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AbstractThis report presents a simple example to demonstrate that the composition of a\fault-tolerant" service and a \secure" service does not necessarily provide a secureand fault-tolerant service.The example is originally due to Peleska, who argues that to achieve the com-bined service, it is necessary to strengthen one of the individual services to addressboth concerns. In contrast, I argue that the individual services should be \decon-structed" into smaller and weaker components that can be reassembled in di�erentways, and I show that the combined service can be achieved by composing thefault-tolerant service with a weaker version of the secure service.The report also provides an introduction to the use of mechanized formal stateexploration methods (speci�cally, the Mur� system from Stanford) for the purposeof examining and debugging protocols.
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Chapter 1IntroductionIn an earlier report [11], I described some of the characteristics of systems that aredesigned to satisfy critical properties such as dependability, safety, security, andreal-time operation, and I discussed some of the techniques used in developing andproviding assurance for these systems. I also examined some of the issues in buildingsystems to satisfy two or more of these critical properties simultaneously.In this report, I focus on a very small tutorial example. Suppose we knowhow to satisfy each of two requirements separately, how might we satisfy themjointly? The example I use is based on one by Jan Peleska [10], who presents onecommunications protocol that can tolerate message loss and another that can defeatmessage corruption, and considers how to develop a protocol that can deal with bothproblems simultaneously. Peleska suggests that the �rst protocol may be considered\fault tolerant," and the other \secure," so that the exercise is paradigmatic ofthe construction of fault-tolerant and secure systems. It might be hoped that thecombined requirement could be satis�ed by stacking the fault tolerant protocol ontop of the secure one or vice versa, but it turns out that neither of these approachesis successful; it is necessary either to synthesize a single protocol that addresses thecombined requirements, or to \deconstruct" the two protocols to provide weakerservices whose combination is, paradoxically, stronger than the combination of theoriginals.A second objective of this report is to exemplify the use of formal methods inexamining the behavior of systems under di�erent assumptions. This topic was alsoexamined by Peleska, but whereas he used CSP [6] and the FDR model checker [5],I use a notation based on Unity [3] and the Mur� state exploration tool [8].
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Chapter 2Informal Description andAnalysisA protocol speci�cation must describe the service to be provided, the assumptionson the environment in which it executes, and the procedural rules governing thebehavior of the participants to the protocol and the messages exchanged betweenthem. When protocols are \stacked" one on top of another, the assumptions of theupper protocol must match the service provided by the lower one.The service provided by the protocols considered here is to move messages reli-ably from a sender to a receiver, despite various faults that may a�ict the underly-ing communications medium. This medium is assumed to provide separate transmit(i.e., sender to receiver) and reply (i.e., receiver to sender) channels. The particularkinds of faults that may a�ict these channels constitute the major assumptions onthe protocols. In this chapter, I present the protocols informally and explain thedi�culties in combining them.2.1 Fault Tolerance: The Alternating Bit ProtocolThe alternating bit protocol (ABP) is one of the simplest and earliest protocolsdesigned to overcome message loss in the underlying communications medium [1].It operates as follows.Sender: The sender attaches a single control bit to each message, alternating thevalue of the bit on successive messages. The sender transmits the messageand its attached control bit and waits for a reply message carrying the samecontrol bit. If no reply is received within some interval, or a reply is receivedthat carries the wrong control bit, then the sender repeats the transmissionuntil a satisfactory reply is received.3
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sending receiving
ABP sender ABP receiverack channel (lossy)msg channel (lossy)Figure 2.1: Alternating Bit ProtocolReceiver: The receiver replies to every message received with a message carryingthe same control bit as the incoming message. After replying, the receiverdiscards messages carrying the same control bit as the previous one received,and retains those whose control bit di�ers from the previous one.The ABP has only one unacknowledged message outstanding at a time. More ef-�cient \sliding window" protocols allow several unacknowledged messages to beoutstanding at a time.The claim for ABP is that it works correctly even when messages and their repliescan be lost arbitrarily. By \works correctly," I mean that the sequence of messagesretained by the receiver is the same as that sent by the sender, with no messageslost, duplicated, or reordered. The assumptions are that the underlying transmitand reply channels may have several messages and replies in transit simultaneously,and can lose messages and replies but cannot change or reorder them. Despite itssimplicity, the ABP is not completely straightforward to analyze: the sender mayperform actions based on the absence of a reply when the reply (or several replies)is actually in transit.

4



2.2 Security: The Checksum ProtocolA simple way to detect message corruption is to attach a checksum to each message.The receiver can recalculate the checksum of each message received and verify thatit matches the checksum that was sent with the message. Suitably sophisticatedchecksums can detect all corruptions within a given class (e.g., any m-bit error).The checksum protocol (CP) operates as follows.
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sending receiving
CP sender CP senderack channel (error free)msg channel (corrupt)Figure 2.2: Checksum ProtocolSender: The sender attaches a checksum to each message transmitted and awaitsa reply carrying a positive or negative acknowledgment. If a positive acknowl-edgment is received, the sender moves on to the next message; if a negativeacknowledgment is received, it retransmits the message and its attached check-sum.Receiver: The receiver checks the checksum of each message received. If it is cor-rect, the receiver sends a reply containing a positive acknowledgment; other-wise, it sends one containing a negative acknowledgment. The receiver removesthe checksum and retains those messages that it acknowledges positively, anddiscards those messages that it acknowledges negatively.The claim for this protocol is that it works correctly (in the same sense as ABP)under the assumptions that the transmit channel can corrupt, but not lose messages,5



and that the reply channel is perfectly reliable. It is also assumed that the checksumallows message corruption to be detected with perfect reliability. These are strong(and unrealistic) assumptions, but they will serve our purpose here.2.3 Combining Fault Tolerance and SecurityWe have one protocol that tolerates message loss, and another that withstandsmessage corruption. Suppose we require a reliable message service that works inthe face of both threats: it might seem that we should be able to achieve this by\stacking" one protocol on top of the other. We can do this in two ways. I willconsider each separately.2.3.1 The Checksum Protocol Above the Alternating Bit ProtocolThe idea here is to use the ABP to provide the transmit channel for the CP; theABP and CP will each have its own reply channel (see Figure 2.3). The underlyingtransmit channel used by the ABP is assumed to both lose and corrupt messages.Although the ABP (when used alone) can tolerate a lossy reply channel, I willassume here that both reply channels are perfectly reliable.It seems plausible that the ABP will overcome message losses in the underlyingtransmit channel and thereby present the CP with a transmit service that matchesits assumptions. Unfortunately, this is not so. The underlying transmit service canchange, as well as lose, messages, and in particular it can change the control bitattached to messages by the ABP. This bit is not protected by the CP, since it isprovided at a lower level of the protocol hierarchy. Corruption of the control bitviolates the assumptions of the ABP, and it is not hard to see that it can lose orduplicate messages under these circumstances. This behavior, in turn, violates theassumptions of the CP, causing it to fail also.
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sending receiving
CP sender CP receiver

ABP sender ABP receiver
ack channel (error-free)
ack channel (error-free)

message channel (lossy and corrupt)Figure 2.3: Checksum Protocol Above Alternating Bit Protocol
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2.3.2 The Alternating Bit Protocol Above the Checksum ProtocolThis arrangement reverses the order of the protocols: the CP provides the transmitchannel for the ABP. The underlying transmit channel used by the CP is assumedto both lose and corrupt messages. As before, the CP and ABP will each have itsown reply channel, which is assumed to be perfectly reliable.
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sending receiving
ABP sender ABP receiver

CP sender CP receiver
ack channel (error-free)
ack channel (error-free)

message channel (lossy and corrupt)Figure 2.4: Alternating Bit Protocol Above Checksum ProtocolThe problem with this arrangement is that the CP sender expects to receivea reply for every message sent. This expectation is violated when the underlyingtransmit channel can lose messages. In this case, the CP protocol deadlocks, withits sender waiting for a reply that will never arrive.
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2.3.3 A Correct SolutionIn retrospect, it is obvious that neither arrangement of one protocol stacked ontop of the other can be expected to work correctly, since the underlying transmitchannel does not satisfy the assumptions of either protocol. Peleska [10] arguesthat this means we cannot expect to solve the overall problem by stacking twoindividually inadequate protocols, but must design a protocol to deal speci�callywith the combined threat.This is certainly one approach, but I believe there is a better one. Rather thanconsider that the individual protocols are too weak, or that they do too little, analternative approach is to consider the possibility that they do too much. Boththe individual protocols provide reliable transmission, subject to their particularassumptions. When we stack the protocols, it is unnecessary for the lower one toprovide reliable transmission: all that is needed is that it should provide a servicethat satis�es the assumptions of the upper protocol. In particular, if we stack theABP above the CP, then all that is required of the CP is that it provides uncorrupted,though possibly lossy, transmissions.We can accomplish this by simply deleting the reply channel and its associatedprocedural rules from CP to yield the following modi�ed protocol CP0 .Sender: The sender attaches a checksum to each message transmitted.Receiver: The receiver checks the checksum of each message received. If it iscorrect, the receiver removes the checksum and retains the remainder of themessage. Otherwise, it discards the message.The service speci�cation for CP0 is that the sequence of messages retained is asubsequence of those transmitted (i.e., the protocol provides a lossy, but noncorrupt-ing channel). The assumptions are that the transmit channel may lose or corruptmessages, but not reorder them (there is no reply channel).Since the assumptions of CP0 match those of the lossy, corrupting transmit chan-nel that we wish to deal with, and its service speci�cation matches the assumptionson the transmit channel for ABP, it follows that stacking ABP above CP0 satis�esour requirements.
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Figure 2.5: Alternating Bit Protocol Above Weakened Checksum Protocol
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2.4 DiscussionIncreasingly, systems are required to satisfy several critical system properties simul-taneously, or to withstand multiple types of threat. The most promising way tomaintain intellectual control in the face of such complexity is to \divide and con-quer," that is, to construct the system from components that individually addressonly a single property or threat, but whose composition satis�es all the requirements.The di�culty with this approach, exempli�ed by the simple case study presentedhere, is that the composition of two components, each adequate to its individualpurpose, does not necessarily yield a synthesis that achieves the combined purpose:the whole is less than the sum of its parts.To overcome this di�culty, it is necessary to reexamine the service speci�cationsand assumptions of the components and to adjust them so that they compose moree�ectively. As demonstrated by the example considered here, the most e�ective ad-justment may sometimes be to weaken a component's service speci�cation. Indeed,it seems to me likely that the demands of versatile composition will require thatsome familiar building blocks are \deconstructed" into smaller and weaker compo-nents that can be reassembled in many di�erent ways. This approach is alreadybeing explored in the �elds of protocols and fault tolerance, where Schlichting, andothers are developing \RISC-like" building blocks for tailoring fault-tolerant systemsto particular constraints and assumptions [7, 9]. My belief is that it will be neces-sary to extend this approach to include small building blocks for security, real-time,and safety properties, to enlarge the range of attributes (assumptions and serviceproperties) considered for each component (e.g., real-time as well as fault-toleranceproperties), and to make them more realistic (e.g., to consider average-case as wellas worst-case behavior).
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Chapter 3Formal State Exploration ofProtocol PropertiesThis chapter presents a tutorial description of how the protocols and their compo-sitions considered in the previous chapter can be explored, systematically and withautomated assistance, using formal methods.Our ultimate goal is to develop a protocol that works in the presence of messagecorruption as well as loss, so at this stage in the development of the example I am lessinterested in formulating and verifying classical correctness of ABP, than in exploringits behavior under di�erent assumptions and in discovering the circumstances underwhich it fails. For these purposes, explicit state exploration is a very e�ective tool.The idea in state exploration is to model the protocol as a �nite-state transitionsystem, and then to explore the reachable states of the model systematically andcompletely. We can mark certain states as errors and can also specify invariants thatshould hold for all reachable states, and can then run the state exploration to seeif the invariants really do hold, and whether any error states can be reached. Stateexploration is similar to model checking: in both cases we completely explore a �nitestate model to determine whether it satis�es certain properties. The di�erence isthat for model checking the properties are speci�ed as logical formulas (usually in amodal logic such as \Computation Tree Logic" [CTL]) independently of the model,whereas for state exploration the properties are described through direct annotationof the model.State exploration, model checking, and related techniques such as language in-clusion di�er from simulation in that they explore all the states of a system descrip-tion; they di�er from formal veri�cation in that they can consider only �nite-statesystems. It is the ability to explore very large numbers of states in a reasonabletime that makes state exploration techniques useful: brute-force methods can oftenexplore millions of states in a few hours, while symbolic methods based on BinaryDecision Diagrams (BDDs) can explore even larger systems (numbers such as 1020 [2]13



and 101300 [4] appear in the literature). Nonetheless, it is often necessary to con-sciously \downscale" a system description in order to reduce it to a size that canbe explored e�ectively. The evidence seems to be that exploring all the states of adownscaled system model is often more e�cient for debugging and learning abouta system than visiting some of the states of the full system through simulation ortesting. In the following section, I will describe exploration of ABP using the Mur�state exploration system.3.1 Exploring ABP with Mur�Mur� is a state exploration system developed by David Dill's group at StanfordUniversity [8]. Mur� \programs" are written in a language based on Unity [3],with a C-like syntax. The Mur� compiler generates a C++ program, which is thencompiled and run to perform brute-force state exploration on the Mur� programpresented to the compiler.The states of a Mur� program consist of all possible assignments to the variablesappearing in the program. To avoid the state explosion problem, we may needconsciously to downscale the range of some of these variables. In the case of the ABP,we will need several variables that record the values of messages stored by the senderand receiver, and in transmission over the underlying communications medium. Nowa real message might be, say, 8 bytes in length, giving rise to 264 possible di�erentvalues. With several (say n) variables recording the states of various messages, thesevariables alone will give rise to a state space having n� 264 states|an excessivelylarge number to explore. Now the protocol is mainly concerned with managing thecontrol bit that it attaches to each message and is largely indi�erent to the actualcontent of the messages transmitted, so we lose little by downscaling the size ofmessages to, say, one or two bits. We must be careful not to downscale too far,however, by making the messages constant (i.e., zero bits), because all messages willthen look alike and we will be unable to test for delivery of wrong messages. Becausethe control bit alternates in value, we should probably arrange for the messages tofollow a di�erent pattern. In the program developed below, I will cause the messagesproduced by the sender to cycle through the values 1; 2; : : : ;M , where M is a smallnumber relatively prime to 2 (e.g., 3).Another aspect of the problem that needs to be downscaled is the number ofmessages that can be in transit in the communications medium at any one time.The simple way to model the movement of messages is as a queue of some lengthN|this in turn can be programmed as an array where the sender places messagesin at one end, the receiver removes them from the other, and the \network" movesall the messages along whenever there is space at the receiving end. The statespace of this array will be on the order of MN . A real communications medium,such as a wide-area network, might have a very large number N of messages in14



transit simultaneously, but for state exploration purposes, a small number such astwo is probably su�cient. Note that eliminating the queuing altogether (i.e., settingN = 1) is probably not a good idea, as some classes of behaviors (and with them,the chance to detect some potential bugs) will thereby be eliminated.The decisions described so far can be cast into Mur� as follows.const M: 3; -- Number of different messages. Must be >=2type msg: 0..M+1; -- 0 is used for empty, M+1 for bad valueconst empty_msg: 0;const bad_msg: M+1;const ack_msg: 1;type bit: 0..1;const dont_care: 0;type packet: recordcontrol: bit;data: msg;end;var empty_packet: packet; -- initialized to [# 0, 0 #]const N: 2; -- Max number of messages buffered in the networktype index: 1..N; -- 1 is sender's end, N is receiver's endtype channel: array [ index ] of packet;var msg_channel, ack_channel: channel;The msg channel and ack channel are modeled as arrays of packets, where a packet(modeled as a record) consists of a message with a control bit attached. We willneed a way to indicate that a particular slot in the array is empty, and I will use apacket with data �eld equal to the empty msg (i.e., 0) to do this. \Real" packetswill have data �elds with values in the range 1,: : : ,M. Mur� does not provide a wayto specify a record constant, so the empty packet must be speci�ed as a variableand initialized later in the startstate declaration.Next, we need to describe how the \network" moves messages along the channels,and the kinds of faults that can arise. These are described by Mur� \rules," whichare constructions of the form condition =) action. A Mur� program \executes" insimulation mode by selecting some rule whose condition is satis�ed in the currentstate, then executing the corresponding action to create a new current state, and soon, repeatedly. In simulation mode, Mur� selects nondeterministically from amongthe enabled rules at each step; in state exploration mode, it examines all possibleexecution sequences. Functions and procedures are structuring constructs that canbe called by rules.
15



function is_empty_packet(p:packet): boolean;beginreturn p.data = empty_msg;end;procedure move(var c:channel);-- Moves the messages in c along by one-- If efficiency matters, would be better-- to use pointers in a circular queuebeginfor i := N to 2 by -1 do c[i]:=c[i-1]; endfor;c[1] := empty_packet;end;rule "move msg channel"is_empty_packet(msg_channel[N]) ==>begin move(msg_channel); end;rule "move ack channel"is_empty_packet(ack_channel[N]) ==>begin move(ack_channel); end;Notice that the procedure move overwrites the packet at position N and does notcheck that it is an empty packet. In this program, we can see that move is calledonly by rules whose conditions ensure this property; in general, we might want tocause Mur� to check it at run time by adding an assert statement to the beginningof the move procedure.The ABP is required to work in the presence of arbitrary packet loss on boththe message and acknowledgment channels; messages cannot be reordered or altered,however. We can specify this behavior of lossy channels with rules that simply re-place the packet at some arbitrary position in each channel with the empty packet|aMur� ruleset could be used to nondeterministically select the position. To down-scale this action, however, I have chosen to delete the message at the �nal positionin the channel concerned. This can be speci�ed as follows.rule "lose msg" begin msg_channel[N] := empty_packet; end;rule "lose ack" begin ack_channel[N] := empty_packet; end;Since these rules have no conditions, they are always enabled for execution and Mur�can choose, at each stage, whether or not to execute them. In state explorationmode, Mur� will consider all possible combinations of these choices.In later protocols, and also so that we can explore the behavior of ABP outsideits intended domain, we will wish to allow messages to be corrupted as well as lost.16



These simple rules therefore need to be extended somewhat. We begin by intro-ducing the type phys char that records the physical characteristics of a channel(either lossy, corrupt, lossy corrupt, or good) and the variables phys char m,phys char a that record the characteristics of the message and ack channels, re-spectively.type phys_char: enum flossy, corrupt, lossy_corrupt, goodg;var phys_char_m, phys_char_a: phys_char;Then we can adjust the lose msg and lose ack rules to apply only when thecorresponding channels are lossy or lossy corrupt.rule "lose msg"phys_char_m = lossy | phys_char_m = lossy_corrupt ==>begin msg_channel[N] := empty_packet; end;rule "lose ack"phys_char_a = lossy | phys_char_a = lossy_corrupt ==>begin ack_channel[N] := empty_packet; end;We can also add rules for corrupting messages in both the msg and ack channels|weuse two rules for each channel: one that ips the control bit, and one that changesthe data �eld to an identi�able bad message. As before, we corrupt messages onlyin the �nal position of the channel concerned.
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rule "corrupt msg data"(phys_char_m = corrupt | phys_char_m = lossy_corrupt)& !is_empty_packet(msg_channel[N]) ==>beginmsg_channel[N].data := bad_msg;end;rule "corrupt msg control"(phys_char_m = corrupt | phys_char_m = lossy_corrupt)& !is_empty_packet(msg_channel[N]) ==>beginmsg_channel[N].control := 1 - msg_channel[N].control;end;rule "corrupt ack data"(phys_char_a = corrupt | phys_char_a = lossy_corrupt)& !is_empty_packet(ack_channel[N]) ==>beginack_channel[N].data := bad_msg;end;rule "corrupt ack control"(phys_char_a = corrupt | phys_char_a = lossy_corrupt)& !is_empty_packet(ack_channel[N]) ==>beginack_channel[N].control := 1 - ack_channel[N].control;end;Next, we need to provide interface procedures for sending and receiving packets(send and receive, respectively) and functions for testing whether it is permissibleto perform those operations (ready-to-send and ready-to-receive, abbreviated rtrand rts, respectively). In order to be able to stack protocols on top of each other,it will be useful to parameterize these operations in terms of the service providingthem. To start, we will have just three services: abp (the alternating-bit protocol|the service we are in the process of constructing), and physical m and physical a(the underlying physical message and acknowledgment channels, respectively). Tostart, I will specify these operations for the physical channels only.
18



type service: enum fabp, physical_m, physical_ag;function rtr(svc: service): boolean;beginswitch svccase physical_m: return !is_empty_packet(msg_channel[N]);case physical_a: return !is_empty_packet(ack_channel[N]);end;end;function rts(svc: service): boolean;beginswitch svccase physical_m: return is_empty_packet(msg_channel[1]);case physical_a: return is_empty_packet(ack_channel[1]);end;end;procedure send(svc: service; p: packet);beginassert rts(svc);switch svccase physical_m: msg_channel[1] := p;case physical_a: ack_channel[1] := p;end;end;procedure receive(svc: service; var p: packet);beginassert rtr(svc);switch svccase physical_m: p := msg_channel[N]; msg_channel[N] := empty_packet;case physical_a: p := ack_channel[N]; ack_channel[N] := empty_packet;end;end;Our task now is to use these low-level primitives to construct higher-level opera-tions that provide reliable transmission using the ABP. The sending operation willwork as follows. After accepting a new message to transmit, it generates the \next"control bit value b, attaches it to the message, and transmits the resulting packet.The sender then waits for an acknowledgment packet. There are three possibilities.� An acknowledgment packet arrives carrying bit value b|in which case thesender marks the message as received, and is ready to accept the next message.� An acknowledgment packet arrives carrying the \wrong" bit value b0|in whichcase the sender simply throws it away.19



� The sender decides (probably because a timeout has expired) to send thepacket again.The receiving operation works as follows. If an incoming packet is available, theoperation removes it, and sends back an acknowledgment carrying the same controlbit as the incoming packet. If the control bit is di�erent from the last one received,the message is saved; otherwise, it is discarded.This informal presentation reveals that certain state variables must be main-tained by the sender and receiver: the sender must record whether it is currentlyin the process of sending a message, and if so it must remember the value of thatmessage and the current control bit; the receiver must remember the last control bitreceived. We can specify these variables by means of packets sval a and rval a,which record the packets sent and received, respectively, by the ABP: sval a willbe empty if there is no sending operation in progress, otherwise it will record thepacket that is being sent; rval a will likewise record the packet (if any) that hasbeen received. The bits sbit a and rbit a will record the last control bit usedby the sender and received by the receiver, respectively. In addition, a msg is usedto remember the last message sent. These state variables are speci�ed in Mur� asfollows.var a_msg: msg;var sval_a, rval_a: packet;var sbit_a, rbit_a: bit;We can now extend the rts, rtr, send, and receive functions to the case of theABP service.
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function rtr(svc: service): boolean;beginswitch svccase physical_m: return !is_empty_packet(msg_channel[N]);case physical_a: return !is_empty_packet(ack_channel[N]);case abp: return !is_empty_packet(rval_a);end;end;function rts(svc: service): boolean;beginswitch svccase physical_m: return is_empty_packet(msg_channel[1]);case physical_a: return is_empty_packet(ack_channel[1]);case abp: return is_empty_packet(sval_a);end;end;procedure send(svc: service; p: packet);beginassert rts(svc);switch svccase physical_m: msg_channel[1] := p;case physical_a: ack_channel[1] := p;case abp: sval_a := p; sbit_a := next_bit(sbit_a);sval_a.control := sbit_a;end;end;procedure receive(svc: service; var p: packet);beginassert rtr(svc);switch svccase physical_m: p := msg_channel[N]; msg_channel[N] := empty_packet;case physical_a: p := ack_channel[N]; ack_channel[N] := empty_packet;case abp: p:= rval_a; rval_a := empty_packet;end;end;The function next bit computes the next control bit to use.function next_bit(b: bit): bit;beginreturn 1 - b; -- flip the bitend; 21



Now we can program the high-level rules. The sending rule represents the userof the protocol. It generates and sends a new message whenever the previous onehas been sent. It generates the new message by adding 1 modulo M to the previousmessage, and saves it in sval a. It then creates a packet containing the messagejust generated and a clear control bit and calls the send function (which will set thecorrect control bit).function next_msg(m: msg): msg;beginreturn (m = M) ? 1 : m+1;end;rule "sending"rts(abp) ==>var p: packet;begina_msg := next_msg(a_msg);clear p.control;p.data := a_msg;send(abp, p);end;Notice that the rule \sending" just initiates the sending of a new message. We needanother rule to actually send its packet out over the message channel and to handlethe retransmission after a timeout. Both these actions are performed by the rulesender a, which can �re whenever sval a is nonempty (i.e., when !rts(abp)) andthe message channel used by ABP is ready to send.rule "sender_a"!rts(abp) & rts(physical_m) ==>begin send(physical_m, sval_a); end;The receiving user of the ABP is able to �re whenever a message is available.rule "receiving"rtr(abp) ==>var p: packet;beginreceive(abp, p);end;The lower-level message reception is enabled whenever the previous message hasbeen removed (i.e., !rtr(abp)), the physical message channel is ready to receive,and the physical ack channel is ready to send. It returns a packet with the samecontrol bit as the one just received (the message in the packet is irrelevant, but Iwill set it to ack msg); if that bit is di�erent than the control bit of the previousmessage, it places in rval a and sets rbit a to the value of that bit.22



rule "receiver_a"!rtr(abp) & rtr(physical_m) & rts(physical_a) ==>var p, q: packet;beginreceive(physical_m, p);q := p;q.data := ack_msg;send(physical_a, q);if p.control != rbit_a thenrval_a := p;rbit_a := p.control;end;end;Back at the sending end, we need a rule to deal with the returned acknowledg-ment packet. This rule is enabled whenever a packet is available on the physicalacknowledgment channel and the ABP is in the process of sending a message (i.e.,!rts(abp)). (If a packet becomes available when the ABP is not in the process ofsending a message, it will just sit there until a new message transmission begins.)rule "check abp ack"!rts(abp) & rtr(physical_a) ==>var p: packet;beginreceive(physical_a, p);if p.control = sval_a.control thensval_a := empty_packet;end;end;To start things o�, we need to initialize the various state variables.startstatebeginempty_packet.data := empty_msg;clear empty_packet.control;for i: index do msg_channel[i] := empty_packet;ack_channel[i] := empty_packet;endfor;clear rbit_a;clear sbit_a;clear a_msg;sval_a := empty_packet;rval_a := empty_packet;phys_char_m := lossy;phys_char_a := lossy;end; 23



At this stage we have enough speci�ed to run Mur� in simulation mode andcan check from its trace that things seem to be working properly. To do signi�cantdebugging, however, we must provide some invariants and assertions that can betested under full state exploration. One key property required of the protocol isthat no messages should be lost or reordered. This can be partially ensured bychecking that each message received is indeed the message that was sent|and thischeck can be performed by adding the assertionassert rval_a.data = a_msg;to the rule receiver a.In state exploration mode, Mur� veri�es this assertion in 4.93 seconds aftervisiting 2113 states and �ring 9,305 rules. However, it also veri�es the assertionwhen we modify the program so that the control bit does not alternate (i.e., whenthe body of next bit is changed from return 1-b to return b)! It is clear thatwe need some additional and stronger assertions if we are to gain con�dence in thecorrectness of our model of ABP.Now the intuitive correctness requirement for ABP is that it masks message lossand presents a service that is equivalent to a perfect bu�er. Because it is possiblefor the transmitter to start sending a new message before the receiver has collectedthe previous one, the bu�er may contain as many as two messages. Therefore, oneway to check correctness of ABP is to compare its top-level behavior against that ofa two-place bu�er. Klaus Havelund of the University of Paris VI �rst suggested thisapproach to me, and he also suggested how it can be implemented in Mur�. Theidea is to describe the required behavior of the protocol by the following three-stateautomaton.
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Any attempt to receive in state 1, or to send in state 3 is an error; furthermore areceive in state 3 should return the message sent in the transition from state 2, anda receive in state 2 should return the message sent in the transition from state 1.This can be programmed in Mur� as follows.procedure automaton(x: action; m: msg);beginswitch statecase 1:if x=snd then the_msg := m; state := 2;else error "*** receive in state 1";end;case 2:if x=snd then another_msg := m; state := 3;elseif m != the_msg then error "*** wrong message received(1)"; end;state := 1;end;case 3:if x=snd then error "*** send in state 3";elseif m != the_msg then error "*** wrong message received(2)"; end;the_msg := another_msg; state := 2;end;end;end;We then place the call automaton(snd, a msg) in the rule sending, and the callautomaton(rcv, p.data) in the rule receiving.In this way we establish a simulation, or abstraction, relation between the mod-eled implementation of ABP and its requirement speci�cation. With this moresophisticated correctness check, Mur� detects the error in the protocol that doesnot alternate the bit (in 0.56 second after exploring 48 states and �ring 176 rules).Mur� reports the error \send in state 3" and its backtrace indicates that one cir-cumstance that triggers the incorrect behavior is when the sender retransmits amessage that has already been received|resulting in duplicate reception. Whenthe alternation of the control bit is restored, Mur� veri�es correctness as beforein 4.93 seconds after visiting 2113 states and �ring 9,305 rules. If we change thecharacteristics of the channels by, for example, changing phys char m := lossy tophys char m := corrupt in the startstate, Mur� again detects an error (wrongmessage received in state 1; 0.52 second, 26 states explored, and 72 rules �red),thereby demonstrating that ABP cannot cope with corrupt channels.
25



3.2 Exploring CP with Mur�To explore the CP protocol, we must add some additional state variables to ourMur� program. First, we need to extend the packet type to include a checksum bit.type packet: recordchecksum: bit;control: bit;data: msg;end;The checksum is set to 1 to model a good packet, and to 0 to model one that hasbeen (detectably) corrupted. The rules for corrupting messages are then changedto the following.rule "corrupt msg data"(phys_char_m = corrupt | phys_char_m = lossy_corrupt)& !is_empty_packet(msg_channel[N]) ==>beginmsg_channel[N].data := bad_msg;msg_channel[N].checksum := 0;end;rule "corrupt msg control"(phys_char_m = corrupt | phys_char_m = lossy_corrupt)& !is_empty_packet(msg_channel[N]) ==>beginmsg_channel[N].control := 1 - msg_channel[N].control;msg_channel[N].checksum := 0;end;Because there is no checksum protection on the acknowledgment channel, the rulescorrupt ack data and corrupt ack control are not changed from their previousde�nitions.As with the ABP, we need state variables to remember the packets being sentand received, and a bit to record whether the protocol is busy.var sval_c, rval_c: packet;var busy_c: boolean;These are initialized in the startstate, together with the characteristics of thephysical channels.
26



startstate: : :busy_c := false;sval_c := empty_packet;rval_c := empty_packet;phys_char_m := corrupt; -- can be corruptphys_char_a := good; -- must be goodThen we extend rtr and rts.function rtr(svc: service): boolean;beginswitch svccase physical_m: return !is_empty_packet(msg_channel[N]);case physical_a: return !is_empty_packet(ack_channel[N]);case abp: return !is_empty_packet(rval_a);case cp: return !is_empty_packet(rval_c);end;end;function rts(svc: service): boolean;beginswitch svccase physical_m: return is_empty_packet(msg_channel[1]);case physical_a: return is_empty_packet(ack_channel[1]);case abp: return is_empty_packet(sval_a);case cp: return is_empty_packet(sval_c);end;end;And, similarly, we extend send and receive.
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procedure send(svc: service; p: packet);beginassert rts(svc);switch svccase physical_m: msg_channel[1] := p;case physical_a: ack_channel[1] := p;case abp: sval_a := p; sbit_a := next_bit(sbit_a);sval_a.control := sbit_a;case cp: sval_c := p; sval_c.checksum := 1;end;end;procedure receive(svc: service; var p: packet);beginassert rtr(svc);switch svccase physical_m: p := msg_channel[N]; msg_channel[N] := empty_packet;case physical_a: p := ack_channel[N]; ack_channel[N] := empty_packet;case abp: p:= rval_a; rval_a := empty_packet;case cp: p:= rval_c; rval_c := empty_packet;end;end;The CP sender rule is enabled when the protocol is not busy. It marks theprotocol as busy and calls the send procedure.rule "sender_c"!is_empty_packet(sval_c) & rts(physical_m) & !busy_c ==>beginbusy_c := true;send(physical_m, sval_c);end;The receiver examines the checksum on any packet received and returns either a pos-itive or negative acknowledgment packet according to whether or not the checksumis good.
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const nack_msg: 2;rule "receiver_c"is_empty_packet(rval_c) & rtr(physical_m) & rts(physical_a) ==>var p, q: packet;beginreceive(physical_m, p);q := p;if p.checksum = 0 thenq.data := nack_msg;elserval_c := p;q.data := ack_msg;end;send(physical_a, q);end;When the sender receives an acknowledgment packet, it turns o� its busy ag if theacknowledgment is positive; otherwise, it retransmits the packet.rule "check cp ack"busy_c & rtr(physical_a) & rts(physical_m) ==>var p: packet;beginreceive(physical_a, p);if p.data = ack_msg thensval_c := empty_packet;busy_c := false;elsesend(physical_m, sval_c);end;end;To complete the protocol, we must modify the sending and receiving rules touse the CP rather than ABP protocol. We parameterize this by means of the topstate variable, which is initialized to cp in the startstate.
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var top: service;rule "sending"rts(top) ==>var p: packet;begina_msg := next_msg(a_msg);automaton(snd, a_msg);clear p.control;p.data := a_msg;send(top, p);end;rule "receiving"rtr(top) ==>var p: packet;beginreceive(top, p);automaton(rcv, p.data);end;We also need to make sure that the ABP receiver a rule does not grab a packeto� the physical m channel. We can do this by making sure rval a is initialized toa nonempty packet. (The ABP sending a and check abp ack rules will not get inthe way because sval a is initialized to an empty packet.)var empty_packet, nonempty_packet: packet;startstate: : :nonempty_packet.data := ack_msg;clear nonempty_packet.control;clear nonempty_packet.checksum;rval_a := nonempty_packet;top := cp;Exploration with Mur� quickly establishes that the CP protocol is correct asdescribed (exploration visits 226 states and �res 684 rules in 1.12 seconds). It alsoreveals that the protocol cannot cope with a lossy as well as corrupt message channel(deadlock found after exploring 14 states and �ring 33 rules in 0.6 second), nor witha corrupt acknowledgment channel (an erroneous \receive in state 1" is detectedafter exploring 53 states and �ring 151 rules in 0.73 second).30



3.3 Exploring the Combined Protocols with Mur�We now have su�cient machinery in place to explore the behavior of ABP above CP,and vice versa, in the face of a lossy and corrupt message channel. In order to allowone protocol to use the other as its message channel, we introduce abp m, abp a, cp m,cp a as names for the services used by ABP for messages and acknowledgments,and by CP for messages and acknowledgments, respectively. Then, all referencesto physical a and physical m in the rules for ABP and CP are changed to usethese names, which are initialized appropriately in the start state: for example,the initialization for ABP above the CP protocol reads, in part, as follows (wherephysical a2 is a second acknowledgment channel, de�ned identically to the �rst).phys_char_m := lossy_corrupt;phys_char_a := good;phys_char_a2 := good;top := abp;abp_m := cp;abp_a := physical_a2;cp_m := physical_m;cp_a := physical_a;;An important change must be made to the rule for corrupting the ABP control biton the message channel: this is detected (i.e., the checksum bit is set to zero) onlyif CP provides the message channel for ABP (i.e., if abp m = cp.rule "corrupt msg control"(phys_char_m = corrupt | phys_char_m = lossy_corrupt)& !is_empty_packet(msg_channel[N]) ==>beginmsg_channel[N].control := 1 - msg_channel[N].control;if abp_m = cp then msg_channel[N].checksum := 0; end;end;The Mur� program for the combinations of the two protocols is shown in Ap-pendix A.Mur� quickly establishes that neither combination of ABP and CP works in thepresence of a lossy and corrupt message channel and good acknowledgment channels.When ABP is above CP, Mur� reports a deadlocked state after exploring only 15states and �ring 46 rules in 0.65 second. The backtrace provides the followingscenario that manifests the problem: the very �rst message sent is lost by themessage channel, causing the CP sender to deadlock waiting for an acknowledgmentthat will never arrive.When CP is above ABP, Mur� explores 595 states and �res 2419 rules in 2.81seconds before reporting \receive in state 1." The backtrace provides the following31



scenario that manifests the fault: a message is sent and correctly received; beforeits acknowledgment is received, the ABP sender times out and sends another copy;the control bit of this message is corrupted (since this is below the protection of theCP, this is not detected), causing the receiver to mistake it for a new message.3.3.1 Exploring a Correct Protocol with Mur�By simply deleting the ack channel and its associated checks and retransmissionsfrom CP, we obtain the protocol CP0 . Mur� is able to establish that ABP above CP0correctly solves the problem of tolerating a lossy corrupt message channel, althoughthe number of states it must explore for this purpose is quite large:� 28,273 states explored and 180,053 rules �red in 149.08 seconds when theacknowledgment channel is good, and� 30,577 states explored and 226,182 rules �red in 179.27 seconds when theacknowledgment channel is lossy.When the acknowledgment channel is corrupt, Mur� detects a fault (\send in state3") after exploring 4,826 states and �ring 30,714 rules in 24.87 seconds. The scenariothat manifests the fault is 27 transitions long. If CP0 is used on the ack channelas well as the message channel, then the combined protocol can tolerate loss andcorruption on both channels.
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Chapter 4ConclusionWe have seen, by means of simple examples, that it is not straightforward to com-bine mechanisms for separate problems to achieve a mechanism for the combinedproblem, and that formal state exploration can be an e�ective tool for debuggingand exploring the behavior of systems that involve complex interactions.The most interesting result of our experiment involving the ABP and CP proto-cols is the discovery that one of these protocols needs to be weakened, rather thanstrengthened, to provide the most suitable building block for larger compositions.Interesting work for the future lies in characterizing those system speci�cations andassumptions that are suitable for composition and distinguishing them from thosethat are not.Our examination of these protocols with Mur� demonstrates the utility of thesimple technology of explicit state exploration. More sophisticated forms of analysisfor �nite systems include model checking with respect to temporal logic speci�ca-tions and testing language containment on !-automata. Neither of these techniquespermits as simple or complete a speci�cation of required behavior as the method|due to Klaus Havelund|that we employed in Mur�: namely, direct comparisonagainst an automaton that implements the requirements speci�cation. Further-more, the explicit state enumeration employed by Mur� (as opposed to the BDDrepresentations used in more sophisticated systems) is fully adequate for the simpleprotocols considered here.
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Appendix AListing of the full MurphiProgramconst M: 3; -- Number of different messages. Must be >=2type msg: 0..M+1; -- 0 is used for empty, M+1 for bad valueconst empty_msg: 0;const ack_msg: 1;const nack_msg: 2;const bad_msg: M+1;type bit: 0..1;const dont_care: 0;type packet: recordchecksum: bit;control: bit;data: msg;end;var empty_packet, nonempty_packet: packet;const N: 2; -- Max number of messages buffered in the network xxtype index: 1..N; -- 1 is sender's end, N is receiver's endtype channel: array [ index ] of packet;var msg_channel, ack_channel, ack2_channel: channel;var sval_c, rval_c: packet;var busy_c: boolean;type phys_char: enum lossy, corrupt, lossy_corrupt, good;var phys_char_m, phys_char_a, phys_char_a2: phys_char;type service: enum not_used, abp, cp, physical_m, physical_a, physical_a2;36



var top, abp_m, abp_a, cp_m, cp_a: service;var a_msg: msg;var sval_a, rval_a: packet;var sbit_a, rbit_a: bit;type states: 1..3;type action: enumsnd, rcv;var state: states; -- initially 1var the_msg, another_msg: msg; -- initially cleartype err: 1..4;procedure squawk(n:err);beginswitch ncase 1: error "****** receive in state 1";case 2: error "****** wrong message received(1)";case 3: error "****** send in state 3"; -- xxcase 4: error "****** wrong message received(2)";end;end;procedure automaton(x: action; m: msg);beginswitch statecase 1:if x=snd then the_msg := m; state := 2;else squawk(1);end;case 2:if x=snd then another_msg := m; state := 3;elseif m != the_msg then squawk(2); end;-- assert m = the_msg;state := 1;end;case 3:if x=snd then squawk(3);elseif m != the_msg then squawk(4); end;-- assert m = the_msg;the_msg := another_msg; state := 2;end;end;end; 37



function is_empty_packet(p:packet): boolean;beginreturn p.data = empty_msg;end;procedure move(var c:channel);-- Moves the messages in c along by one-- If efficiency matters, would be better-- to use pointers in a circular queuebeginfor i := N to 2 by -1 do c[i]:=c[i-1]; endfor;c[1] := empty_packet;end;function next_bit(b: bit): bit;begin-- return b;return 1 - b; -- flip the bitend;function next_msg(m: msg): msg;beginreturn (m = M) ? 1 : m+1;end;function rtr(svc: service): boolean;beginswitch svccase physical_m: return !is_empty_packet(msg_channel[N]);case physical_a: return !is_empty_packet(ack_channel[N]);case physical_a2: return !is_empty_packet(ack2_channel[N]);case abp: return !is_empty_packet(rval_a);case cp: return !is_empty_packet(rval_c);end;end;function rts(svc: service): boolean;beginswitch svccase physical_m: return is_empty_packet(msg_channel[1]);case physical_a: return is_empty_packet(ack_channel[1]);case physical_a2: return is_empty_packet(ack2_channel[1]);case abp: return is_empty_packet(sval_a);case cp: return is_empty_packet(sval_c);end;end; 38



procedure send(svc: service; p: packet);beginassert rts(svc);switch svccase physical_m: msg_channel[1] := p;case physical_a: ack_channel[1] := p;case physical_a2: ack2_channel[1] := p;case abp: sval_a := p; sbit_a := next_bit(sbit_a);sval_a.control := sbit_a;case cp: sval_c := p; sval_c.checksum := 1;end;end;procedure receive(svc: service; var p: packet);beginassert rtr(svc);switch svccase physical_m: p := msg_channel[N]; msg_channel[N] := empty_packet;case physical_a: p := ack_channel[N]; ack_channel[N] := empty_packet;case physical_a2: p := ack2_channel[N]; ack2_channel[N] := empty_packet;case abp: p:= rval_a; rval_a := empty_packet;case cp: p:= rval_c; rval_c := empty_packet;end;end;procedure init_abp();beginphys_char_m := lossy;phys_char_a := lossy;top := abp;abp_m := physical_m;abp_a := physical_a;cp_a := not_used;cp_m := not_used;rval_c := nonempty_packet;put "Alternating Bit Protocol";end;procedure init_cp();beginphys_char_m := corrupt;phys_char_a := good;top := abp;abp_m := not_used;abp_a := not_used; 39



cp_a := physical_m;;cp_m := physical_a;rval_a := nonempty_packet;put "Checksum Protocol";end;procedure init_abp_cp();beginphys_char_m := lossy_corrupt;phys_char_a := good;phys_char_a2 := good;top := abp;abp_m := cp;abp_a := physical_a2;cp_m := physical_m;cp_a := physical_a;;put "Alternating Bit above Checksum Protocol";end;procedure init_cp_abp();beginphys_char_m := lossy_corrupt;phys_char_a := good;phys_char_a2 := good;top := cp;abp_m := physical_m;abp_a := physical_a;cp_m := abp;cp_a := physical_a2;;put "Checksum above Alternating Bit Protocol";end;rule "move msg channel"is_empty_packet(msg_channel[N]) ==>begin move(msg_channel); end;rule "move ack channel"is_empty_packet(ack_channel[N]) ==>begin move(ack_channel); end;rule "move ack2 channel"is_empty_packet(ack2_channel[N]) ==>begin move(ack2_channel); end;40



rule "lose msg"phys_char_m = lossy | phys_char_m = lossy_corrupt ==>begin msg_channel[N] := empty_packet; end;rule "lose ack"phys_char_a = lossy | phys_char_a = lossy_corrupt ==>begin ack_channel[N] := empty_packet; end;rule "lose ack2"phys_char_a2 = lossy | phys_char_a2 = lossy_corrupt ==>begin ack2_channel[N] := empty_packet; end;rule "corrupt msg data"(phys_char_m = corrupt | phys_char_m = lossy_corrupt)& !is_empty_packet(msg_channel[N]) ==>beginmsg_channel[N].data := bad_msg;msg_channel[N].checksum := 0;end;rule "corrupt msg control"(phys_char_m = corrupt | phys_char_m = lossy_corrupt)& !is_empty_packet(msg_channel[N]) ==>beginmsg_channel[N].control := 1 - msg_channel[N].control;if abp_m = cp then msg_channel[N].checksum := 0; end;end;rule "corrupt ack data"(phys_char_a = corrupt | phys_char_a = lossy_corrupt)& !is_empty_packet(ack_channel[N]) ==>beginack_channel[N].data := bad_msg;end;rule "corrupt ack control"(phys_char_a = corrupt | phys_char_a = lossy_corrupt)& !is_empty_packet(ack_channel[N]) ==>beginack_channel[N].control := 1 - ack_channel[N].control;end;rule "corrupt ack2 data"(phys_char_a2 = corrupt | phys_char_a2 = lossy_corrupt)& !is_empty_packet(ack2_channel[N]) ==>begin 41



ack2_channel[N].data := bad_msg;end;rule "corrupt ack2 control"(phys_char_a2 = corrupt | phys_char_a2 = lossy_corrupt)& !is_empty_packet(ack2_channel[N]) ==>beginack2_channel[N].control := 1 - ack2_channel[N].control;end;rule "sending"rts(top) ==>var p: packet;begina_msg := next_msg(a_msg);automaton(snd, a_msg);clear p.control;p.data := a_msg;send(top, p);end;rule "sender_a"!rts(abp) & rts(abp_m) ==>begin send(abp_m, sval_a); end;rule "receiving"rtr(top) ==>var p: packet;beginreceive(top, p);automaton(rcv, p.data);end;rule "receiver_a"!rtr(abp) & rtr(abp_m) & rts(abp_a) ==>var p, q: packet;beginreceive(abp_m, p);q := p;q.data := ack_msg;send(abp_a, q);if p.control != rbit_a thenrval_a := p;rbit_a := p.control;end;end; 42



rule "check abp ack"!rts(abp) & rtr(abp_a) ==>var p: packet;beginreceive(abp_a, p);if p.control = sval_a.control thensval_a := empty_packet;end;end;rule "sender_c"!is_empty_packet(sval_c) & rts(cp_m) & !busy_c ==>beginbusy_c := true;send(cp_m, sval_c);end;rule "receiver_c"is_empty_packet(rval_c) & rtr(cp_m) & rts(cp_a) ==>var p, q: packet;beginreceive(cp_m, p);q := p;if p.checksum = 0 thenq.data := nack_msg;elserval_c := p;q.data := ack_msg;end;send(cp_a, q);end;rule "check cp ack"busy_c & rtr(cp_a) & rts(cp_m) ==>var p: packet;beginreceive(cp_a, p);if p.data = ack_msg thensval_c := empty_packet;busy_c := false;elsesend(cp_m, sval_c);end;end; 43



startstatebeginempty_packet.data := empty_msg;clear empty_packet.control;clear empty_packet.checksum;nonempty_packet.data := ack_msg;clear nonempty_packet.control;clear nonempty_packet.checksum;for i: index do msg_channel[i] := empty_packet;ack_channel[i] := empty_packet;ack2_channel[i] := empty_packet;endfor;clear rbit_a;clear sbit_a;clear a_msg;sval_a := empty_packet;rval_a := empty_packet;busy_c := false;sval_c := empty_packet;rval_c := empty_packet;state := 1;clear the_msg;clear another_msg;init_abp_cp();end;
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Appendix BError Trace for ABP AboveCP0 With CorruptAcknowledgment Channel
==========================================================================Murphi Beta Release 2.73S (With Symmetry)Finite-state Concurrent System Verifier.Copyright (C) 1992, 1993by the Board of Trustees of Leland Stanford Junior University.==========================================================================This program should be regarded as a DEBUGGING aid, not as acertifier of correctness.Call with the -l flag or read the license file for termsand conditions of use.Run this program with "-h" for the list of options.Bugs, questions, and comments should be directed to"murphi@verify.stanford.edu".Murphi compiler last modified date: Apr 14 1994Include files last modified date: Apr 14 1994==========================================================================Algorithm:Verification by breadth first search.with symmetry algorithm 1 -- fast canonicalization.Memory usage: 45



* The size of each state is 125 bits (rounded up to 16 bytes).* The memory allocated for the hash table is 2 Mbytes.With two words of overhead per state, the maximum size ofthe state space is 80021 states.* Use option "-k" or "-m" to increase this, if necessary.* Capacity in queue for breadth-first search: 20005 states.* Change the constant gPercentActiveStates in mu_verifier.hto increase this, if necessary.Alternating Bit above Modified Checksum ProtocolProgress Report:1000 states explored in 5.33s, with 6046 rules fired and 183 states in the queue.2000 states explored in 10.11s, with 12130 rules fired and 352 states in the queue.3000 states explored in 15.06s, with 18438 rules fired and 529 states in the queue.4000 states explored in 20.44s, with 25275 rules fired and 645 states in the queue.The following is the error trace:Startstate Startstate 0 fired.empty_packet.checksum : 0empty_packet.control : 0empty_packet.data : 0nonempty_packet.checksum : 0nonempty_packet.control : 0nonempty_packet.data : 1msg_channel[1].checksum : 0msg_channel[1].control : 0msg_channel[1].data : 0msg_channel[2].checksum : 0msg_channel[2].control : 0msg_channel[2].data : 0ack_channel[1].checksum : 0ack_channel[1].control : 0ack_channel[1].data : 0ack_channel[2].checksum : 0ack_channel[2].control : 0ack_channel[2].data : 0ack2_channel[1].checksum : 0ack2_channel[1].control : 0ack2_channel[1].data : 0ack2_channel[2].checksum : 0ack2_channel[2].control : 0ack2_channel[2].data : 0sval_c.checksum : 0 46



sval_c.control : 0sval_c.data : 0rval_c.checksum : 0rval_c.control : 0rval_c.data : 0busy_c : falsephys_char_m:lossy_corruptphys_char_a:corruptphys_char_a2:goodtop:abpabp_m:cpabp_a:physical_acp_m:physical_mcp_a:absenta_msg : 0sval_a.checksum : 0sval_a.control : 0sval_a.data : 0rval_a.checksum : 0rval_a.control : 0rval_a.data : 0sbit_a : 0rbit_a : 0state : 1the_msg : 0another_msg : 0----------Rule sending fired.a_msg : 1sval_a.checksum:Undefinedsval_a.control : 1sval_a.data : 1sbit_a : 1state : 2the_msg : 1----------Rule sender_a fired.sval_c.checksum : 1sval_c.control : 1sval_c.data : 1----------Rule sender_c fired.msg_channel[1].checksum : 1 47



msg_channel[1].control : 1msg_channel[1].data : 1sval_c.checksum : 0sval_c.control : 0sval_c.data : 0----------Rule sender_a fired.sval_c.checksum : 1sval_c.control : 1sval_c.data : 1----------Rule move msg channel fired.msg_channel[1].checksum : 0msg_channel[1].control : 0msg_channel[1].data : 0msg_channel[2].checksum : 1msg_channel[2].control : 1msg_channel[2].data : 1----------Rule receiver_c fired.msg_channel[2].checksum : 0msg_channel[2].control : 0msg_channel[2].data : 0rval_c.checksum : 1rval_c.control : 1rval_c.data : 1----------Rule sender_c fired.msg_channel[1].checksum : 1msg_channel[1].control : 1msg_channel[1].data : 1sval_c.checksum : 0sval_c.control : 0sval_c.data : 0----------Rule receiver_a fired.ack_channel[1].checksum : 1ack_channel[1].control : 1ack_channel[1].data : 1rval_c.checksum : 0rval_c.control : 0 48



rval_c.data : 0rval_a.checksum : 1rval_a.control : 1rval_a.data : 1rbit_a : 1----------Rule receiving fired.rval_a.checksum : 0rval_a.control : 0rval_a.data : 0state : 1----------Rule sender_a fired.sval_c.checksum : 1sval_c.control : 1sval_c.data : 1----------Rule move ack channel fired.ack_channel[1].checksum : 0ack_channel[1].control : 0ack_channel[1].data : 0ack_channel[2].checksum : 1ack_channel[2].control : 1ack_channel[2].data : 1----------Rule check abp ack fired.ack_channel[2].checksum : 0ack_channel[2].control : 0ack_channel[2].data : 0sval_a.checksum : 0sval_a.control : 0sval_a.data : 0----------Rule sending fired.a_msg : 2sval_a.checksum:Undefinedsval_a.data : 2sbit_a : 0state : 2the_msg : 2---------- 49



Rule move msg channel fired.msg_channel[1].checksum : 0msg_channel[1].control : 0msg_channel[1].data : 0msg_channel[2].checksum : 1msg_channel[2].control : 1msg_channel[2].data : 1----------Rule receiver_c fired.msg_channel[2].checksum : 0msg_channel[2].control : 0msg_channel[2].data : 0rval_c.checksum : 1rval_c.control : 1rval_c.data : 1----------Rule sender_c fired.msg_channel[1].checksum : 1msg_channel[1].control : 1msg_channel[1].data : 1sval_c.checksum : 0sval_c.control : 0sval_c.data : 0----------Rule receiver_a fired.ack_channel[1].checksum : 1ack_channel[1].control : 1ack_channel[1].data : 1rval_c.checksum : 0rval_c.control : 0rval_c.data : 0----------Rule move ack channel fired.ack_channel[1].checksum : 0ack_channel[1].control : 0ack_channel[1].data : 0ack_channel[2].checksum : 1ack_channel[2].control : 1ack_channel[2].data : 1---------- 50



Rule corrupt ack control fired.ack_channel[2].control : 0----------Rule check abp ack fired.ack_channel[2].checksum : 0ack_channel[2].data : 0sval_a.checksum : 0sval_a.data : 0----------Rule sending fired.a_msg : 3sval_a.checksum:Undefinedsval_a.control : 1sval_a.data : 3sbit_a : 1state : 3another_msg : 3----------Rule move msg channel fired.msg_channel[1].checksum : 0msg_channel[1].control : 0msg_channel[1].data : 0msg_channel[2].checksum : 1msg_channel[2].control : 1msg_channel[2].data : 1----------Rule receiver_c fired.msg_channel[2].checksum : 0msg_channel[2].control : 0msg_channel[2].data : 0rval_c.checksum : 1rval_c.control : 1rval_c.data : 1----------Rule receiver_a fired.ack_channel[1].checksum : 1ack_channel[1].control : 1ack_channel[1].data : 1rval_c.checksum : 0rval_c.control : 0rval_c.data : 0 51



----------Rule move ack channel fired.ack_channel[1].checksum : 0ack_channel[1].control : 0ack_channel[1].data : 0ack_channel[2].checksum : 1ack_channel[2].control : 1ack_channel[2].data : 1----------Rule check abp ack fired.ack_channel[2].checksum : 0ack_channel[2].control : 0ack_channel[2].data : 0sval_a.checksum : 0sval_a.control : 0sval_a.data : 0----------Rule sending fired.empty_packet.checksum : 0empty_packet.control : 0empty_packet.data : 0nonempty_packet.checksum : 0nonempty_packet.control : 0nonempty_packet.data : 1msg_channel[1].checksum : 0msg_channel[1].control : 0msg_channel[1].data : 0msg_channel[2].checksum : 0msg_channel[2].control : 0msg_channel[2].data : 0ack_channel[1].checksum : 0ack_channel[1].control : 0ack_channel[1].data : 0ack_channel[2].checksum : 0ack_channel[2].control : 0ack_channel[2].data : 0ack2_channel[1].checksum : 0ack2_channel[1].control : 0ack2_channel[1].data : 0ack2_channel[2].checksum : 0ack2_channel[2].control : 0ack2_channel[2].data : 0sval_c.checksum : 0 52



sval_c.control : 0sval_c.data : 0rval_c.checksum : 0rval_c.control : 0rval_c.data : 0busy_c : falsephys_char_m:lossy_corruptphys_char_a:corruptphys_char_a2:goodtop:abpabp_m:cpabp_a:physical_acp_m:physical_mcp_a:absenta_msg : 1sval_a.checksum : 0sval_a.control : 0sval_a.data : 0rval_a.checksum : 0rval_a.control : 0rval_a.data : 0sbit_a : 1rbit_a : 1state : 3the_msg : 2another_msg : 3----------End of the error trace.==========================================================================Result:Error: ****** send in state 3when firing rule:sendingState Space Explored:4826 states, 30714 rules fired in 24.99s.
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