "sender_c"
lis_empty_packet(sval_c) & rts(cp_m) & !busy_c ==>
begin
busy_c := true;
send(cp_m, sval_c);
end;

rule "receiver_c"
is_empty_packet(rval_c) & rtr(cp_m) & rts(cp_a) ==>
var p, q: packet;

begin
receive(cp_m, p);
q = Pp;

if p.checksum = 0 then
g.data := nack_msg;

else
rval_c := p;
q.data := ack_msg;
end;

send(cp_a, q);
end;

rule '"check cp ack"
busy_c & rtr(cp_a) & rts(cp_m) ==>
var p: packet;
begin
receive(cp_a, p);
if p.data = ack_msg then

sval_c := empty_packet;
busy_c := false;
else

send(cp_m, sval_c);
end;
end;
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startstate

begin
empty_packet.data := empty_msg;
clear empty_packet.control;
clear empty_packet.checksum;

nonempty_packet.data := ack_msg;
clear nonempty_packet.control;
clear nonempty_packet.checksum;

for i: index do msg_channel[i] empty_packet;

ack_channel[i] := empty_packet;
ack2_channel[i] := empty_packet;

endfor;

clear rbit_a;

clear sbit_a;

clear a_msg;

sval_a := empty_packet;

rval_a := empty_packet;

busy_c := false;
sval_c := empty_packet;
rval_c := empty_packet;

state := 1;
clear the_msg;
clear another_msg;

init_abp_cp();

end;
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Appendix B

Error Trace for ABP Above
CP’ With Corrupt
Acknowledgment Channel

Murphi Beta Release 2.73S (With Symmetry)
Finite-state Concurrent System Verifier.

Copyright (C) 1992, 1993
by the Board of Trustees of Leland Stanford Junior University.

This program should be regarded as a DEBUGGING aid, not as a
certifier of correctness.

Call with the -1 flag or read the license file for terms

and conditions of use.

Run this program with "-h" for the list of optionmns.

Bugs, questions, and comments should be directed to
"murphi@verify.stanford.edu".

Murphi compiler last modified date: Apr 14 1994
Include files last modified date: Apr 14 1994

Algorithm:
Verification by breadth first search.
with symmetry algorithm 1 -- fast canonicalization.

Memory usage:
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* The size of each state is 125 bits (rounded up to 16 bytes).
* The memory allocated for the hash table is 2 Mbytes.
With two words of overhead per state, the maximum size of
the state space is 80021 states.

* Use option "-k" or "-m" to increase this, if necessary.
Capacity in queue for breadth-first search: 20005 states.

* Change the constant gPercentActiveStates in mu_verifier.h

to increase this, if necessary.

Alternating Bit above Modified Checksum Protocol

Progress Report:

1000 states explored in 5.33s, with 6046 rules fired and 183 states in the queue.

2000 states explored in 10.11s, with 12130 rules fired and 352 states in the queue.
3000 states explored in 15.06s, with 18438 rules fired and 529 states in the queue.
4000 states explored in 20.44s, with 25275 rules fired and 645 states in the queue.

The following is the error trace:

Startstate Startstate 0 fired.
empty_packet.checksum : O
empty_packet.control : O
empty_packet.data : O

nonempty_packet.checksum : 0

nonempty_packet.control :

nonempty_packet.data :

.checksum :

msg_channel[1]
msg_channel[1].
msg_channel[1]
msg_channel [2].
msg_channel [2]
msg_channel [2]
ack_channel[1].
ack channel[1]
ack channel[1].
ack channel[2]
ack_channel[2]
ack_channel[2].

ack2_channel[1].checksum :

ack2 channel[1]
ack2 channel[1]
ack2 channel[2]
ack2_channel[2]
ack2_channel[2]

sval_c.checksum :

.data :

control :

0

checksum :
.control :
.data :

0

checksum :
.control :

data : O

.checksum :
.control :

data : 0O

.control :
0
.checksum :

.data :

.control :
0

.data :
0

0

0
0

0
0

0
0

0
0
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sval_c.control : O
sval_c.data : O
rval_c.checksum : O
rval_c.control : O
rval_c.data : O
busy_c : false
phys_char_m:lossy_corrupt
phys_char_a:corrupt
phys_char_a2:good
top:abp

abp_m:cp
abp_a:physical_a
cp_m:physical_m
cp_a:absent

a_msg : 0
sval_a.checksum : O
sval_a.control : O
sval_a.data : O
rval_a.checksum : O
rval_a.control : O
rval_a.data : O

sbit_a : O
rbit_a : O
state : 1
the_msg : O

another_msg : O

Rule sending fired.

a_msg : 1
sval_a.checksum:Undefined
sval_a.control : 1
sval_a.data : 1

sbit_a : 1

state : 2

the_msg : 1

Rule sender_a fired.
sval_c.checksum : 1
sval_c.control : 1
sval_c.data : 1

Rule sender_c fired.
msg_channel[1].checksum :

1
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msg_channel[1].control :

msg_channel[1].data : 1
sval_c.checksum : O
sval_c.control : O
sval_c.data : 0

Rule sender_a fired.
sval_c.checksum : 1
sval_c.control : 1
sval_c.data : 1

Rule move msg channel fired.
msg_channel[1].checksum :
msg_channel[1].control :

msg_channel[1] .data : 0

msg_channel[2] .checksum :
msg_channel[2].control :

msg_channel[2].data : 1

Rule receiver_c fired.

msg_channel[2] .checksum :
msg_channel[2].control :

msg_channel[2].data : 0
rval_c.checksum : 1
rval_c.control : 1
rval_c.data : 1

Rule sender_c fired.

msg_channel[1].checksum :
msg_channel[1].control :

msg_channel[1].data : 1
sval_c.checksum : O
sval_c.control : O
sval_c.data : O

Rule receiver_a fired.

ack channel[1].checksum :
ack channel[1].control :

ack_channel[1].data : 1
rval_c.checksum : 0
rval_c.control : O

1

0
0

1
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rval_c.data :

rval_a.checksum :
rval_a.control :

rval_a.data :
rbit_a : 1

0

1
1
1

Rule receiving fired.

rval_a.checksum :
rval_a.control :

rval_a.data :
state 1

Rule sender_a

sval_c.checksum :
sval_c.control :

sval_c.data :

Rule move ack
ack_channel[1]
ack_channel[1]

ack_channel[1].

ack channel[2]

ack channel[2].

ack_channel[2]

Rule check abp

ack channel[2].

ack channel[2]
ack_channel[2]

sval_a.checksum :
sval_a.control :
0

sval_a.data :

Rule sending f

a_msg : 2

0
0
0
fired.
1
1

1

channel fired.
0
0

.checksum :
.control :
data : O

.checksum : 1
control : 1

.data : 1

ack fired.
0
0

checksum :
.control :
.data : O
0

0

ired.

sval_a.checksum:Undefined

sval_a.data :
sbit_a : 0
state 2
the_msg : 2

2
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Rule move msg channel fired.

msg_channel[1].checksum : 0
msg_channel[1].control : 0
msg_channel[1].data : O
msg_channel[2].checksum : 1
msg_channel[2].control : 1
msg_channel[2] .data : 1

Rule receiver_c fired.
msg_channel[2].checksum : 0
msg_channel[2] .control : 0
msg_channel[2].data : 0
rval_c.checksum : 1
rval_c.control : 1
rval_c.data : 1

Rule sender_c fired.
msg_channel[1].checksum : 1
msg_channel[1].control : 1
msg_channel[1].data : 1
sval_c.checksum : O
sval_c.control : O
sval_c.data : 0

Rule receiver_a fired.

ack channel[1].checksum : 1
ack channel[1].control : 1
ack channel[1].data : 1
rval_c.checksum : O
rval_c.control : O
rval_c.data : O

Rule move ack channel fired.

ack_channel[1].checksum : O
ack_channel([1].control : O

ack_channel[1].data : O

ack channel[2].checksum : 1
ack channel[2].control : 1

ack_channel[2] .data : 1
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Rule corrupt ack control fired.

ack_channel[2].control : O

Rule check abp ack fired.
ack_channel[2].checksum : O
ack_channel([2].data : O
sval_a.checksum : O
sval_a.data : 0

Rule sending fired.

a_msg : 3
sval_a.checksum:Undefined
sval_a.control : 1
sval_a.data : 3

sbit_a : 1

state : 3

another_msg : 3

Rule move msg channel fired.
msg_channel[1].checksum : 0
msg_channel[1].control : 0
msg_channel[1].data : 0
msg_channel[2].checksum : 1
msg_channel[2].control : 1
msg_channel[2] .data : 1

Rule receiver_c fired.
msg_channel[2].checksum : 0
msg_channel[2].control : 0
msg_channel[2] .data : O
rval_c.checksum : 1
rval_c.control : 1
rval_c.data : 1

Rule receiver_a fired.

ack channel[1].checksum : 1
ack channel[1].control : 1
ack channel[1].data : 1
rval_c.checksum : O
rval_c.control : O
rval_c.data : O
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Rule move ack channel fired.

ack channel[1]
ack channel[1]
ack_channel[1].
ack_channel[2]
ack_channel[2]
ack channel[2]

Rule check abp
ack_channel[2]
ack channel[2]
ack channel[2].

.checksum : 0
.control : O

data : 0O

.checksum : 1
.control : 1
.data : 1

ack fired.

.checksum : O
.control : O

data : O

sval_a.checksum : O

sval_a.control :
sval_a.data : O

0

Rule sending fired.
empty_packet.checksum : O
empty_packet.control : 0
empty_packet.data : O
nonempty_packet.checksum :

nonempty_packet.control : 0
nonempty_packet.data : 1

msg_channel[1]
msg_channel[1].
msg_channel[1]
msg_channel [2]
msg_channel [2]
msg_channel [2]
ack_channel[1].
ack channel[1]
ack channel[1]
ack channel[2]
ack_channel[2]
ack_channel[2].
ack2_channel[1]
ack2 channel[1]
ack2 channel[1]
ack2 channel[2]
ack2_channel[2]
ack2_channel[2]

.checksum : O

control : O

.data : O
.checksum : 0O
.control : 0
.data : O

checksum : O

.control : 0O
.data : O

.checksum : 0O
.control : O

data : O
.checksum :
.control : 0O
.data : O
.checksum :
.control : O
.data : O

sval_c.checksum : O

0

0

0
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sval_c.control : O
sval_c.data : O
rval_c.checksum : O
rval_c.control : O
rval_c.data : O
busy_c : false
phys_char_m:lossy_corrupt
phys_char_a:corrupt
phys_char_a2:good
top:abp

abp_m:cp
abp_a:physical_a
cp_m:physical_m
cp_a:absent

a_msg : 1
sval_a.checksum : O
sval_a.control : O
sval_a.data : O
rval_a.checksum : O
rval_a.control : O
rval_a.data : O

sbit_a : 1
rbit_a : 1
state : 3
the_msg : 2

another_msg : 3

End of the error trace.

Result:
Error: *x***xx send in state 3

when firing rule:
sending

State Space Explored:

4826 states, 30714 rules fired in 24.99s.
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