
Submitted to IEEE Software and presented to the IRC.

Attacking Malicious Code:
A report to the Infosec Research Council*

Gary McGraw (Reliable Software Technologies)
and Greg Morrisett (Cornell University)

May 1, 2000

In October of 1999, the Infosec Research Council created a Science and
Technology Study Group (ISTSG) focused on malicious code. The purpose of the
Malicious Code ISTSG is to develop a national research agenda to address the
accelerating threat from malicious code. The study is intended to identify promising
new approaches to dealing with the problems posed by malicious code. In this
report, we discuss the key trends that are making malicious code a critical national
problem. We then survey existing techniques for preventing attacks, pointing out
their limitations, and discuss some promising new approaches that may address
these limitations.

This report is a byproduct of two meetings of Study Group members and their invited
guests. Though this report was written by two of study group members, we believe it
represents an accurate distillation of the ideas and insights of all the participants.

Keywords: malicious code, security, mobile code, virus, worm, Trojan horse, applet

Study Group members include: Gary McGraw, Reliable Software Technologies, Chair; Avi Rubin, AT&T
Research; Ed Felten, Princeton; Peter G. Neumann, SRI; Lee Badger, NAI Labs; Greg Morrisett, Cornell;
Tim Teitelbaum, Grammatech; Virgil Gligor, University of Maryland; Tom Markham, Secure Computing; Jay
Lepreau, University of Utah; Bob Balzer, ISI; Joshua Haines, Lincoln Labs; Roger Thompson, ICSA.net; Bob
Clemons, NSA; Penny Chase, MITRE; Carl Landwehr, Mitretek; Brad Arkin, Reliable Software
Technologies; Sami Saydjari, DARPA; Brian Witten, DARPA; and Dave Thompson, Mitretek. Guests who
participated in the two day San Antonio workshop include: mudge, the l0pht; Crispin Cowen, Wirex; Fred
Schneider, Cornell; Peter Lee, CMU; Richard Smith, pharlap; John Rushby, SRI; Dan Wallach, Rice
University; Amy Felty, University of Ottawa; and David Evans, University of Virginia.

What is Malicious Code?
Malicious code is any code added, changed, or removed from a software system in order to
intentionally cause harm or subvert the intended function of the system. Though the problem of
malicious code has a long history, a number of recent, widely publicized attacks and certain
economic trends suggest that malicious code is rapidly becoming a critical problem for industry,
government, and individuals.

Traditional examples of malicious code include viruses, worms, Trojan Horses, and attack scripts,
while more modern examples include Java attack applets and dangerous ActiveX controls.

?? Viruses are pieces of malicious code that attach to host programs and propagate when
an infected program is executed.

?? Worms are particular to networked computers. Instead of attaching themselves to a host
program, worms carry out programmed attacks to jump from machine to machine across
the network.

* The workshops on which this report is based were convened under the auspices of the Infosec Research Council (IRC),
with members from U.S. Government organizations that sponsor and conduct information security research. Views
expressed in the report are those of the authors and may not reflect those of the IRC, its members, or the organizations
they represent.

Submitted to IEEE Software and presented to the IRC.

?? Trojan Horses, like viruses, hide malicious intent inside a host program that appears to
do something useful (e.g., a program that captures passwords by masquerading as the
login daemon.)

?? Attack scripts are programs written by experts that exploit security weaknesses, usually
across the network, to carry out an attack. Attack scripts exploiting buffer overfl ows by
“smashing the stack” are the most commonly encountered variety.

?? Java attack applets are programs embedded in Web pages that achieve foothold through
a Web browser.

?? Dangerous ActiveX controls are program components that allow a malicious code
fragment to control applications or the operating system.

Recently, the distinctions between malicious code categories have been bleeding together, and
so classification has become difficult. Some concrete examples of malicious code are provided in
Table 1. Note that recent versions of malicious code are really amalgamations of different
categories.

Malicious Code Date Category Explanation
Love Bug 2000 Mobile code

virus
The fastest spreading virus of all time used VB script
and Microsoft Outlook mail to propagate. Caused an
estimated $10 billion in damage.

Trinoo (and other dDoS
scripts)

2000 Remote-
control
attack script

The highly-publicized denial of service attacks of
February 2000 were carried out by remotely-planted
agent programs.

Melissa 1999 Mobile code
virus

The second fastest spreading virus of all time used e-
mail to propagate. Infected over 1.2 million machines
in a few hours.

Explore.Zip 1999 Mobile code
worm

An e-mail borne worm that exploited problems in
Microsoft Windows to propagate.

Happy99 1999 Virus A widespread virus infecting Microsoft PCs.
CIH 1998 Virus A particularly dangerous virus that attacks BIOS in

PCs. Ran rampant in Asia before being contained.
Back Orifice 1998 Offensive

code
Remote control program installed on Windows
machines by crackers. Pervasive.

Attack scripts Offensive
code

Crackers called “script kiddies” download malicious
code from the Internet and run it against any number of
targets. Some expert must create and release the
script to begin with. Widespread. Most common
attack: buffer overflow.

ActiveX (scripting) 1997 Mobile code Decried by security professionals, Microsoft’s ActiveX
system introduces grave security risks by relying on
user’s discretion and judgment.

Java Attack Applets 1996-
1999

Mobile code Attack applets placed on Web sites take advantage of
flaws in the Java security model to carry out attacks. 17
known attacks.

Morris worm 1988 Worm Released in 1988 by Robert Morris, Jr, this program
affected around 6000 computers (around 10% of the
Internet at the time).

Thompson’s compiler
trick

1984 Trojan
Horse

Ken Thompson introduced a Trojan Horse in a C
compiler that compiled itself into future programs
[Tho84].

Submitted to IEEE Software and presented to the IRC.

A Growing Problem
Complex devices, by their very nature, introduce the risk that malicious functionality may be
added (either during creation or afterwards) that extends the original device past its primary
intended design. An unfortunate side effect of inherent complexity is that it allows malicious
subsystems to remain invisible to unsuspecting users until it is too late. Some of the earliest
malicious functionality, for example, was associated with complicated copy machines. Extensible
systems, including computers, are particularly susceptible to the malicious functionality problem.
When extending a system is as easy as writing and installing a program, the risk of intentional
introduction of malicious behavior increases drastically.

Any computing system is susceptible to malicious code. Rogue programmers may modify
systems software that is initially installed on the machine. Users may unwittingly propagate a
virus by installing new programs or software updates from a CDROM. In a multi-user system, a
hostile user may install a Trojan Horse to collect other users’ passwords. These attack vectors
have been well known since the dawn of computing, so why is malicious code a bigger problem
now than in the past? We argue that a small number of trends have a large influence on the
recent wide spread propagation of malicious code.

Networks are Everywhere: The growing connectivity of computers through the Internet has
increased both the number of attack vectors, and the ease with which an attack can be made.
More and more computers, ranging from home PCs to systems that control critical infrastructures
(e.g. , the power grid), are being connected to the Internet. Furthermore, people, businesses, and
governments are increasingly dependent upon network-enabled communication such as e-mail or
Web pages provided by information systems. Unfortunately, as these systems are connected to
the Internet, they become vulnerable to attacks from distant sources. Put simply, it is no longer
the case that an attacker needs physical access to a system to install or propagate malicious
code.

Because access through a network does not require human intervention, launching automated
attacks from the comfort of your living room is relatively easy. Indeed, the recent denial-of-
service attacks in February of 2000 took advantage of a num ber of (previously compromised)
hosts to flood popular e-commerce Web sites with bogus requests automatically. The ubiquity of
networking means that there are more systems to attack, more attacks, and greater risks from
malicious code than in the past.

System Complexity is Rising: A second trend that has enabled widespread propagation of
malicious code is the size and complexity of modern information systems. A desktop system
running Windows/NT and associated applications depends upon the proper functioning of the
kernel as well as the applications to ensure that malicious code cannot corrupt the system.
However, NT itself consists of tens of millions of lines of code, and applications are becoming
equally, if not more, complex. When systems become this large, bugs cannot be avoided. This
problem is exacerbated by the use of unsafe programming languages (e.g. , C or C++) that do not
protect against simple kinds of attacks, such as buffer overflows. However, even if the systems
and applications code were bug free, improper configuration by retailers, administrators, or users
can open the door to malicious code. In addition to providing more avenues for attack, complex
systems make it easier to hide or mask malicious code. In theory, we could analyze and prove
that a small program was free of malicious code, but this task is impossible for even the simplest
desktop systems today, much less the enterprise-wide systems used by businesses or
governments.

Systems are Easily Extensible: A third trend enabling malicious code is the degree to which
systems have become extensible. An extensible host accepts updates or extensions, sometimes
referred to as mobile code, so that the functionality of the system can be evolved in an
incremental fashion. For example, the plug-in architecture of Web browsers makes it easy to
install viewer extensions for new document types as needed. Today’s operating systems support

Submitted to IEEE Software and presented to the IRC.

extensibility through dynamically-loadable device drivers and modules. Today’s applications, such
as word-processors, e-mail clients, spreadsheets, and Web-browsers support extensibility
through scripting, controls, components, and applets. From an economic standpoint, extensible
systems are attractive because they provide flexible interfaces that can be adapted through new
components. In today’s marketplace, it is crucial that software be deployed as rapidly as possible
in order to gain market share. Yet the marketplace also demands that applications provide new
features with each release. An extensible architecture makes it easy to satisfy both demands by
allowing the base application code to be shipped early, and by later shipping feature extensions
as needed.

Unfortunately, the very nature of extensible systems makes it hard to prevent malicious code from
slipping in as an unwanted extension. For example, the Melissa virus took advantage of the
scripting extensions of Microsoft’s Outlook e-mail client to propagate itself. The virus was coded
as a script contained in what appeared to users as an innocuous mail message. When the
message was opened, the script was executed, and proceeded to obtain email addresses from
the user’s contacts database, and then sent copies of itself to those addresses. The infamous
Love Bug worked very similarly, also taking advantage of Outlook’s scripting capabilities.

Defense against Malicious Code
Creating malicious code is not hard. In fact, it is as simple as writing a program or downloading
and configuring a set of easily customized components. It is becoming increasingly easy to hide
ill-intentioned code inside otherwise innocuous objects, including Web pages and e-mail
messages. This makes detecting and stopping malicious code before it can do any damage
extremely hard.

To make matters worse, our traditional tools for ensuring the security and integrity of hosts have
not kept pace with the ever-changing suite of applications. For example, traditional security
mechanisms for access control reside within an operating system kernel and protect relatively
primitive objects (e.g., files); but increasingly, attacks such as the Melissa virus happen at the
application level where the kernel has no opportunity to intervene.

A useful analogy is to think of the computer and network security mechanisms of today like the
walls, moats, and drawbridges of medieval times. At one point, these mechanisms were effective
for defending our computing castles against isolated attacks, mounted on horseback. But the
defenses have not kept pace with the attacks. Today, attackers have access to airplanes and
laser-guided bombs that can easily bypass our antiquated defenses. In fact, attackers rarely need
sophisticated equipment: because our kingdoms are really composed of hundreds of
interconnected castles, attackers can easily move from site to site, finding places where we have
left the drawbridge down. It is time to develop some new defenses.

In general, when a computational agent arrives at a host, there are four approaches that the host
can take to protect itself:

1. Analyze the code and reject it if there is the potential that executing it will cause harm.
2. Rewrite the code before executing it so that it can do no harm .
3. Monitor the code while its executing and stop it before it does harm, or
4. Audit the code during executing and take policing action if it did some harm.

Analysis includes simple techniques, such as scanning a file and rejecting it if contains any
known virus, as well as more sophisticated techniques from compilers, such as dataflow analysis,
that can determine previously unseen malicious code. Analysis can also be used to find bugs
(e.g., potential buffer overruns) that malicious code can use to gain a foothold in a system.
However, static analysis is necessarily limited, because determining if code will misbehave is as
hard as the halting problem. Consequently, any analysis will either be too conservative (and
reject some perfectly good code) or too permissive (and let some bad code in) or more likely,

Submitted to IEEE Software and presented to the IRC.

both. Furthermore, software engineers working on their own systems often neglect to apply any
bug-finding analyses. Nevertheless, automated tools such as the open source security scanner
ITS4 (see http://www.rstcorp.com/its4) can be effective for finding bugs. In addition, primitive
dataflow analysis, such as looking for particular patterns of system calls in an executable, has
been incorporated into some commercially available security products.

Code rewriting is a less pervasive approach to the problem, but may become more important (see
the next section). With this approach, a rewriting tool inserts extra code to perform dynamic
checks that ensure bad things cannot happen. For example, a Java compiler inserts code to
check that each array index is in bounds—if not, the code throws an exception, thereby avoiding
the common class of buffer overrun attacks. Rewriting can be carried out either at the application
code level, or below that in subsystem functionality made available through APIs, or even at the
binary level.

Monitoring programs, using a reference monitor, is the traditional approach used to ensure
programs do not do anything bad. For instance, an operating system uses the page-translation
hardware to monitor the set of addresses that an application attempts to read, write, or execute.
If the application attempts to access memory outside of its address space, then the kernel takes
action (e.g., by signaling a segmentation fault.) A more recent example of an on-line reference
monitor is the Java Virtual Machine interpreter. The interpreter monitors execution of applets and
mediates access to system calls by examining the execution stack to determine who is issuing
the system calls request. In this case, stack inspection is used as a policy enforcement
mechanism.

If malicious code does damage, recovery is only possible if the damage can be properly
assessed and addressed. Creating an audit trail that captures program behavior is an essential
step. Several program auditing tools are commercially available.

Each of the basic approaches, analysis, rewriting, monitoring, and auditing, has its strengths and
weaknesses, but fortunately, these approaches are not mutually exclusive and may be used in
concert. Of course, to employ any of them, we must first identify what could be “harmful” to a
host. Like any other computing task, we must turn the vague idea of “harm” into a concrete,
detailed specification—a security policy—so that it can be enforced by some automated security
architecture. Therein lies our greatest danger, for as we create the policy, we are likely to
abstract or forget relevant details of the system. An attacker will turn to these details first,
stepping outside our policy model to circumvent the safeguards.

Stick to Your Principles
To protect against this common failing, it is important to follow well-established security principles
when designing security policies. One of the most important principles, first stated by Saltzer and
Shroeder in 1975 [SS75], is the Principle of Least Privilege: a component should be given the
minimum access necessary to accomplish its intended task. For example, we shouldn’t give a
program access to all files in a system but rather, only those files that the program needs to get
its job done. This prevents the program from either accidentally or maliciously deleting or
corrupting most files. Obviously, the fewer files that the program can access, the less the
potential damage. Stated simply, tighter constraints on a program lead to better security.

Another important security principle is the Principle of Minimum Trusted Computing Base. The
trusted computing base (TCB) is the set of hardware and software components that make up our
security enforcement mechanisms. The Principle of Minimum TCB states that, in general, the
best way to assure that your system is secure is to keep your TCB small and simple. Even in the
mid 70's, operating system kernels were thought to be too large to be trusted. Those systems
now seem small and tightly structured compared to today's widely used kernels composed of
millions of lines of code.

Submitted to IEEE Software and presented to the IRC.

In the next section, we give examples of currently deployed defenses for malicious code, focusing
on their relative pros and cons. Unfortunately, the comparison shows that the pros are
outweighed by the cons, largely because of a violation of the Least Privilege and Minimal TCB
principles. We then discuss some promising technologies, identified by the research group, that
are emerging from research labs.

Current Defenses

OS-Based Reference Monitors
Historically, mechanisms for security policy enforcement have been provided by the computer
hardware and operating system. Address translation hardware, distinct supervisor- and user-
modes, timer interrupts, and system calls for invoking a trusted software base are used in
combination to enforce limited forms of availability, fault containment, and authorization
properties.

To a large degree, these mechanisms have proven effective for protecting operating system
resources (e.g. , files or devices) from unauthorized access by humans or malicious code. But the
mechanisms work with a fixed system-call interface and a fixed vocabulary of principals, objects,
and operations for policies. Only by incurring significant cost and usability penalties can that
vocabulary be expanded. It rarely is. Currently, most desktop machines are configured as
single-user so applications have complete access to the machine resources.

Scanning for Known Malicious Code
In the days before networking was rampant, malicious code mostly used the “sneaker net” as its
vector. Viruses were spread from machine to machine by humans carrying floppy disks with
infected programs on them. Perhaps the built-in limitations in the vector kept the number of
viruses small. In any case, the limited number of viruses combined with the inefficiencies in the
communication vector made possible the strategy of black listing.

Most commercial anti-virus products make use of a black listing strategy to this day. They rely on
databases of virus “signatures” that are consulted when a new program arrives. Anti-virus tools
scan disks and sometimes e-mail looking for known viruses.

The limitations of this approach are obvious. Unknown malicious code will easily get by the
simple defenses to carry out its dirty work. Until a new virus is contained by researchers and a
signature entry is added to the database, it can run rampant. Recall both the Melissa virus and
the Love Bug.

It should be clear that black listing by itself does not provide adequate security. It is too easy to
make trivial changes to malicious code (a process that can be automated in the code itself) to
thwart almost every black listing scheme. Nevertheless, black listing is cheap to implement and
is thus worthwhile even if it only stops the occasional naïve attack.

Code Signing
Code signing as it is commonly used and (mis)understood today needs work. The idea itself is
elegant and simple: a private key is used to sign code, both ensuring transmission integrity and
enabling policy defined by trust in the signer. Unfortunately, a pervasive and common myth is
that code signing signifies authorship or goodness. It does not. Encountering a piece of code
that is cryptographically signed simply means that some private key was used to sign the code!
From this we can reason about endorsement of the code by the person or organization who
controls the private key in question.

Submitted to IEEE Software and presented to the IRC.

In talking about code signing, many people make bad assumptions. These include: assuming
that signed code is safe, treating signing as a binary indicator of goodness, assuming that
goodness is compositional, and thinking that code that has been shown to be good in one
environment will be good in all environments. Code signing is a useful technology, but these
limitations are real.

The adoption of code signing has also been hampered by the lack of a Public Key Infrastructure
(PKI). Very few PKI installations have been deployed, and those that have do not begin to
approach Internet scale. Without a solid PKI, code signing will not become common.

Promising New Defenses

Software-Based Reference Monitors
Wahbe et al. suggested software-based fault isolation (SFI) as an alternative to the traditional
hardware-based mechanisms used to ensure memory safety [WLAG93]. Their goal was to
reduce the overhead of cross-domain procedure calls and providing a more-flexible memory -
safety mode. Their basic idea is to rewrite binary code by inserting checks on each memory
access and each control transfer to ensure that those accesses are valid. Schneider generalized
the SFI idea to in-lined reference monitors (IRM) [Sch00]. With the IRM approach, a security
policy is specified in a declarative language, and a general-purpose tool rewrites code, ins erting
extra checks and state that are used to enforce the policy. In principle, any security policy that is
a safety property can be enforced, so the approach is quite powerful. For example, it can enforce
any discretionary access control policy. The approach is also practical: Prototypes have been
built at both Cornell and MIT [ES99,ET99,ES00]. One of the Cornell prototypes, PSLang/PoET,
works for the Java Virtual Machine language and gives competitive performance for the
implementation of Java's stack inspection security policy.

Type-Safe Languages
Type-safe programming languages, such as Java, Scheme, or ML, ensure that operations are
only applied to values of the appropriate type. Type systems that support type abstraction allow
programmers to specify new, abstract types and signatures for operations that prevent
unauthorized code from applying the wrong operations to the wrong values. In this respect, type
systems, like software-based reference monitors, go beyond operating systems in that they may
be used to enforce a wider class of application-specific access policies. Static type systems have
an additional attractive property: enforcement can be done offline through static type checking
instead of each time a particular operation is performed. This allows the type checker to enforce
certain policies that are difficult with on-line techniques. For example, Myers’ JFlow [Mye99]
extends the Java type system to enforce the policy that high-security data should never be
leaked. Current research in type systems is aimed at eliminating more run-time checks (e.g.,
array bounds checks [XP99]) or type-checking machine code (see for example [MWCG98]).

Proof-Carrying Code
Proof-carrying code (PCC), a concept introduced by Necula and Lee [NL96], is a promising
approach for gaining high assurance ofsecurity in systems. The basic idea is to require any
untrusted code to come equipped with an explicit, machine-checkable proof that the code
respects a given security policy. Before executing the code, we simply verify that the proof is
valid with respect to both the code and the policy. Because proof checkers can be quite simple
(Necula’s is about 6 pages of C code), it is easier to ensure that they are correct. And in
principle, PCC can enforce any security policy—not just type safety—as long as the code
producer can construct a proof. Necula and Lee have shown that such proofs can be constructed
automatically for standard type-safety policies, if the code is generated by a compiler for a type-
safe programming language. Unfortunately, going beyond standard notions of type safety cannot
be performed automatically without either restricting the code or requiring human intervention. It

Submitted to IEEE Software and presented to the IRC.

is unlikely that programmers will construct explicit proofs. Thus an active area of research is how
to integrate compilers and modern theorem provers to produce PCC.

Policy as Achilles’ Heel
Thus far we have focused on technology solutions to the malicious code problem. To be sure,
technology can be of service; but there is another critical aspect of the problem that remains to be
addressed? the problem of policy.

In current forms, extensible systems do little to determine how a system will behave when
extended in certain ways or, put another way, what a particular piece of code can and cannot do.
In fact, today’s computers are hyper-malleable and overly complicated. This greatly increases
the malicious code risk. In the end, determining whether something malicious is happening
requires first defining some policy to enforce.

When Policy Breaks Down
Clearly, the notion of policy is deeply intertwined with the concept of malicious code. Understood
in terms of policy, the root causes of malicious code can be separated into two basic categories:
1) bad policy, and 2) incorrectly enforced policy.

Bad policy allows malicious code to do something malicious since policy does not forbid it. Even
if policy is perfectly enforced by technology, the policy itself has to be well formed. Subcategories
of bad policy include:

?? misunderstandings of context, whereby policy makes no sense in the context where it
was applied;

?? inconsistency, whereby the policy is self-contradictory; or
?? non-comprehensiveness, whereby policy fails to cover some situation or exists at the

wrong level of abstraction.

Incorrect policy enforcement allows code to do something malicious even if it is correctly
forbidden by policy. In this case, correct technology-driven enforcement falls prey to poor policy
creation and management. Subcategories of incorrect policy enforcement include:

?? incorrect enforcement of safety policies;
?? incorrect enforcement of liveness properties;
?? incorrect enforcement of information flow.

Other subcategories may exist under incorrect enforcement as well.

Table 2 provides examples of malicious code understood in our policy-based framework.

BAD POLICY Examples INCORRECT POLICY
ENFORCEMENT

Examples

Context
misunderstood

?? Melissa (e-mail worms)
?? Morris worm (sendmail debug

mode)

Safety properties ?? Thompson compiler
trick

?? buffer overflows
?? guessable passwords

Inconsistent ?? overly restrictive policy Liveness properties ?? denial of service
Non-
comprehensive

?? Melissa (e-mail worms)
?? guessable passwords

Information flow ?? Javascript privacy
hacks

E-mail worms like Melissa fit unto the context misunderstood box above because they are caused
by the interaction between individual policy decisions made about separate parts of the system.
Useful subsystems such as Javascript interpreters can cause problems if invoked in the incorrect
context. For ex ample, modern e-mail systems often include the ability to execute potentially-
dangerous untrusted mobile code by default. This opens the door to malicious code.

Submitted to IEEE Software and presented to the IRC.

E-mail worms like Melissa and the Love Bug also fit in the non-comprehensive box since policy
often fails to cover systems like e-mail based Visual Basic code, which can be used maliciously.

The sendmail debug mode problem exploited in the Morris worm provides a good example of a
context misunderstanding since something that made sense during development and installation
(a debug capability) makes little sense in a fielded system. The added functionality came at the
price of unnecessary risk.

Guessable passwords are a good example of non-comprehensive policy if they come about due
to a lack of restrictions on user password choice. Without guidance, users tend not to behave in
a secure fashion. Guessable passwords are a notorious security risk that is widely exploited by
malicious code.

Thompson’s compiler trick (a famous Trojan Horse to be built into the C compiler that made use
of the login program [Tho84]) is an example of incorrect enforcement of safety policy. In this
case, implicit policy assumes both that the compiler properly produces object code from source
code and that the login program requires a correct password to be entered. In fact, the developer
of the compiler can circumvent this implicit policy (which is not enforced technologically).

Distributed denial of service (dDoS) attacks are a clear example of liveness policies being
incorrectly enforced. In this case, massive amounts of traffic are used to overwhelm the
processing capabilities of a commerce server.

Addressing the malicious code problem requires the creation of sound policy and its enforcement
through technology.

The Many Levels of Policy
System administrators and MIS security people think about policy in terms of user groups, firewall
rules, and computer use. Security researchers steeped in programming languages think about
policy in terms of memory safety and liveness properties. Government policy wonks think about
policy in terms of rules and regulations imposed on users and systems. The problem is, all of
these ways of thinking about policy are equally valid!

So how are we to set policy to combat malicious code? We believe the key is to focus on
defining meta-level policies that system administrators work with naturally in terms of collections
of lower-level enforcement mechanisms. This is no trivial undertaking.

Most of the technologies explored earlier in this article can be used to enforce particular aspects
of software behavior. Many languages researchers, for example, consider the code safety
problem “solved”. Liveness and information flow properties are harder, but fairly clear research
agendas exist to address the open issues. Of course, the terms safety, liveness, and information
flow have technical meanings. Intuitively, a safety property states that a program will never
perform a bad action, for some precisely defined notion of "bad". An example of a bad action is
overflowing a buffer. A liveness property, on the other hand, states that a program will eventually
perform some desired action or set of actions. For example, the property that a program will
eventually release all of the memory that it allocates is a liveness property. Finally, information
flow properties state that certain values or types of values will not be discernable to certain
observers.

The problem is that low-level properties such as safety and liveness do not align nicely with what
most security administrators think of as policy building blocks. Thus an open question is how to
express reasonable security policy that can be directly transformed into technology enforcement
solutions.

Submitted to IEEE Software and presented to the IRC.

The answer is to understand policy as a layered set of abstractions. Some preliminary work
exists (for example Netscape Navigator’s approach to policy sets based on expected code
behavior), but much work remains to be done.

Final Word
The malicious code problem will continue to grow as the Internet grows. The constantly-
accelerating trends of interconnectedness, complexity, and extensibility make addressing the
problem more urgent than ever. As extensible information systems become more ubiquitous,
moving into everyday devices and playing key roles in life-critical systems, the level of the threat
moves out of the technical world and into the real world. We must work on this problem.

Our best hope in combating malicious code is creating sound policy about software behavior and
enforcing that policy through the use of technology. An emphasis on one or the other alone will
do little to help. Any answer will require a set of enforcement technologies that can be directly
tied to policy set and understood by non-technical users.

References

[ET99] Evans D., and A. Twyman. Policy-directed code safety. In Proceedings of the 1999
IEEE Symposium on Security an Privacy, Oakland, CA, May, 1999. See also
http://www.cs.virginia.edu/~evans.

[ES99] Erlingsson, U. and F.B. Schneider. SASI enforcement of security policies: a
retrospective. In Proceedings of the New Security Paradigms Workshop, Ontario, Canada,
September 1999.

[ES00] Erlingsson, U. and F.B. Schneider. IRM enforcement of Java stack inspection. In IEEE
Symposium on Security and Privacy, Oakland, CA, May 2000, To appear.

[MF99] McGraw, G. and E. Felten. (1999) Securing Java: Getting down to business with mobile
code. Wiley. Complete Web edition at http://www.securingjava.com.

 [Mye99] Myers, A.C. JFlow: Practical mostly-static information flow control. In Proceedings of
the 26th ACM Symposium on Principles of Programming Languages (POPL), San Antonio, TX,
January 1999.

[MWCG98] Morrisett, G. D. Walker, K. Crary, and N. Glew. From System-F to typed assembly
language. ACM Transactions on Programming Languages and Systems, 21(3):528-569, May
1999. See also http://www.cs.cornell.edu/talc.

[Nec97] Necula, G.C. Proof-carrying code. In Proceedings of the 24th ACM Symposium on
Principles of Programming Languages (POPL), pages 106-119, Paris, France, January 1997.
See also http://www-nt.cs.berkeley.edu/home/necula/public_html/pcc.html.

[Sch00] Schneider, Fred B. Enforceable Security Policies. ACM Transactions on Information and
System Security, 2(4), March 2000.

[SESS96] Seltzer, M., Y. Endo, C. Small and K. Smith. Dealing with disaster: surviving
misbehaved kernel extensions. In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 213-227, Seattle, WA, October 1996.

[SS75] Salzter, J.H., and M.D. Schroeder. The protection of information in computer systems.
Proceedings of the IEEE, 9(63), September 1975.

Submitted to IEEE Software and presented to the IRC.

[Tho84] Thompson, K. (1984) Reflections on Trusting Trust. Communications of the ACM 27(8).
August 1984.

[WLAG93] Wahbe, R., S. Lucco, T. Anderson, and S. Graham. Efficient software-based fault
isolation. In Proc. 14 th ACM Symposium on Operating System Principles (SOSP), pages 203-
216, Asheville, NC, December, 1993.

[XP99] Xi, Hongwei and F. Pfenning. Dependent types in practical programming. In Proceedings
of the 26th ACM Symposium on Principles of Programming Languages (POPL), San Antonio, TX,
January 1999.

Bios
Gary McGraw
Reliable Software Technologies
21515 Ridgetop Circle, Suite 250
Sterling, VA 20166
Email: gem@rstcorp.com
Phone: (703) 404-9293

Gary McGraw is the Vice President of Corporate Technology at Reliable Software Technologies
where he pursues research in software security while leading the Software Security Group. He
has served as principal investigator on grants from Air Force Research Labs, DARPA, National
Science Foundation, and NIST's Advanced Technology Program. He chairs the National Infosec
Research Council’s Malicious Code Infosec Science and Technology Study Group. Dr. McGraw
is a noted authority on mobile code security and co-authored both Java Security (Wiley, 1996)
and Securing Java (Wiley, 1999). Dr. McGraw is currently writing a book entitled Software
Security for Developers (2001).

Greg Morrrisett
Department of Computer Science
4133 Upson Hall
Cornell University
Ithaca, NY 15213
Email: jgm@cs.cornell.edu
Phone: (607) 255-3009

Greg Morrisett is an assistant professor in the Computer Science department at Cornell
University. He is a Sloan Research Fellow, recipient of an NSF Career award, member of the
IFIP Working Group 2.8 (Functional Programming), editor for the Journal of Functional
Programming, and an associate editor for ACM Transactions on Programming Languages and
Systems. Professor Morrisett is a well-known authority on programming language-based security
and type systems.

