
An extended abstract of this paper is published in the proceedings of the 30th Annual International
Conference on the Theory and Applications of Cryptographic Techniques—Eurocrypt 2011 [26].
This is the full version.

Efficient Authentication from Hard Learning Problems

Eike Kiltz∗

Ruhr-Universität Bochum
Krzysztof Pietrzak†

IST Austria
David Cash

Rutgers University

Abhishek Jain
Boston University and MIT

Daniele Venturi
Sapienza University of Rome

August 25, 2014

Abstract

We construct efficient authentication protocols and message-authentication codes (MACs) whose
security can be reduced to the learning parity with noise (LPN) problem.

Despite a large body of work — starting with the HB protocol of Hopper and Blum in 2001 —
until now it was not even known how to construct an efficient authentication protocol from LPN
which is secure against man-in-the-middle (MIM) attacks. A MAC implies such a (two-round)
protocol.
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1 Introduction

Authentication is among the most basic and important cryptographic tasks. In the present paper we
construct efficient (secret-key) authentication schemes from the learning parity with noise (LPN)
problem. We construct the first efficient message authentication codes (MACs) from LPN, but
also simpler and more efficient two-round authentication protocols that achieve a notion called
active security. Prior to our work, the only known way to construct an LPN-based MAC was via a
relatively inefficient generic transformation [19] (that works with any pseudorandom generator), and
all interactive LPN-based protocols with security properties similar to our new protocol required
at least three rounds and had a loose security reduction. Our constructions and techniques diverge
significantly from prior work in the area and will hopefully be of independent interest.

The pursuit of LPN-based authentication is motivated by two disjoint concerns, one theoretical
and one practical. On the theoretical side, the LPN problem provides an attractive basis for provable
security [2, 4, 6, 25, 21, 34]. It is closely related to the well-studied problem of decoding random
linear codes, and unlike most number-theoretic problems used in cryptography, the LPN problem
does not succumb to known quantum algorithms. On the practical side, LPN-based authentication
schemes are strikingly efficient, requiring relatively few bit-level operations. Indeed, in their original
proposal, Hopper and Blum [21] suggested that humans could perform the computation in their
provably-secure scheme, even with realistic parameters. The efficiency of LPN-based schemes also
makes them suitable for weak devices like RFID tags, where even evaluating a blockcipher may be
prohibitive.

Each of our theoretical and practical motivations, on its own, would be sufficiently interesting for
investigation, but together the combination is particularly compelling. LPN-based authentication
is able to provide a theoretical improvement in terms of provable security in addition to providing
better efficiency than approaches based on more classical symmetric techniques that are not related
to hard problems. Usually we trade one benefit for the other, but here we hope to get the best of
both worlds.

Before describing our contributions in more detail, we start by recalling authentication protocols,
the LPN problem, and some of the prior work on which we build.

Authentication protocols. An authentication protocol is a (shared-key) protocol where a prover
P authenticates itself to a verifier V (in the context of RFID implementations, we think of P as the
“tag” and V as the “reader”). We recall some of the common definitions for security against imper-
sonation attacks. A passive attack proceeds in two phases, where in the first phase the adversary
eavesdrops on several interactions between P and V, and then attempts to cause V to accept in the
second phase (where P is no longer available). In an active attack, the adversary is additionally
allowed to interact with P in the first phase. The strongest and most realistic attack model is a
man-in-the-middle attack (MIM), where the adversary can arbitrarily interact with P and V (with
polynomially many concurrent executions allowed) in the first phase.

The LPN problem. Briefly stated, the LPN problem is to distinguish from random several
“noisy inner products” of random binary vectors with a random secret vector.

More formally, for τ < 1/2 and a vector x ∈ Z`2, define the distribution Λτ,`(x) on Z`2 × Z2

by (r, rTx + e), where r ∈ Z`2 is uniformly random and e ∈ Z2 is selected according to Berτ , the
Bernoulli distribution over Z2 with parameter τ (i.e., Pr[e = 1] = τ). The LPNτ,` problem is to
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Pτ,n(s ∈ Z`2) Vτ ′,n(s ∈ Z`2)
R←− R

$← Z`×n2

e
$← Bernτ

z := RT · s + e
z−→ verify: wt(z + RT · s) < τ ′ · n

Figure 1: The HB protocol, secure against passive attacks.

distinguish an oracle returning samples from Λτ,`(x), where x ∈ Z`2 is random and fixed, from an
oracle returning uniform samples. It was shown by Blum et al. [4] that this is equivalent to the
search version of LPN, where one needs to compute x given oracle access to Λτ,`(x) (cf. [24, Thm.2]
for precise bounds). We note that the search and decision variants are solvable with a linear in
` number of samples when there is no noise, i.e. when τ = 0, and the best algorithms take time
2`/ log ` when τ > 0 is treated as a constant [5, 6, 27].

Authentication protocols from LPN. Starting with the work of Hopper and Blum [21], several
authentication protocols based on the LPN problem have been proposed. Their original elegant
protocol is simple enough for us to recall right away. The shared secret key is a binary vector
s ∈ Z`2. The interaction consists of two messages. First V sends a random challenge r ∈ Z`2, and
then P answers with the bit z = rTs + e, where e ∈ Z2 is sampled according to Berτ . Finally, the
verifier accepts if z = rTs.

This basic protocol has a large completeness error τ (as V will reject if e = 1) and soundness
error 1/2 (as a random r, z satisfies rTs = z with probability 1/2). This can be reduced via
sequential or parallel composition. The parallel variant, denoted HB, is illustrated in Figure 1 (we
represent several r with a matrix R and the noise bits are now arranged in a vector e). The verifier
accepts if at least a τ ′ fraction (where τ < τ ′ < 1/2) of the n basic authentication steps are correct.

The 2-round HB protocol is provably secure against passive attacks, but efficient active attacks
are known against it. This is unsatisfying because in several scenarios, and especially in RFID
applications, an adversary will be able to mount an active attack. Subsequently, Juels and Weis [22]
proposed an efficient 3 round variant of HB, called HB+, and proved it secure against active attacks.
Again the error can be reduced by sequential repetition, and as shown by Katz, Shin and Smith
via a non-trivial analysis, parallel repetition works as well [23, 24]. The protocol (in its parallel
repetition variant) is illustrated in Figure 2.

Gilbert et al. [16] showed that HB+ can be broken by a MIM attack. Several variants HB++ [9],
HB∗ [13], HB-MP [30] were proposed to prevent the particular attack from [16], but all of them
were later shown to be insecure [17]. In [18], a variant HB# was presented which provably resists
the particular attack from [16], but was shown susceptible to a more general MIM attack [31].
However, no improvements in terms of round complexity, security or tightness of the reduction over
HB+ were achieved: 3 round protocols achieving active security

√
ε (assuming LPN is ε-hard) are

the state of the art.
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Pτ,n(s1, s2) Vτ ′,n(s1, s2)

R1
$← Z`×n2

R1−→
R2←− R2

$← Z`×n2

e
$← Bernτ

z := RT
1 · s1 + RT

2 · s2 + e
z−→ verify:

wt(z + RT
1 · s1 + RT

2 · s2) ≤ τ ′ · n

Figure 2: The HB+ protocol, secure against active attacks.

1.1 Our Contribution

We provide new constructions of authentication protocols and even MACs from LPN. Our first
contribution is a two-round authentication protocol secure against active adversaries (this is men-
tioned as an open problem in [22]) which moreover has a tight security reduction (an open problem
mentioned in [24]). As a second contribution, we build two efficient MACs, and thus also get
two-round authentication protocols secure against MIM attacks, from the LPN assumption. Unlike
some previous proposals, our constructions are not ad-hoc, and we give a reduction to the LPN
problem. Our authentication protocol is roughly as efficient as the HB+ protocol but has twice the
key length. Our MACs perform roughly the same computation as the authentication protocol plus
one evaluation of a pairwise independent permutation of an ≈ 2` bit domain, where ` is the length
of an LPN secret.

2-Round Authentication with Active Security. Our first contribution is a two-round authen-
tication protocol which we prove secure against active attacks assuming the hardness of the LPN
problem. Our protocol diverges considerably from all previous HB-type protocols [21, 22, 24, 18],
and runs counter to the intuition that the only way to efficiently embed the LPN problem into a
two-round protocol is via an HB-type construction.

We now sketch our protocol. In HB and its variants, the prover must compute LPN samples of
the form RT · s + e, where R is the challenge chosen by the verifier in the first message. We take a
different approach. Instead of sending R, we now let the verifier choose a random subset of the bits
of s to act as the “session-key” for this interaction. It represents this subset by sending a binary
vector v ∈ Z`2 that acts as a “bit selector” of the secret s, and we write s↓v for the sub-vector
of s which is obtained by deleting all bits from s where v is 0. (E.g. if s = (1, 1, 1, 0, 0, 0)T,v =
(0, 1, 1, 1, 0, 0)T then s↓v = (1, 1, 0)T.) The prover then picks R by itself and computes noisy inner
products of the form RT · s↓v + e. Curiously, allowing the verifier to choose which bits of s to use
in each session is sufficient to prevent active attacks. We only need to add a few sanity-checks that
no pathological v or R were sent by an active adversary.

Our proof relies on the recently introduced subspace LPN problem [33]. In contrast to the
active-attack security proof of HB+ [24], our proof does not use any rewinding techniques. Avoiding
rewinding has at least two advantages. First, the security reduction becomes tight. Second, the
proofs also work in a quantum setting: our protocol is secure against quantum adversaries assuming
LPN is secure against such adversaries. As first observed by van de Graaf [36], classical proofs using
rewinding in general do not translate to the quantum setting (cf. [38] for a more recent discussion).
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Let us emphasise that this only means that there is no security proof for HB+ in the quantum
setting, but we do not know if a quantum attack actually exists.

MAC & Man-In-The-Middle Security. In Section 4, we give two constructions of message
authentication codes (MACs) that are secure (formally, unforgeable under chosen message attacks)
assuming that the LPN problem is hard. Note that a MAC implies a two-round MIM-secure
authentication protocol: the verifier chooses a random message as challenge, and the prover returns
the MAC on the message.

As a first attempt, let us try to view our authentication protocol as a MAC. That is, a MAC
tag is of the form φ = (R, z = RT ·fs(m)+e), where the secret key derivation function fs(m) ∈ Z`2
first uniquely encodes the message m into v ∈ Z2`

2 of weight ` and then returns s↓v by selecting `
bits from secret s, according to v. However, this MAC is not secure: given a MAC tag φ = (R, z)
an adversary can ask verification queries where it sets individual rows of R to zero until verification
fails: if the last row set to zero was the ith, then the ith bit of fs(m) must be 1.1 Our solution
is to randomize the mapping f , i.e. use fs(m,b) for some randomness b and compute the tag as
φ = π(R,RT · fs(m,b) + e,b), where π is a pairwise independent permutation (contained in the
secret key). We can prove that if LPN is hard then this construction yields a secure MAC. (The
key argument is that, with high probability, all non-trivial verification queries are inconsistent and
hence lead to reject.) However, the security reduction to the LPN problem is quite loose since it
has to guess the value v from the adversary’s forgery.2 In our case, however, this still leads to a
polynomial security reduction when one commits to the hardness of the LPN problem at the time
of the construction. (See the first paragraph of §4 for a discussion.)

To get a strictly polynomial security reduction (without having to commit to the hardness of
the LPN problem), in our second construction we instantiate the above MAC with a different secret
key derivation function fs(m,b) = s0 +S ·v (where v = h(m,b) and h(·) is a pairwise independent
hash). The drawback of our second construction is the larger key-size as the secret-key contains a

matrix S ∈ Z`×µ2 . Our security reduction uses a technique from [10, 3].3

1.2 Efficiency

Figure 3 gives a rough comparison of our new protocol and MACs with the HB,HB+ protocols
and, as a reference, also the classical tree-based GGM construction [19]. The second row in the
table specifies the security notion that is (provably) achieved under the LPNτ,` assumption. λ
is a security parameter and n denotes the number of “repetitions”. Typical parameters can be
` = 500, λ = 80, n = 250. Computation complexity counts the number of binary operations over
F2. Communication complexity counts the total length of all exchanged messages.4 The last row in
the table states the tightness of the security reduction, i.e. what exact security is achieved (ignoring
constants and higher order terms) assuming the LPNτ,` problem is ε-hard.

1In fact, the main technical difficulty in building an efficient MAC from LPN seems to be ensuring the secret s
does not leak from verification queries.

2In the context of identity-based encryption (IBE) a similar idea has been used to go from selective-ID to full
security using “complexity leveraging” [7].

3 An earlier version of this paper adapted a technique originally used by Waters [37] in the context of IBE schemes
that has been applied to lattice based signature [8] and encryption schemes [1].

4For MACs, we consider the communication one incurs by constructing a MIM secure 2-round protocol from the
MAC by having the prover compute the tag on a random challenge message.
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Construction Security Complexity Key-size Reduction
Communication Computation

HB [21] passive (2 rnd) ` · n/c Θ(` · n) ` · c ε (tight)
HB+ [22] active (3 rnd) ` · n · 2/ c Θ(` · n) ` · 2 · c

√
ε

AUTH § 3 active (2 rnd) ` · n · 2.1/c Θ(` · n) ` · 4.2 · c ε (tight)
MAC1 § 4.1 MAC → MIM (2 rnd) ` · n · 2.1/c Θ(` · n) + PIP ` · 12.6 · c

√
ε ·Q (?)

MAC2 § 4.2 MAC → MIM (2 rnd) ` · n · 1.1/c Θ(` · n) + PIP ` · λ · c ε ·Q
GGM [19] PRF → MIM (2 rnd) λ Θ(`2 · λ) Θ(`) ε · λ

Figure 3: A comparison of our new authentication protocol and MACs with the HB, HB+ protocols
and the classical GGM construction. The trade-off parameter c, 1 ≤ c ≤ n and the term PIP will
be explained in the “Communication vs. Key-Size” paragraph below. (?) See discussion in §4.

The prover and verifier in the HB,HB+ and our new protocols have to perform Θ(` · n) basic
binary operations, assuming the LPNτ,` problem (i.e., LPN with secrets of length `) is hard. This
seems optimal, as Θ(`) operations are necessary to compute the inner product which generates a
single pseudorandom bit. We will thus consider an authentication protocol or MAC efficient, if it
requires O(` ·n) binary operations. Let us mention that one gets a length-doubling PRG under the
LPNτ,` assumption with Θ(`2) binary operations [14]. Via the classical GGM construction [19], we
obtain a PRF and hence a MAC. This PRF, however, requires Θ(`2 · λ) operations per invocation
(where λ is the size of the domain of the PRF) which is not very practical. (Recall that ` ≈ 500.)

Communication vs. Key-Size. For all constructions except GGM, there is a natural trade-
off between communication and key-size, where for any constant c (1 ≤ c ≤ n), we can decrease
communication by a factor of c and increase key-size by the factor c (cf. Appendix A for how
exactly this can be done). For the first three protocols in the table, the choice of c does not affect
the computational efficiency, but it does so for our MACs: to compute or verify a tag one has to
evaluate a pairwise independent permutation (PIP) on the entire tag of length m := Θ(` · n/c).

The standard way to construct a PIP π over Z2m is to define π(x) := a · x + b ∈ F2m for
random a, b ∈ F2m . Thus the computational cost of evaluating the PIP is one multiplication of
two m bits values: the PIP term in the table accounts for this complexity. Asymptotically, such a
multiplication takes only O(m logm log logm) time [35, 15], but for small m (like in our scheme) this
will not be faster than using schoolbook multiplication, which takes Θ(m2) time. For parameters
` = 500, n = 250 and trade-off c = n (which minimizes the tag-length m) we get m ≈ 1200 for
MAC1 (i.e., 1200 = 2` plus some statistical security parameters) and m ≈ 600 for MAC2. Hence,
depending on the parameters, the evaluation of the PIP may be the computational bottleneck of
our MACs.

1.3 Subsequent Work

The results obtained in this paper have recently served as a basis for other works on efficient
authentication. In [12], Dodis et al. started a systematic study of randomized MACs and showed
how to replace the PIP from our MAC constructions with a pairwise independent hash function
(leading to more efficient schemes). Heyse et al. [20] considered a variant of our actively secure
authentication protocol based on the Ring LWE problem (introduced in [29]).

6



Lyubashevsky and Masny [28] built authentication protocols from LPN that are man-in-middle
secure for sequential sessions.

2 Definitions

2.1 Notation

For a positive integer k, [k] denotes the set {1, . . . , k}; [0] is the empty set. For a, b ∈ R, ]a, b[=
{x ∈ R ; a < x < b}. We denote the set of integers modulo an integer q ≥ 1 by Zq. We will use
normal, bold and capital bold letters like x, x, X to denote single elements, (column) vectors and
matrices over Zq, respectively. X[i] denotes the i-th column vector of matrix X. x[i] denotes the
i-th element of vector x.

For a vector x ∈ Zmq , |x| = m denotes the length of x; wt(x) denotes the Hamming weight of
the vector x, i.e. the number of indices i ∈ {1, . . . , |x|} where x[i] 6= 0. For v ∈ Zm2 we denote
by v its inverse, i.e. v[i] = 1 − v[i] for all i. For two vectors v ∈ Z`2 and x ∈ Z`q, we denote by

x↓v ∈ Zwt(v)
q the vector (of length wt(v)) which is derived from x by deleting all the bits x[i] where

v[i] = 0. If X ∈ Z`×m2 is a matrix, then X↓v denotes the sub-matrix obtained by deleting the ith
row if v[i] = 0. We also extend Boolean operators to vectors, i.e., for two vectors x,y ∈ Zm2 we
define x ∧ v = z ∈ Zm2 with z[i] = x[i] ∧ y[i] and x ∨ v = z ∈ Zm2 where z[i] = x[i] ∨ y[i].

A function in λ is negligible, written negl(λ), if it vanishes faster than the inverse of any poly-
nomial in λ. An algorithm A is probabilistic polynomial time (PPT) if A uses some randomness
as part of its logic (i.e., A is probabilistic) and for any input x ∈ {0, 1}∗ the computation of A(x)
terminates in at most poly(|x|) steps.

2.2 Authentication Protocols

An authentication protocol is an interactive protocol executed between a prover P and a verifier
V, both PPT algorithms. Both hold a secret x (generated using a key-generation algorithm K
executed on the security parameter λ in unary) that has been shared in an initial phase. After
the execution of the authentication protocol, V outputs either accept or reject. We say that the
protocol has completeness error α if for all secret keys x generated by K(1λ), the honestly executed
protocol returns reject with probability at most α.

Passive attacks. An authentication protocol is secure against passive attacks if there exists no
PPT adversary A who can win the following game with non-negligible probability: In a first phase,
we sample a key x ← K(1λ), and then A gets to see any number of transcripts from the protocol
execution between P(x) and V(x) (including V’s final decision accept or reject). In a second phase
A interacts with V(x), and wins if the verifier outputs accept. Here we only give the adversary one
shot to convince the verifier.5

Active attacks. A stronger notion for authentication protocols is security against active attacks.
Here the second phase is the same in a passive attack, but in the first phase, the adversary A is

5By using a hybrid argument one can show that this implies security even if the adversary can interact in k ≥ 1
independent instances concurrently (and wins if the verifier accepts in at least one instance). The use of the hybrid
argument looses a factor of k in the security reduction.
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Expuf−cma
MAC (A, λ)

Qtag,Qvrfy := ∅
K ← K(1λ)

ATag(·),Ver(·,·)(1λ)

Return

(
∃(m, φ) ∈ Qvrfy s.t. m 6∈ Qtag

∧V(K,m, φ) = accept

)

Oracle Tag(m)

Qtag := Qtag ∪ {m}
φ← T (K,m)
Return φ

Oracle Ver(m, φ)

Qvrfy := Qvrfy ∪ {(m, φ)}
Return V(K,m, φ)

Figure 4: Experiment Expuf−cma
MAC (A, λ) defining uf-cma security of MAC.

additionally given access to P(x). For our two-round protocols there is no difference between
concurrent and sequential execution of the sessions with the prover.

We say an authentication protocol is (t, Q, ε)-secure against active adversaries if every adversary
A, running in time at most t and making Q queries to the honest prover, has probability at most
ε to win the above game.

Man-in-the-middle attacks. The strongest standard security notion for authentication pro-
tocols is security against man-in-the-middle (MIM) attacks. The second phase is the same as in
passive and active attack. In the first phase, the adversary interact (concurrently) with any num-
ber of provers and – unlike in an active attacks – also verifiers. The adversary gets to learn the
verifiers accept/reject decisions. One can construct two-round authentication schemes which are
secure against MIM attacks from basic cryptographic primitives like MACs, which we define next.

2.3 Message Authentication Codes

A message authentication code MAC = {K, T ,V} is a triple of algorithms with associated key space
K, message space M, and tag space T .
• Key Generation. The probabilistic key-generation algorithm K takes as input a security pa-

rameter λ ∈ N (in unary) and outputs a secret key K ∈ K.
• Tagging. The probabilistic authentication algorithm T takes as input a secret key K ∈ K and

a message m ∈M and outputs an authentication tag φ ∈ T .
• Verification. The deterministic verification algorithm V takes as input a secret key K ∈ K, a

message m ∈M and a tag φ ∈ T and outputs {accept, reject}.
If the T algorithm is deterministic one does not have to explicitly define V, since it is already
defined by the T algorithm as V(K,m, φ) = accept iff T (K,m) = φ.

Completeness. We say that MAC has completeness error α if for all m ∈M and λ ∈ N

Pr[V(K,m, φ) = reject ;K ← K(1λ) , φ← T (K,m)] ≤ α.

Security. The standard security notion for a MAC is unforgeability under a chosen message attack
(uf-cma). Formally this is the probability that the experiment Expuf−cma

MAC (A, λ) of Figure 4 outputs
1. The experiment features an adversary A that issues tag queries on messages m, and verification
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queries on pairs (m, φ); the adversary is successful if she ever asks a verification query (m, φ) that
is accepted, for some message m not previously asked to the tag oracle (i.e., A has found a valid
forgery). We say that MAC is (t, Q, ε)-secure against uf-cma adversaries if for any A running in
time t, and asking a total number of Q queries to her oracles, we have Pr[Expuf−cma

MAC (A, λ) = 1] ≤ ε.

2.4 Hard Learning Problems

Let Berτ be the Bernoulli distribution over Z2 with parameter (bias) τ ∈ ]0, 1/2[ (i.e., Pr[x = 1] = τ
if x ← Berτ ). For ` ≥ 1, Ber`τ denotes the distribution over Z`2 where each vector consists of `
independent samples drawn from Berτ . Given a secret x ∈ Z`2 and τ ∈]0, 1

2 [ , we write Λτ,`(x) for

the distribution over Z`2×Z2 whose samples are obtained by sampling vectors r
$← Z`2 and e

$← Berτ
outputting (r, rT · x + e).

2.4.1 Learning Parity with Noise

The LPN assumption, formally defined below, states that it is hard to distinguish Λτ,`(x) (with a
random secret x ∈ Z`2) from the uniform distribution on `+ 1 bits denoted U`+1.

Definition 2.1 (Learning Parity with Noise). The (decisional) LPNτ,` problem is (t, Q, ε)-hard if
for every distinguisher D running in time t and making Q queries,∣∣∣Pr

[
DΛτ,`(x) = 1; x

$← Z`2
]
− Pr

[
DU`+1 = 1

]∣∣∣ ≤ ε.
It will sometimes be convenient to think of U`+1 as LPN samples with uniform errors, note that

for any x, the distributions Λ1/2,`(x) and U`+1 are the same.

2.4.2 Subspace Learning Parity with Noise

We now define the (seemingly) stronger subspace LPN assumption (SLPN for short) recently intro-
duced in [33]. Here the adversary can ask for inner products not only with the secret x, but with
any affine function Ax + b of x where A can be any (adversarially and adaptively chosen) matrix
of sufficiently high rank. For minimal dimension d ≤ `, a secret x ∈ Z`2 and any A ∈ Z`×`2 ,b ∈ Z`2
we define the distribution

Γτ,`,d(x,A,b) =

{
⊥ if rank(A) < d

Λτ,`(A · x + b) otherwise

and let Γτ,`,d(x, ·, ·) denote the oracle which on input A,b outputs a sample from Γτ,`,d(x,A,b).

Definition 2.2 (Subspace LPN). Let `, d ∈ Z where d ≤ `. The (decisional) SLPNτ,`,d problem is
(t, Q, ε)-hard if for every distinguisher D running in time t and making Q queries,∣∣∣Pr

[
DΓτ,`,d(x,·,·) = 1; x

$← Z`2
]
− Pr

[
DU`+1(·,·) = 1

]∣∣∣ ≤ ε,
where U`+1(·, ·) on input A,b outputs a sample of U`+1 if rank(A) ≥ d and ⊥ otherwise.

The following proposition states that the subspace LPN problem mapping to dimension d + g
is almost as hard as the standard LPN problem with secrets of length d, the hardness gap being
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exponentially small in g. In [33] a more general statement is proven where one considers the more
general Learning With Errors (LWE) assumption,6 and allows the distinguisher to also apply an
affine function to the randomness r (not just x as discussed here). For completeness we include the
proof for the case of subspace LPN.

Proposition 2.3. For any `, d, g ∈ Z (where ` ≥ d+g), if the LPNτ,d problem is (t, Q, ε)-hard then
the SLPNτ,`,d+g problem is (t′, Q, ε′)-hard where

t′ = t− poly(`,Q) ε′ = ε+Q/2g.

Proof. Let D′ be an adversary with advantage ε′ for the SLPNτ,`,d+g problem, from this D′ we will
construct an D with advantage ε ≥ ε′ − Q/2g for the LPNτ,d problem. W.l.o.g., we assume that
the oracle queries of D′ are of the form A,b with b = 0 since (r̂, ẑ) 7→ (r̂, ẑ + r̂Tb) reduces queries
with arbitrary b to queries with b = 0.

Our D will transform the samples of the form (r, rTx + e) it gets (where e is either sampled
according to Berτ or uniform) into samples (r̂, r̂TAx̂+e) for any A ∈ Z`×`2 of rank ≥ d. In particular,
LPN samples are mapped to SLPN samples, and random samples are mapped to random samples.
For each of the Q queries made by D′, the transformation will fail with probability at most 2−g,
which is where the Q/2g loss in distinguishing advantage comes from. We now formally define D.

Initially, DΛδ,d(x) (where δ is either τ or 1/2) samples W
$← Z`×d2 ,w

$← Z`2 which (implicitly)
defines the secret x̂ = Wx+w for the transformation. Now, DΛδ,d(x) invokes D′, and answers every
query A of D′ as follows.

If rank(A) < d + g return ⊥ to D′. Otherwise, query the oracle Λδ,d(x) to get a sample
(r, rT · x + e). Define the set S ⊆ Z`2 of solutions to the system of linear equations:

S =
{

y : yAW = rT
}
⊆ Z`2

If AW has rank ≥ d then S is non-empty (if the rank is d, then the system has exactly one solution,

if it has rank > d, the system is under-defined and thus has several solutions). D samples r̂
$← S

and outputs the sample
(r̂, rTx + r̂TAw + e), (2.1)

For the analysis, note that D runs in time t ≈ t′. It remains to show that simulation performed by
D is correct. This is shown in the following claims.

Claim 2.4. If V = AW has rank ≥ d, then r̂
$← S is uniformly random (given A,W,w).

Proof of Claim. We show that for any v ∈ Z`2, Pr[r̂ = v | W,A,w] = 2−`. First, as r ∈ Zd2 is
uniform, Pr[vAW = rT] = 2−d, if this does not hold, then v 6= r̂. Otherwise, r̂ is sampled at
uniform from an `− d dimensional linear space, and thus Pr[v = r̂ | vAW = rT] = 2d−`. We get

Pr[r̂ = v |W,A,w] = Pr[vAW = rT] Pr[v = r̂ | vAW = rT] = 2−d2d−` = 2−`

Claim 2.5. D perfectly simulates the distribution Γδ,`,d+g(x̂,A) (where x̂ = Wx + w).

6See also Appendix A.3 for a discussion.
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Proof of Claim. We can rewrite the samples of Eq. (2.1) as

(r̂, rTx + r̂TAw + e) = (r̂, r̂TAWx + r̂TAw + e) (since r̂ ∈ S)

= (r̂, r̂TA(Wx + w) + e)

= (r̂, r̂TAx̂ + e)

which is a sample from Γδ,`,d+g(x̂,A) as required.

Claim 2.6. With probability at least 2−g the set S is non-empty.

Proof of Claim. Recall that the set S is empty when V = AW ∈ Z`×d2 has rank less than d, where

A ∈ Z`×`2 has rank rank(A) ≥ d+ g and W
$← Z`×d2 .

Denote with ∆(d, g) the probability that a random matrix in Z(d+g)×d
2 has rank less than d.

Since the matrix A has rank at least d+ g, we can assume, without loss of generality, that the first
d + g rows of A are linearly independent. Since the matrix W is random, the upper (d + g) × d
matrix of V = AW is random in Z(d+g)×d

2 and thus it has rank less than d with probability at most
∆(d, g). We conclude that V has rank strictly less than d exactly with the same probability. Using
Lemma B.1, we see that this probability is bounded by 2−g.

Applying the union bound, we can upper bound the probability that for any of the Q queries
the matrix V = AW has rank less than d by Q ·2−g. This error probability is thus an upper bound
on the gap of the success probability ε′ of D′ and the success probability ε we get in breaking LPN
using the transformation.

Finally, we need to consider the fact that the queries A chosen by D′ are chosen adaptively.
To show that adaptivity does not help in picking an A where AW has rank < d we must show
that the view of D′ is independent of W (except for the fact that so far no query was made where
rank(AW) < d). This holds as the secret x̂ = Wx + w used in the simulation is independent of W
as it is blinded with a uniform w. In fact, the only reason we use this blinding is to enforce this
independence.

2.4.3 Subset Learning Parity with Noise

For some of our constructions, we will only need a weaker version of the SLPNτ,`,d problem that we
call subset LPN. As the name suggests, here the adversary does not ask for inner products with
Ax + b for any A (of rank ≥ d), but only with subsets of x (of size ≥ d). It will be convenient to
explicitly define this special case. For x,v ∈ Z`2, let diag(v) ∈ Z`×`2 denote the zero matrix with v
in the diagonal, and let

Γ∗τ,`,d(x,v) := Γτ,`,d(x, diag(v)) =

{
⊥ if wt(v) < d

Λτ,`(x ∧ v) otherwise.

Definition 2.7 (Subset LPN). Let `, d ∈ Z where d ≤ `. The SLPN∗τ,`,d problem is (t, Q, ε)-hard if
for every distinguisher D running in time t and making Q queries,∣∣∣Pr

[
DΓ∗τ,`,d(x,·) = 1; x

$← Z`2
]
− Pr

[
DU`+1(·) = 1

]∣∣∣ ≤ ε,
where U`+1(·) on input v (where wt(v) ≥ d) outputs a sample of U`+1 and ⊥ otherwise.
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Remark 2.8. Γ∗τ,`,d(x,v) samples are of the form (r, rT↓vx↓v + e) ∈ Z`+1
2 , where e

$← Berτ . To

compute the inner product only r↓v ∈ Zwt(v)
2 is needed, the remaining bits r↓v ∈ Z`−wt(v)

2 are
irrelevant. We use this observation to improve the communication complexity (for protocols) or

tag length (for MACs), by using “compressed” samples of the form (r↓v, r
T
↓vx↓v + e) ∈ Zwt(v)+1

2 .

3 Two-Round Authentication with Active Security

In this section we describe our new 2-round authentication protocol and prove its active security
under the hardness of the SLPN∗τ,2`,d problem, where d = `/(2 + γ) for some constant γ > 0.
(Concretely, γ = 0.1 should do for all practical purposes.)
• Public parameters. The authentication protocol has the following public parameters, where
τ, τ ′ are constants and `, n depend on the security parameter λ.
` ∈ N length of the secret key s ∈ Z2`

2

τ ∈]0, 1/2[ parameter of the Bernoulli error distribution Berτ
τ ′ = 1/4 + τ/2 acceptance threshold
n ∈ N number of parallel repetitions (we require n ≤ `/2)

• Key Generation. Algorithm K(1λ) samples s
$← Z2`

2 and returns s as the secret key.
• Authentication Protocol. The 2-round authentication protocol with prover Pτ,n and verifier
Vτ ′,n is given in Figure 5.

Prover Pτ,n(s ∈ Z2`
2 ) Verifier Vτ ′,n(s ∈ Z2`

2 )
v←− v

$← {x ∈ Z2`
2 : wt(x) = `}

if wt(v) 6= ` abort

R
$← Z`×n2 ; e

$← Bernτ

z := RT · s↓v + e ∈ Zn2
(R,z)−−−→ if rank(R) 6= n reject

if wt(z + RT · s↓v) > n · τ ′ reject, else accept

Figure 5: Two-round protocol AUTH with active security from the LPN assumption.

Theorem 3.1. For any constant γ > 0, let d = `/(2 + γ). If the SLPN∗τ,2`,d problem is (t, nQ, ε)-
hard then the authentication protocol from Figure 5 is (t′, Q, ε′)-secure against active adversaries,
where for constants cγ , cτ > 0 that depend only on γ and τ respectively,

t′ = t− poly(Q, `) ε′ = ε+Q · 2−cγ ·` + 2−cτ ·n = ε+ 2−Θ(n) .

The protocol has completeness error 2−c
′
τ ·n where c′τ > 0 depends only on τ .

3.1 Proof of completeness

For any n ∈ N, τ ∈]0, 1/2[, let

ατ,n := Pr[wt(e) > n · τ ′; e
$← Bernτ ] = 2−c

′′
τ ·n (3.1)
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denote the probability that n independent Bernoulli samples with bias τ contain more than a
τ ′ := 1/4 + τ/2 fraction of 1’s. The last equality in Eq. (3.1) follows from the Hoeffding bound,
where the constant c′′τ > 0 depends only on τ .

We now prove that the authentication protocol has completeness error α ≤ 2−`+n + ατ,n. The
verifier performs the following two checks. In the first verification step, the verifier rejects if the
random matrix R does not have full rank. It is easy to show that the probability of this event is
≤ 2−n (cf. Lemma B.1). Now, let e := z + RT · s↓v denote the noise added by Pτ,n. Then, in the
second verification step, the verifier rejects if wt(e) > n · τ ′. From Eq. (3.1), we have that this
happens with probability ατ,n. This completes the proof of completeness.

3.2 Proof of security

We first define some terms that will be used later in the security proof. For a constant γ > 0, let
d = `/(2 + γ) (as in Theorem 3.1). Let α′`,d denote the probability that a random substring of
length ` chosen from a string of length 2` with Hamming weight `, has a Hamming weight less than
d. Using the fact that the expected Hamming weight is `/2 = d(1 + γ/2) = d(1 + Θ(1)), one can
show that there exists a constant cγ > 0 (only depending on γ), such that

α′`,d :=

∑d−1
i=0

(
`
i

)(
`
`−i
)(

2`
`

) ≤ 2−cγ ·`. (3.2)

For τ ′ = 1/4 + τ/2, let α′′τ ′,n denote the probability that a random bitstring y ∈ Zn2 has Hamming
weight wt(y) ≤ n · τ ′. From the Hoeffding bound, it follows that there exists a constant cτ > 0
(only depending on τ), such that

α′′τ ′,n := 2−n ·
bn·τ ′c∑
i=0

(
n

i

)
≤ 2−cτ ·n. (3.3)

We now prove security of the authentication protocol. Consider an oracle O which is either the
subset LPN oracle Γ∗τ,2`,d(x, ·) or U2`+1(·), as defined in Definition 2.7. We will construct an

adversary BO that uses A (who breaks the active security of AUTH with advantage ε′) in a black-
box way such that:

Pr[BΓ∗τ,2`,d(x,·) = 1] ≥ ε′ −Q · α′`,d and Pr[BU2`+1(·) = 1] ≤ α′′τ ′,n .

Thus BO can distinguish between the two oracles with advantage ε := ε′−Q ·α′`,d−α′′τ ′,n as claimed

in the statement of the Theorem. Below we define BO.
Setup. Initially, BO samples

x∗
$← Z2`

2 , v∗
$← {y ∈ Z2`

2 : wt(y) = `}.

BO will use v∗ as the verifier message during the final phase of the simulated active security
game, and it will arrange so that x∗ is the session key for that phase. The intuition of our
simulation below is as follows. Let us first assume O is a subset LPN oracle Γ∗τ,2`,d(x, ·) with
secret x. To simulate the prover during the first phase we have to produce answers φ = (R, z)
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to each query v ∈ {y ∈ Z2`
2 : wt(y) = `} issued by A. The simulated answers will have the

same distribution as the answers of an honest prover Pτ,n(s ∈ Z2`
2 ) where

s = (x∗ ∧ v∗) + (x ∧ v∗). (3.4)

Thus one half of the bits of s come from x∗, and the other half come from the unknown secret
x, with the positions randomly chosen. Whenever A outputs φ∗, as s↓v∗ = (x∗∧v∗)↓v∗ = x∗↓v∗
is known, we will be able to verify if A outputs a valid forgery.
On the other hand, if O is the uniform oracle U2`+1(·), then after the interaction with the
prover we will show that s↓v∗ = (x∗ ∧ v∗)↓v∗ is information theoretically hidden, and thus A
cannot find a valid forgery except with exponentially small probability.

First phase. In the first phase BO invokes A who expects access to Pτ,n(s ∈ Z2`
2 ) . We now specify

how BO samples the answer φ = (R, z) to a query v ∈ {y ∈ Z2`
2 : wt(y) = `} made by A.

(In what follows we assume v 6= v∗, otherwise BO simply returns ⊥ to A.) Let

u∗ := v ∧ v∗ u := v ∧ v∗.

1. BO queries its oracle n times on the input u. If the oracle’s output is ⊥ (which happens
iff wt(u) < d), BO outputs 0 and stops. Otherwise let R̂1 ∈ Z2`×n

2 , z1 ∈ Zn2 denote the
n outputs of the oracle.

2. Sample R̂0
$← Z2`×n

2 and set z0 = R̂T
0 · (x∗ ∧ u∗).

3. Return φ = (R = R̂↓v ∈ Z`×n2 , z = z0 + z1 ∈ Zn2 ), where R̂ is uniquely determined by

requiring R̂↓v∗ = R̂0 and R̂↓v∗ = R̂1.
Second phase. Eventually, A enters the second phase of the active attack and outputs a forgery

φ∗ = (R∗, z∗). Then BO checks if

rank(R∗) = n and wt(z∗ + R∗T · x∗↓v∗) ≤ n · τ ′. (3.5)

The output is 1 if both checks succeed and 0 otherwise.

Claim 3.2. Pr[BU2`+1(·) = 1] ≤ α′′τ ′,n.

Proof of Claim. If R∗ does not have full rank then B outputs 0 by definition. Therefore, we now
consider the case where rank(R∗) = n.

The answers φ = (R, z) that the adversary A obtains from BU2`+1(·) are independent of x∗ (i.e.,
z = z0 + z1 is uniform as z1 is uniform). Since x∗↓v∗ is uniformly random and R∗ has full rank, the
vector

y := R∗T · x∗↓v∗ + z∗

is uniformly random over Zn2 . Thus the probability that the second verification in Eq. (3.5) does
not fail is Pr[wt(y) ≤ n · τ ′] = α′′τ ′,n.

Claim 3.3. Pr[BΓ∗τ,2`,d(x,·) = 1] ≥ ε′ −Q · α′`,d.

Proof of Claim. We split the proof in two parts. First we show that B outputs 1 with probability
≥ ε′ if the subset LPN oracle accepts subsets of arbitrary small size (and does not simply output
⊥ on inputs v where wt(v) < d), i.e.,

Pr[BΓ∗τ,2`,0(x,·) = 1] ≥ ε′. (3.6)
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Then we upper bound the gap between the probability that B outputs 1 in the above case and the
probability that B outputs 1 when given access to the oracle that we are interested in as:∣∣∣Pr[BΓ∗τ,2`,d(x,·) = 1]− Pr[BΓ∗τ,2`,0(x,·) = 1]

∣∣∣ ≤ Q · α′`,d. (3.7)

The claim then follows by the triangle inequality from the two equations above. Eq. (3.6) holds as:

• The answers φ = (R, z) that BΓ∗τ,2`,0(x,·) gives to A’s queries in the first phase of the attack
have exactly the same distribution as what A would get when interacting with an honest
prover Pτ,n(s ∈ Z2`

2 ) where the “simulated” secret s is defined in Eq. (3.4).

To see this, recall that on a query v from A, adversary BΓ∗τ,2`,0(x,·) must compute n SLPN
samples (R̂, z = R̂T · (s∧v) + e) and then forward the compressed version of this samples to
A (that is, (R, z = RT · s↓v + e) where R = R̂↓v, cf. Remark 2.8). We next show that the
z computed by B indeed have exactly this distribution. In the first step, B queries its oracle
with u = v ∧ v∗ and obtains noisy inner products (R̂1, z1) with the part of s↓v that contains
only bits from x, i.e.,

z1 = R̂T
1 · (x ∧ u) + e = R̂T

1 · (s ∧ u) + e.

In the second step, B samples n inner products (R̂0, z0) (with no noise) with the part of s↓v
that contains only bits from the known x∗, i.e.,

z0 = R̂T
0 · (x∗ ∧ u∗) = R̂T

0 · (s ∧ u∗).

In the third step, B then generates (R̂, R̂T · (s ∧ v) + e) from the previous values where R̂ is
defined by R̂↓v∗ = R̂0 and R̂↓v∗ = R̂1. Using v = u + u∗, we get

z = z0 + z1

= R̂T
0 · (s ∧ u∗) + R̂T

1 · (s ∧ u) + e

= R̂T · (s ∧ v) + e.

• The challenge v∗ sent initially to A is uniformly random, and therefore has the same distri-
bution as a challenge in an active attack.
• BΓ∗τ,2`,0(x,·) outputs 1 if Eq. (3.5) holds, which is exactly the case when A’s response to the

challenge was valid. By assumption this probability is at least ε′.
This concludes the proof of Eq. (3.6). It remains to prove Eq. (3.7). Note that Γ∗τ,2`,0(x, ·) behaves
exactly like Γ∗τ,2`,d(x, ·) as long as one never makes a query v where wt(v ∧ v∗) < d. Since

v∗
$← {y ∈ Z2`

2 : wt(y) = `}, for any v, the probability that wt(v ∧ v∗) < d is (by definition)
α′`,d as defined in Eq. (3.2). Using the union bound, we can upper bound the probability that
wt(v ∧ v∗) < d for any of the Q different v’s chosen by the adversary as Q · α′`,d.

3.3 Avoid Checking

One disadvantage of the protocol in Figure 5, compared to HB style protocols, is the necessity to
check whether the messages exchanged have the right from: the prover checks if v has weight `,
while the verifier must make the even more expensive check whether R has full rank. Eliminating
such verification procedures can be particularly useful if for example the prover is an RFID chip
where even the simple verification that a vector has large weight is expensive. We note that it
is possible to eliminate these checks by blinding the exchanged messages v and z using random
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Pτ,n(s ∈ Z2`
2 ,b

v ∈ Z2`
2 ,b

z ∈ Zn2 ) Vτ ′,n(s,bv,bz)
v←− v

$← Z2`
2

R
$← Z2`×n

2 ; e
$← Bernτ

z := RT · (s ∧ (v + bv)) + bz + e
(R,z)−−−→ if wt(

(
RT · (s ∧ (v + bv))

)
+ bz) > n · τ ′

reject otherwise accept

Figure 6: By blinding the values v, z with secret random vectors bv,bz we can avoid checking
whether wt(v) = ` and rank(R) = n as in the protocol from Figure 5.

vectors bv ∈ Z2`
2 and bz ∈ Zn2 respectively, as shown in Figure 6. The security and completeness of

this protocol is basically the same as for the protocol in Figure 6. The security proof is also very
similar and is therefore omitted.

4 Message Authentication Codes

In this section, we construct two message authentication codes whose security can be reduced to
the LPN assumption. Our first construction is based on the 2-round authentication protocol from
Section 3. We prove that if the LPN problem is ε-hard, then no adversary makingQ queries can forge
a MAC with probability more than Θ(

√
ε ·Q). However, the construction has the disadvantage that

one needs to fix the hardness of the LPN problem at the time of the construction, c.f. Remark 4.3.
Our second construction has no such issues and achieves better security Θ(ε ·Q). The efficiency of
this construction is similar to that of the first construction, but a larger key is required.

4.1 First construction

Recall the 2-round authentication protocol from Section 3. In the protocol the verifier chooses a
random challenge subset v. To turn this interactive protocol into a MAC, we will compute this v
from the message m to be authenticated as v = C(h(m,b)), where h is a pairwise independent hash
function, b ∈ Zν2 is some fresh randomness and C is some encoding scheme. The code C is fixed and
public, while the function h is part of the secret key. The authentication tag φ is computed in the
same manner as the prover’s answer in the authentication protocol. That is, we sample a random

matrix R ∈ Z`×n2 and compute a noisy inner product z := RT · s↓v + e, where e
$← Bernτ . We note

that using (R, z) as an authentication tag would not be secure, and we need to blind these values.
This is done by applying an (almost) pairwise independent permutation (PIP) π — which is part
of the secret key — to (R, z,b) ∈ Z`×n+n+ν

2 .

Construction. The message authentication code MAC1 = (K, T ,V) with associated message
space M is defined as follows.
• Public parameters. MAC1 has the following public parameters.7

7The code C can be constructed as follows. We first sample a random matrix C ∈ Zµ×`2 and map y ∈ Zµ2 to
C(y) = (c ∈ Z`2, c′ ∈ Z`2) where c = CT · y and c′ = c. A random code C has high distance with high probability
and C(y) = (c, c′) has weight exactly `.
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`, τ, τ ′, n as in the authentication protocol from Section 3
µ ∈ N output length of the hash function
ν ∈ N length of the randomness
C : Zµ2 → Z2`

2 encoding, where ∀ y 6= y′ ∈ Zµ2 we have wt(C(y)) = `
and wt(C(y) + C(y′)) ≥ 0.9`.

• Key generation. Algorithm K(1λ) samples s
$← Z2`

2 , an (almost) pairwise independent hash

function h : M× Zν2 → Zµ2 and a pairwise independent permutation π over Z`×n+n+ν
2 . It

returns K = (s, h, π) as the secret key.
• Tagging. Given secret key K = (s, h, π) and message m ∈M, algorithm T proceeds as follows.

1. R
$← Z`×n2 , b

$← Zν2 , e
$← Bernτ

2. v := C(h(m,b)) ∈ Z2`
2

3. Return φ := π(R,RT · s↓v + e,b)
• Verification. On input a secret-key K = (s, h, π), message m ∈ M and tag φ, algorithm V

proceeds as follows.
1. Parse π−1(φ) as (R ∈ Z`×n2 , z ∈ Zn2 ,b ∈ Zν2). If rank(R) 6= n, then return reject
2. v := C(h(m,b))
3. If wt(z + RT · s↓v) > n · τ ′ return reject, otherwise return accept

Theorem 4.1. For µ = ν ∈ N, a constant γ > 0 and d := `/(2 + γ), if the SLPN∗τ,2`,d problem is
(t, nQ, ε)-hard then MAC1 is (t′, Q, ε′)-secure against uf-cma adversaries, where

t′ ≈ t, ε = min

{
ε′/2− Q2

2µ−2
,

ε′

2µ+1
− 2−Θ(n)

}
.

MAC1 has completeness error 2−cτ ·n where cτ > 0 depends only on τ .

Corollary 4.2. Choosing µ s.t. 2µ = Q2·24
ε′ in the above theorem, we get ε = min{ε′/4, (ε′)2/(25Q2)−

2−Θ(n)}. The 2nd term is the minimum here, and solving for ε′ gives

ε′ :=
√

32 ·Q ·
√
ε+ 2−Θ(n). (4.1)

Remark 4.3 (about µ). Note that to get security as claimed in the above corollary, we need to
choose µ as a function of Q and ε such that 2µ ≈ Q2 · 24/ε′ for ε′ as in Eq. (4.1). Of course we can
just fix Q (as an upper bound to the number of queries made by the adversary) and ε (as our guess
on the actual hardness of SLPN∗τ,2`,d). But a too conservative guess on µ (i.e. choosing µ too small)
will result in a construction whose security is worse than what is claimed in the above corollary. A
too generous guess on the other hand will make the security reduction meaningless, though we do
not have any attacks on the MAC for large µ.

We now give some intuition for the proof of Theorem 4.1. Every query (m, φ) to V and query
m to T defines a subset v (as computed in the second step in the definitions of both V and T ). We
say that a forgery (m, φ) is “fresh” if the v contained in (m, φ) is different from all v’s contained in
all the previous V and T queries. The proof makes a case distinction and uses a different reduction
for the two cases where the forgery found by the adversary is more likely to be fresh, or more likely
to be non-fresh. In both cases we consider a reduction BO which has access to either a uniform
oracle O = U or a subset LPN oracle O = Γ∗. Adversary BO uses an adversary A who can find
forgeries for the MAC to distinguish those cases and thus break the subset LPN assumption. In
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the first case, where the first forgery is likely to be non-fresh, we can show (using the fact that
a pairwise independent permutation is used to blind the tag) that if BO’s oracle is O = U , even
a computationally unbounded A cannot come up with a message/tag pair (m, φ) that contains a
non-fresh v. Thus we can distinguish the cases O = U and O = Γ∗ by just observing if A ever
makes a V query (m, φ) that contains a non-fresh v (even without being able to tell if (m, φ) is
valid or not).

If the forgery found by A is more likely to be fresh, we can use a similar argument as in the
proof of our authentication protocol in the last section. An additional difficulty here is that the
reduction has to guess the fresh v ∈ Zµ2 contained in the first forgery and cannot choose it as in
the protocol. This is the reason why the reduction looses a factor 2µ.

Proof of Theorem 4.1. The proof of completeness is essentially the same (and we get exactly the
same quantitative bound) as the proof of completeness for the protocol in Figure 5 as claimed in
Theorem 3.1.

We now prove security. As in the theorem statement, we set µ = ν (but for clarity we will
keep the different letters µ for the range of h and ν for the length of the randomness). Let A
be an adversary running in time t′ that breaks the uf-cma security of MAC1 in the experiment
Expuf−cma

MAC1,A,λ with advantage ε′. Let Qtag and Qvrfy denote the number of queries that A makes
to the tag and verification oracles respectively, such that Q = Qtag + Qvrfy. We assume that A
never makes the same verification query twice (since V is deterministic, repeating queries gives no
additional information to A) and also that she never makes a verification query (m, φ) where φ was
received as the output from the tag oracle on input m. Since the completeness error of MAC1 is
2−Θ(n), this is basically without loss of generality (as the answer would almost certainly be accept).
Every verification query (m, φ) and tag query m defines a subset v (as computed in step 2. in the
definitions of both V and T ).

By definition, in the uf-cma experiment, with probability ε′ the adversary A at some point
makes a verification query (m, φ) where: (i) φ was not received as output on a tag query m, and
(ii) V(K,m, φ) = accept. We say that such a forgery (m, φ) is “fresh” if the v defined by (m, φ) is
different from all v’s defined by all the previous verification and tag queries. Let Efresh denote the
event that A finds a fresh forgery. As A finds a forgery with probability ε′ and every forgery must
be either fresh or not, we have that:

Pr[Efresh] + Pr[¬Efresh] = ε′.

We will consider the two cases where Pr[Efresh] > ε′/2 and Pr[Efresh] ≤ ε′/2 separately.
The case Pr[Efresh] ≤ ε′/2. Given A, we will construct an adversary BO1 who can distinguish

O = Γ∗τ,2`,d(s, ·) from O = U2`+1(·) (as in Definition 2.7) with advantage8

ε′/2− Q2

2µ−2
. (4.2)

BO1 samples π, h (but not s) as defined by K. Next, it invokes A (who expects to attack MAC1 with
a key (s, h, π)) answering its queries as follows:
• Tag queries. If A makes a tag query m, then BO1 does the following:

1. Sample b
$← Zν2 and compute v := C(h(m,b)).

8 In this case where Pr[Efresh] ≤ ε′/2, we can even distinguish a SLPN∗τ,2`,` oracle from U2`+1(·).
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2. Query the oracle O for n times on input v: for i = 1, . . . , n let (R[i], z[i])
$← O(v).

3. Return φ := π(R, z,b) where R = [R[1], . . . ,R[n]] and z = [z[1], . . . , z[n]] to A.
• Verification queries. If A makes a verification query (m, φ), BO1 simply answers with reject.

If any tag or verification query contains a v which has appeared in a previous query, BO1 outputs 1
and 0 otherwise. (Note that BO1 can compute the value v in a verification query as it knows π, h.)

Claim 4.4. If O = Γ∗τ,2`,d(s, ·), then BO1 outputs 1 with probability ≥ ε′/2.

Proof of Claim. The answers to the tag queries of A computed by BO1 have exactly the same
distribution as in the uf-cma experiment (where the secret key is (s, h, π)). The answers to the
verification queries (which are always reject) are correct as long as A does not query a valid forgery.
From our assumption, the probability that A finds a valid forgery that is not fresh is > ε′/2, which
is thus a lower bound on the probability that BO1 outputs 1.

Claim 4.5. If O = U2`+1(·), then BO1 outputs 1 with probability < Q2/2µ−2.

Proof of Claim. The answers that A obtains on a tag query m from BU2`+1(·)
1 (i.e., π(R, z,b) where

R, z,b are sampled uniformly) are uniformly random, and in particular independent of h or π. The
answers to verification queries are always reject, and thus contain no information about h, π either.
Then, we have that vi = vj (where vi = C(h(mi,bi)) is defined by the i-th tag or verification
query) iff h(mi,bi) = h(mj ,bj).
A makes a total of Q queries. Assume that up to the (i− 1)th query, all the v’s were distinct.

If the ith query is a tag query, a fresh bi is sampled which will be distinct from all previous bj
(for any j < i) with probability 1 − (i − 1)/2ν . Assuming this is the case, the probability that
h(mi,bi) = h(mj ,bj) for any j < i can be upper bounded by i/2µ (here we use the fact that the

answers that A gets from BU2`+1(·)
1 are uniformly random, and thus A has no information about h).

If the ith query is a verification query (mi, φi), then using the fact that π is a pairwise inde-
pendent permutation (and A has no information about it) we can show that the probability that
φi contains a bi which is equal to some bj (s.t. φj 6= φi) is ≤ i/2ν+1. If this is the case then
(mi,bi) 6= (mj ,bj) for all j < i with overwhelming probability.9 As in the previous case, we can
then upper bound the probability that h(mi,bi) = h(mj ,bj) for any j < i by i/2µ.

Using the union bound over all i, 1 ≤ i ≤ Q we get the bound Q2/2ν−2 = Q2/2µ−2 (recall that
µ = ν) as claimed.

The case Pr[Efresh] > ε′/2. In this case, A will make tag/verification queries, where with probabil-
ity > ε′/2, at some point she will make an accepting verification query (m, φ) that defines a fresh v.
We now construct an adversary BO2 that uses A as a black-box, and can distinguish O = Γ∗τ,2`,d(s, ·)
from O = U2`+1(·) (as in Definition 2.7) with advantage

ε′

2µ+1
−Qtag · α′`,d −Qvrfy · α′′τ ′,n. (4.3)

The construction of BO2 is very similar to the adversary B that we constructed in the proof of
Theorem 3.1 (where we proved that the authentication protocol in Figure 5 is secure against active
attacks). The queries to the prover in the first phase of an active attack directly correspond to tag

9Note that for j < i where φi = φj we must have that mi 6= mj since we assume that A does not repeat queries
and does not ask verification queries (m, φ) if φ was the output of a tag query m.
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queries. However, we now have to additionally answer verification queries (we will always answer
reject). Furthermore, we cannot choose the challenge v∗. Instead, we will simply hope that (in
the case where O = Γ∗τ,2`,d(s, ·)) the v contained in the first valid verification query (i.e., forgery)
that A makes is fresh (which by assumption happens with probability ε′/2). Moreover, we will
hope that it is the unique v∗ (out of 2µ possible ones) for which BO2 can verify this. This gives
us a distinguishing advantage of nearly ε′/2µ+1 as stated in Eq. (4.3). We do loose an additional
additive term Qtag · α′`,d as there is an exponentially small probability that the transformation of
subspace LPN samples to tag queries will fail, and moreover an exponentially small term Qvrfy ·α′′τ ′,n
which accounts for the probability that A correctly guesses an accepting tag even in the case where
O = U2`+1(·).
BO2 samples π, h (but not s) as defined by K, and y∗

$← Zµ2 , s∗
$← Z2`

2 . Let v∗ := C(y∗). Next,
BO2 invokes A and answers its queries as follows (the intuition for the sampling below is given in
the proof of Claim 4.7).
• Tag queries. The answer φ to a tag query m ∈M is computed by BO2 as follows:

1. Sample b
$← Zν2 and compute v := C(h(m,b)). If v = v∗, output 0 and stop.

Let u := v ∧ v∗ and u∗ := v ∧ v∗.
2. For i = 1, . . . , n, let (R′[i], z′[i])

$← O(u), R′′[i]
$← Z2`

2 and z′′[i] := 〈R′′[i], s∗ ∧ u∗〉.
Let R = [R[1],R[2], . . . ,R[n]] and z = [z[1], . . . , z[n]] where R[i] := (R′[i] ∧ u + R′′[i] ∧
u∗)↓v and z[i] := z′[i] + z′′[i].

3. Return φ := π(R, z,b) to A.
• Verification queries. If A makes a verification query (φ,m), then BO2 always answers reject,

but also makes the following check:
1. Parse y := π−1(φ) as [R ∈ Z`×n2 , z ∈ Zn2 ,b ∈ Zν2 ] and compute v := C(h(m,b)).
2. If v 6= v∗, processing this query is over, otherwise go to the next step.
3. If rank(R) = n and wt(RT · s∗↓v∗ + z) ≤ n · τ ′ (i.e. we have a forgery) output 1 and stop.

If A has finished its queries, BO2 stops with output 0.

Claim 4.6. If O = U2`+1(·), then BO2 outputs 1 with probability ≤ Qvrfy · α′′τ ′,n.

Proof of Claim. The proof of this claim is almost identical to the proof of Claim 3.2, except that here
we have an additional factor Qvrfy as we have to take the union bound over all Qvrfy queries, whereas
in Claim 3.2 the adversary was (by definition of an active attack) only allowed one guess.

Claim 4.7. If O = Γ∗τ,2`,d(s, ·), then BO2 outputs 1 with probability ≥ ε′

2µ+1 .

Proof. The proof of this claim is similar to the proof of Claim 3.3. B
Γ∗τ,2`,d(s,·)
2 perfectly simulates

access to T (K, ·),V(K, ·, ·) oracles with key K = (s′, h, π) where s′ := (s∗ ∧ v∗) + (s ∧ v∗) and h, π
are sampled by BO2 . By assumption, in this case, A outputs a valid fresh forgery with probability
ε′/2. Conditioned on this, with probability 2−µ, this fresh v will be v∗ and therefore BO2 will
output 1.

Summing up, using A we can break the subset LPN assumption with advantage which is given
either by Eq. (4.2) or Eq. (4.3), i.e.

ε = min

{
ε′/2− Q2

2µ−2
,

ε′

2µ+1
−Qtag · α′`,d −Qvrfy · α′′τ ′,n

}
.

20



4.2 Second construction

We now give the construction of another MAC based on the hardness of the LPN problem. The
main difference from MAC1 from the last subsection is the way we generate the values s(v). In the

new construction we define s(v) = s0 + S · v, where S ∈ Z`×µ2 and s0 ∈ Z`2 are both part of the
secret key. Moreover, in the computation of a tag, the output is masked via another vector s′0 ∈ Zn2
that is also included in the secret key. The construction borrows ideas from [3], that we needed to
adapt to the case of LPN.

Construction. The message authentication code MAC2 = (K, T ,V) with associated message
space M is defined as follows.
• Public parameters. MAC2 has the following public parameters.

`, τ, τ ′, n as in the authentication protocol from Section 3
µ ∈ N output length of the hash function
ν ∈ N length of the randomness

• Key generation. Algorithm K(1λ) samples S
$← Z`×µ2 , s0

$← Z`2, s′0
$← Zn2 and chooses a pair-

wise independent hash function h : M× Zν2 → Zµ2 \ {0}, as well as a pairwise independent
permutation π over Z`×n+n+ν

2 . It returns K = (S, s0, s
′
0, h, π) as the secret key.

• Tagging. Given secret key K = (S, s0, s
′
0, h, π) and message m ∈M, algorithm T proceeds as

follows.
1. R

$← Z`×n2 , b
$← Zν2 , e

$← Bernτ
2. v := h(m,b)
3. s(v) := s0 + S · v
4. Return φ := π(R, s′0 + RT · s(v) + e,b)

• Verification. On input a secret-key K = (S, s0, s
′
0, h, π), message m ∈M and tag φ, algorithm

V proceeds as follows.
1. Parse π−1(φ) as (R ∈ Z`×n2 , z ∈ Zn2 ,b ∈ Zν2). If rank(R) 6= n, then return reject
2. v := h(m,b)
3. s(v) := s0 + S · v
4. If wt(z + s′0 + RT · s(v)) > n · τ ′ return reject, otherwise return accept

Theorem 4.8. Let ν = µ. If the SLPNτ,`,` problem is (t, nQ, ε)-hard, then MAC2 is (t′, Q, ε′)-secure
against uf-cma adversaries, where

t′ ≈ t ε = min

{
ε′/2− Q2

2µ−2
,
ε′

8µQ
− 2−Θ(n)

}
.

MAC2 has completeness error 2−cτ ·n where cτ only depends on τ .

We now give intuition for the proof of Theorem 4.8. Similar to the proof of Theorem 4.1, we
distinguish fresh and non-fresh forgeries. Here the new and interesting case is when the adversary
makes a fresh forgery. In the analysis we move to a mental experiment where tags computed by
the tag oracle are uniform and independent from the secret key. The technical heart of the proof
is to show that such a modification defined an indistinguishable distribution, assuming that the
LPN assumption holds. More in detail, consider the two experiments defined in Figure 7. In the
“real experiment”, the answers from the Eval(v) oracle have the same distribution as the values
(R, z) from a tag on message m such that h(m,b) = v; in the “random experiment”, the answers
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Expreal
`,µ,n,τ (B), Exprand

`,µ,n,τ (B)

Qv := ∅
S

$← Z`×µ2 ; s0
$← Z`2; s′0

$← Zn2
{0, 1} 3 d← BEval(·),Chal(·,·)(1λ)
Return d ∧ (v∗ 6∈ Qv)

Oracle Chal(R∗,v∗) // one query

s(v∗) = s0 + S · v∗
Return z∗ = s′0 + R∗T · s(v∗)

Oracle Eval(v)

Qv := Qv ∪ {v}
s(v) = s0 + S · v
R

$← Z`×n2 ; e
$← Bernτ

z = s′0 + RT · s(v) + e; z
$← Zn2

Return (R, z)

Figure 7: Experiments Expreal
`,µ,n,τ (B) and Exprand

`,µ,n,τ (B) . The boxed statement redefining z is only

executed in Exprand
`,µ,n,τ .

from the Eval(v) oracle are uniform. Oracle Chal(R∗,v∗), which can be queried at most once,
essentially corresponds to the output of a verification query on a fresh forgery (m∗, φ∗), such that
h(m∗,b∗) = v∗. The lemma below states that it is hard to distinguish the two cases. Its proof uses
a hybrid technique from [10, 3].

Lemma 4.9. Let `, µ, n, τ ∈ N. Assume that the LPNτ,` problem is (t, nQ, ε)-hard. Then, for all
adversaries B running in time t′ ≈ t, and asking Q queries to the Eval(·) oracle, we have that∣∣∣Pr

[
Expreal

`,µ,n,τ (B)) = 1
]
− Pr

[
Exprand

`,µ,n,τ (B)) = 1
]∣∣∣ ≤ 4µε.

Proof. We start by making a syntactical change in the real experiment. Let S = (S[j])j∈[µ], with

S[j] ∈ Z`2. One can show that there exist vectors sj,k ∈ Z`2 for j ∈ [µ] and k ∈ {0, 1} such that

s(v) = S · v + s0 =

µ∑
j=1

sj,v[j].

This is obtained by letting s0 =
∑µ

j=1 s(j, 0), and S[j] = sj,1 − sj,0.

Let G0 be identical to the “real experiment” Expreal
`,µ,n,τ (B), with the difference that the vectors

si,j (as defined above) are used, instead of (S, s0), to define s(v). We prove the lemma by considering
a sequence of intermediate games, starting with game G0. The games are shown in Figure 8. Note
that in Game G1,0 the value s′0 is computed as RF0(⊥), where ⊥ is the empty string, that always

outputs the same vector s′0
$← Z`2. Therefore, we have

Claim 4.10. Pr[G0 = 1] = Pr[G1,0 = 1].

The next claim shows that any two adjacent hybrid games are indistinguishable, if the LPN
assumption holds.

Claim 4.11. There exists a distinguisher D, with running time similar to that of B, such that∣∣∣Pr
[
DΛτ,`(s) = 1; s

$← Z`2
]
− Pr

[
DU`+1 = 1

]∣∣∣ ≥ 1

2
|Pr [G1,i+1 = 1]− Pr [G1,i = 1]| .
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Proof. Let Q be the total number of queries that B asks to the Eval(·) oracle. Distinguisher DO
will ask nQ queries to its oracle O(·), where O is either equal to Λτ,`(s) or to U`+1.

Distinguisher D starts by sampling a bit b
$← {0, 1} as its guess for v∗[i] and defines the random

function RFi+1(·) recursively as

RFi+1(v[1 . . . i+ 1]) =

{
RFi(v[1 . . . i]) if v[i+ 1] = b

RFi(v[1 . . . i]) + RF′i(v[1 . . . i]) otherwise
(4.4)

where RF′i : {0, 1}i → Z`2 is another random function (to be determined). One can verify that, in
case RFi(·) is a random function, so is RFi+1(·). A formal description of D follows:

1. At setup D does the following:

• Sample b
$← {0, 1} and set Qv := ∅.

• Choose all the vectors sj,k
$← Z`2 at random (for all j ∈ {1, . . . , µ} and k ∈ {0, 1}), but

si+1,1−b which is implicitly set to be the vector s from the LPN oracle.
• Query theO(s) oracle for nQ times, obtaining answers (Rj , z

′
j)j∈[Q]; let αi : {0, 1}i → [Q]

be an injective function.
2. Upon input a query v to oracle Eval(·), distinguisher D does the following:

• Update Qv := Qv ∪ {v}.
• If v[i + 1] = b, let RFi+1(v[1 . . . i + 1]) = RFi(v[1 . . . i]). Sample R

$← Z`×n2 , e
$← Bernτ ,

compute z = RFi(v[1 . . . i]) + RT · (
∑µ

j=1 sj,v[j]) + e and return (R, z).
• Else, in case v[i+ 1] = 1− b, let (R, z′) := (Rj , z

′
j) for j = αi(v[1 . . . i]). Define

z = RFi(v[1 . . . i]) + RT ·
µ∑
j=1
j 6=i+1

sj,v[j] + z′

and return (R, z).
3. Upon input query (R∗,v∗) to oracle Chal(·), distinguisher D does the following:

• Define s(v∗) =
∑µ

j=1 sj,v[j].

• Return z∗ = R∗T · s(v∗) + RFi(v
∗[1 . . . i]).

4. Upon input the decision bit d from B, distinguisher D returns d ∧ (v∗ 6∈ Qv).
Suppose that D correctly guessed v∗[i], which happens with probability 1/2. Note that in this case
D simulates perfectly the answer of the Chal(·) oracle (as it knows si+1,b). It remains to analyze
the distribution of oracle Eval(·). In case v[i + 1] = b, then the distribution is equal to that of
both Gi and Gi+1 (which is the same, as in this case RFi+1(v[1 . . . i+ 1]) = RFi(v[1 . . . i])). In case
v[i+ 1] = 1− b, we consider two cases depending on whether the oracle O(s) outputs LPN samples
or uniform samples. In the first case, we have z′ = RT · si+1,1−b + e and thus the answer

z = RFi(v[1 . . . i]) + RT ·
µ∑
j=1
j 6=i+1

sj,v[j] + RT · si+1,1−b + e

= RFi(v[1 . . . i]) + RT ·
µ∑
j=1

sj,v[j] + e,

is distributed like in game Gi. In the second case, we have z′ = RT · si+1,1−b + e + u (for a

uniform u
$← Z`2). Thus, the answer z computed by D is distributed like in Gi+1 with random
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G0, G1,i, G2

Qv := ∅
sj,0, sj,1

$← Z`2, ∀j ∈ [µ]

s′0
$← Zn2 ; s′0 := ⊥

{0, 1} 3 d← BEval(·),Chal(·,·)(1λ)
Return d ∧ (v∗ 6∈ Qv)

Oracle Chal(R∗,v∗) // one query

s′0 = RFi(v
∗[1 . . . i])

s(v∗) =
∑µ

j=1 sj,v∗[j]

z∗ = s′0 + R∗T · s(v∗); z∗
$← Z`2

Return z∗

Oracle Eval(v)

Qv := Qv ∪ {v}; R
$← Z`×n2 ; e

$← Bernτ
z = s′0 + RT · (

∑µ
j=1 sj,v[j]) + e

z = RFi(v[1 . . . i]) + RT · (
∑µ

j=1 sj,v[j]) + e

z = RFµ(v)

Return (R, z)

Figure 8: Hybrid experiments G0, G1,i and G2 in the proof of Lemma 4.9. Here RFi : {0, 1}i ←
Z`2 is a random frunction, and v[1 . . . i] ∈ Zi2, for i ∈ [µ], is the i-th prefix of vector v ∈ Zµ2

function RF′i(v[1 . . . i]) = u. Note that RF′i is well-defined, i.e., the value RF′i(v[1, · · · i]) does not
get overwritten in case the Eval(·) oracle is queried on two different v,v′ that are equal in the
first i positions (this is because αi is an injection). The claim follows.

Claim 4.12. Pr[G1,µ = 1] = Pr[G2 = 1].

Proof. The claim follows from the fact that in G1,µ all outputs computed via Eval(·) are masked
by RFµ(v) and thus are independent of sj,k. Hence, the output of Chal(·) is uniform.

Finally, we make all steps in reverse order to re-obtain the initial distribution in the Eval(·)
oracle. The proof of the following claim is analogous to the one of Claim 4.11 and is therefore
omitted.

Claim 4.13. There exists a distinguisher D, with running time similar to that of B, such that∣∣∣Pr
[
DΛτ,`(s) = 1; s

$← Z`2
]
− Pr

[
DU`+1 = 1

]∣∣∣ ≥ 1

2

∣∣∣Pr [G2 = 1]− Pr
[
Exprand

`,µ,n,τ (B) = 1
]∣∣∣ .

The statement of Lemma 4.9 now follows by putting together Claim 4.10—4.13.

We now turn to the proof of Theorem 4.8.

Proof of Theorem 4.8. The proof of the completeness error is similar to the schemes before and is
omitted. As for security, let A be an adversary that successfully forges in the uf-cma experiment
with probability ε′. We make the same conventions and the definition of freshness as in the proof
of Theorem 4.1 and split the forging probability as Pr[Efresh] + Pr[¬Efresh] = ε′.
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The case Pr[Efresh] ≤ ε′/2. We now give the description of BO1 attacking the SLPNτ,`,` problem,

i.e. BO1 can distinguish O = Γτ,`,`(s, ·, ·) from O = U`+1(·, ·) with advantage

ε′/2− Q2

2µ−2
. (4.5)

Adversary BO1 samples π, h, s0, s
′
0 (but not S) as defined by K and B

$← Z`×µ2 . Next, it implicitly
defines S as S[i] = I ·s+B[i], where I is the identity matrix, and s is only implicitly defined through
Γτ,`,`(s, ·, ·). It is easy to see that with this setup of K = (S, s0, s

′
0, h, π) we have that, for each

v ∈ Zµ2 \ {0},

s(v) = s0 + S · v = A(v) · s + b(v), where A(v) = wt(v) · I and b(v) = s0 + B · v. (4.6)

Note that b(v) and A(v) are known to B1 and that, by construction, A(v) is always an invertible
matrix. Adversary BO1 cannot evaluate s(v) but looking ahead, it will use its oracle O to answer
A’s queries as follows.
• Tag queries. If A makes a tag query for message m ∈M, then BO1 does the following:

1. Samples b
$← Zν2 and compute v := h(m,b).

2. Query the oracle O on (A(v),b(v)) n times to obtain (R, z′): for i = 1, . . . , n let

(R[i], z′[i])
$← O(s,A(v),b(v)).

3. Return φ := π(R, s′0 + z′,b).
• Verification queries. If A makes a verification query (m, φ), BO1 simply answers with reject.

Finally, if any tag or verification query contains a v which has appeared in a previous query, BO1
outputs 1 and stops. Otherwise, it outputs 0. Note that if O = Γτ,`,`(s, ·, ·), then BO1 perfectly
simulates the T (K, ·) algorithm, as z′[i] = R[i]T(A(v) · s + b(v)) + e[i] = R[i]T · s(v) + e[i].

The following two claims are the analogues of Claims 4.4 and 4.5, respectively. Their proofs are
essentially the same and are therefore omitted.

Claim 4.14. If O = Γτ,`(s, ·, ·), then BO1 outputs 1 with probability ≥ ε′/2.

Claim 4.15. If O = U`+1(·, ·), then BO1 outputs 1 with probability < Q2

2µ−2 .

The case Pr[Efresh] > ε′/2. We will use games, denoting by Gi the output of the ith game. Game

G0 runs the uf-cma security experiment Expuf−cma
MAC2,A,λ and defines the output as the event Efresh.

By definition we have Pr[G0 = 1] = Pr[Efresh] ≥ ε′/2. Throughout the rest of the proof, if in the
game A finds a forgery, and the first forgery is fresh, we’ll denote with ·∗ the values associated with
this first forgery. In particular, v∗ is the v-value computed to evaluate the verification query on
(m∗, φ∗). Note that, by definition, v∗ is fresh, i.e., it is different from all the v-values from previous
tag and verification queries. We assume that after G0 processes a verification query with respect to
v∗, the random variable corresponding to the outcome of the game is defined and the experiment
stops.

Assume that A asks a total of Q = Qtag +Qvrfy queries, where Qtag (resp., Qvrfy) stands for the

total number of queries asked to the tag (resp., verification) oracle. Define Ejfresh to be the event
that in G0 the j-th verification query is the one where the first fresh forgery is found; this means
that all previous verification queries are either rejected, or relative to a pair (m, φ) previously
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returned by the tag oracle. Since all the events Ejfresh are disjoint, for j ∈ {1, . . . , Qvrfy} we have:

Pr [G0 = 1] = Pr [Efresh] = Pr

Qvrfy⋃
j=1

Ejfresh

 =

Qvrfy∑
j=1

Pr
[
Ejfresh

]
.

We now consider games G1, . . . ,GQvrfy
where game Gj is identical to G0, but allows the ad-

versary A to ask only j verification queries, and the answer to the first j − 1 verification queries
is always reject unless the input is a pair (m, φ) already returned by the tag oracle (in which case
we answer with accept). It is easy to see that Pr[Gj = 1] ≥ Pr[Ejfresh]− (j − 1)α, where the offset
depending on the completeness error α = 2−Θ(n) of MAC2 comes from the fact that in Gj we always
return accept in case of a verification query for a pair (m, φ) previously returned by the tag oracle.
Plugging this expression in the previous equation, we obtain

Pr[G0 = 1] ≤ Q2
vrfyα+

Qvrfy∑
j=1

Pr [Gj = 1] .

In the remainder of the proof, we will upper bound Pr[Gj = 1], for all j ∈ {1, . . . , Qvrfy}. Fix a
value of j ∈ {1, . . . , Qvrfy}. As a first step, consider a modified version G′j of Game Gj where the

tag oracle internally uses uniform (R, z) ∈ Z`×n2 × Zn2 to generate tag φ on message m.

Claim 4.16.
∣∣∣Pr[Gj = 1]− Pr[G′j = 1]

∣∣∣ ≤ 4µε.

Proof. Assume the contrapositive, namely that there exists a distinguisher D that can distinguish
games Gj and G′j . We build an attacker B (running D) such that∣∣∣Pr

[
Expreal

`,µ,n,τ (B) = 1
]
− Pr

[
Exprand

`,µ,n,τ (B) = 1
]∣∣∣ > 4µε,

contradicting Lemma 4.9. Adversary B works as follows.
1. At the beginning B samples h, π (but not S, s0, s

′
0).

2. Upon input a query m to the tag oracle, B does the following:

• Sample a random b
$← Zν2 and compute v = h(m,b).

• Query v to oracle Eval(·), obtaining a pair (R, z), and forward φ = π(R, z,b) to D.
3. Upon input a verification query (m, φ) to the verification oracle, B does the following:

• First check whether (m, φ) is equal to one of the tags previously returned to D; if this
is the case answer with accept.
• Otherwise, check whether (m, φ) is the j-th verification query; if this is not the case,

then answer with reject.
• Else, (m, φ) is the j-th verification query; call it (m∗, φ∗). Let (R∗, z∗,b∗) = π−1(φ∗),

compute v∗ = h(m∗,b∗) and forward (R∗,v∗) to oracle Chal(·) obtaining a vector z′.
Check that wt(z′ + z∗) ≤ n · τ ′; if this is the case return accept to D, otherwise return
reject.

4. Finally B outputs whatever D does.
For the analysis, note that B runs in time similar to that of D. By inspection, one can verify that in
case B is running in the “real experiment” or in the “random experiment”, the simulation of the tag
queries provided by B is distribute like in Gj or in G′j , respectively. Finally, all verification queries
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before the j-th query are either answered with accept (in case they are identical to a previously
simulated tag), or with reject (otherwise); this is consistent with both games Gj and G′j . The j-th
verification query is fresh by definition, and is simulated using the answer from the Chal(·) oracle,
so has the right distribution. The claim follows.

Claim 4.17. Pr[G′j = 1] ≤ α′′τ ′,n = 2−Θ(n).

Proof of Claim. If R∗ does not have full rank then the experiment outputs 0 by definition. So from
now we only consider the case where rank(R∗) = n. In Game G′j , the values (R, z) the adversary
A obtains from the tag oracle are independent of the secrets (S, s0, s

′
0). Since s(v∗) is uniformly

random and R∗ has full rank, the vector x := s′0 + R∗T · s(v∗) + z∗ is uniformly random over
Zn2 . Thus the probability that the second verification wt(z∗ + s′0 + R∗T · s(v∗)) ≤ n · τ ′ passes is
Pr[wt(x) ≤ n · τ ′] = α′′τ ′,n = 2−Θ(n).

Summing up, in the case Pr[Efresh] > ε′/2 (putting together the terms in Claim 4.16—4.17), we
can use A to break the LPN assumption with advantage ε′

4µQ − 2−Θ(n). On the other hand in the

case Pr[Efresh] ≤ ε′/2, we have an advantage as given in Eq. (4.5). Thus

ε = min

{
ε′/2− Q2

2µ−2
,
ε′

4µQ
− 2−Θ(n)

}
,

as desired.
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z := RT · S↓v + e
z,R−−→ if rank(R) 6= nr reject

if wt(RT · S↓v + z) > nr · ns · τ ′ reject else accept

Figure 9: A generalization of the protocol from Figure 6 where we trade a larger key (which now
is a matrix S ∈ Z2`×ns

2 ) for lower communication and randomness complexity. The protocol is as
secure as the protocol from Figure 6 (wich is the special case where nr = n and ns = 1) with
n = nr · ns.
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A Extensions

In this section we discuss some extensions of the protocols we presented in Section 3 and Section 4.

A.1 Trading Key-Size for Communication Complexity

A disadvantage of the schemes proposed in this paper is their large communication complexity.
For example, in the authentication protocol from Section 3 the prover has to send the entire `× n
matrix R to the verifier. Similarly, in the MACs from Section 4, the tag is computed by permuting
a string of the form (R,RT · s(m) + e,b), where again R is an `× n matrix.

We now explain a simple tradeoff that is originally due to Gilbert et al. [18]. Consider the
authentication protocol from Section 3. Let 1 ≤ c ≤ n be an integer parameter and let ns := c and
nr := n/c. The idea is to use a larger secret matrix S ∈ Z2`×ns

2 (instead of just one vector s) and
a smaller random matrix R ∈ Z`×nr2 (instead of R ∈ Z`×n2 ). The resulting protocol is illustrated in
Figure 9. Similar extensions can be easily derived for the MACs of Section 4, where the tradeoff
is more important due to the pairwise independent permutation π which is the computational
bottleneck of the protocol. See Figure 3 for a comparison of the resulting complexities. The proof
of Theorem 3.1, Theorem 4.1 and Theorem 4.8 can be adapted to show the same security and
completeness results.

A.2 An alternative Two-Round Authentication Protocol

In this section we describe an alternative 2-round authentication protocol and sketch the proof of its
active security under the hardness of the SLPNτ,`,` problem. The difference with the scheme from

30



Section 3 is the way the session key s(v) is computed. Whereas in the AUTH protocol from Figure 5
the session key is computed as s(v) = s↓v, in the new protocol it is computed as s(v) = Mvs0 + s1,
where Mv ∈ Z`×`2 is the matrix representation of a finite field multiplication with v (see definition
below), and (s0, s1) ∈ Z`2 is the secret key.

Definition A.1. For c ∈ Z`2, let Mc ∈ Z`×`2 denote the matrix of the linear map implementing the
finite field multiplication with c when interpreted as an element in F2` .

10

The statement below follows directly from the properties of finite fields:

for all distinct vectors a,b ∈ Z`2, Ma −Mb is an invertible matrix. (A.1)

The mapping ϕ(c) = Mc is called encoding with full-rank differences in [8]. An explicit construction
was given in [11].

We are now ready to define the modified authentication protocol.

• Public parameters. The authentication protocol has the following public parameters, where
τ, τ ′ are constants and `, n depend on the security parameter λ.
` ∈ N length of the secret keys s0, s1 ∈ Z`2
τ ∈]0, 1/2[ parameter of the Bernoulli error distribution Berτ
τ ′ = 1/4 + τ/2 acceptance threshold
n ∈ N number of parallel repetitions (we require n ≤ `/2)

• Key Generation. Algorithm K(1λ) samples s0, s1
$← Z`2 and returns (s0, s1) as the secret key.

• Authentication Protocol. The 2-round authentication protocol with prover Pτ,n and verifier
Vτ ′,n is given in Figure 5.

Prover Pτ,n((s0, s1) ∈ Z`2) Verifier Vτ ′,n((s0, s1) ∈ Z`2)
v←− v

$← Z`2
R

$← Z`×n2 ; e
$← Bernτ

s(v) := Mvs0 + s1.

z := RT · s(v) + e ∈ Zn2
(R,z)−−−→ if rank(R) 6= n reject

if wt(z + RT · s(v)) > n · τ ′ reject, else accept

Figure 10: Two-round protocol AUTH2 with active security from the LPN assumption.

Even though the protocol is less efficient than AUTH, it has a considerably simpler proof and
can give intuition for MAC2.

We now sketch the reduction from the SLPNτ,`,` assumption. It is similar to the one of Theorem
3.1, with a slightly different setup of adversary B. Let s be the secret of the SLPN oracle. In the
reduction, B first samples a random v∗ ∈ Z`2 that will be used as the challenge and implicitly defines
the secret-key (s0, s1) as

s0 := s

s1 := −Mv∗s + c,

10This representation is unique once the irreducible polynomial f defining F2` = F2[x]/(f) is fixed.
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for c
$← Z`2. This way we have

s(v) =

{
(Mv −Mv∗)s + c v 6= v∗

c v = v∗,

where Mv−Mv∗ is guaranteed to be an invertible matrix by (A.1). This way, all adversarial queries
v 6= v∗ made in the first phase can be answered by returning (R, z) obtained from the SLPN oracle
(by calling it with the parameters SLPN(Mv −Mv∗ , c). As in the proof of Theorem 3.1, the one
challenge verification query corresponding to v∗ can be correctly answered with accept or reject as
s(v∗) does not depend on s. This way all answers z in the first phase can be switched from real
to random, without the adversary noticing it under the SLPN assumption. Once all answers in the
first phase are uniform and independent of the secret-key, one can again argue that the adversary
has no chance in winning the second phase.

A.3 Generalization to LWE

All the protocols presented in this paper are based on the hardness of the LPN problem. A
natural generalization of this problem is the learning with errors (LWE) problem [34]. The most
appealing characteristic of this problem is that it enjoys for certain parameters a worst-case hardness
guarantee [34, 32]. We informally recall the LWE problem below. Let q ≥ 2 be a prime and denote
with Gauq,τ the so called “discretized normal error” distribution parametrized by some τ ∈]0, 1[.
This distribution is obtained by drawing x ∈ R from the Gaussian distribution of width τ (i.e., x is
chosen with probability 1

τ exp(−πx2/τ2)) and outputting bq · xe mod q. For a random secret s ∈ Z`q,
the (decisional) LWEq,τ,` problem is to distinguish samples of the form (r, rT · s + e) from uniformly

random samples in Z`q×Zq, where r
$← Z`q, e

$← Gauq,τ and all the operations are performed modulo
q. The subspace/subset version of the LWE problem can be defined exactly in the same fashion
as for LPN (cf. Definition 2.2). It was showed in [33] that the subspace/subset LWE problems are
equivalent to the LWE problem.

All the protocols in this paper can be generalized to Zq and proven secure under the hardness of
the subset LWE assumption (and hence the standard LWE assumption). This requires us to sample
all the elements from Zq (instead of Z2), replace Berτ with Gauq,τ and perform all the operations
involved modulo q. We need also to specify how to replace the verification steps involving the
computation of Hamming weights wt(·). Given a vector e ∈ Znq sampled from Gaunq,τ (where

e has the form z − RT · s↓v mod q for an honest execution of the protocol from Section 3 or
z−RT ·s(v) mod q for the schemes from Section 4), this can be done by checking that the (squared)
Euclidean norm of e, i.e., the quantity ‖e‖2 :=

∑n
i=1|e[i]|2, does not exceed n

⌊ q
2

⌋
· τ ′ (which will

happen with overwhelming probability by the standard tail bound on Gaussians).
The change of domain from Z2 to Zq buys us security based on a different assumption, which is

known to be equivalent (for a proper choice of parameters) to the hardness of well-studied (worst-
case) lattice problems. This comes at the price of a higher computational complexity, which may
be a problem in the context of resource bounded devices.
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B A Technical Lemma

Lemma B.1. For n, d ∈ Z, let ∆(n, d) denote the probability that a random matrix in Zn+d×n
2 has

rank less than n, then
∆(n, d) < 2−d .

Proof. Assume we sample the n columns of a matrix M ∈ Zn+d×n
2 one by one. For i = 1, . . . , n let

Ei denote the event that the first i columns are linearly independent, then

Pr[¬Ei|Ei−1] =
2i−1

2n+d
= 2i−1−n−d

as ¬Ei happens iff the ith column (sampled uniformly from a space of size 2n+d) falls into the space
(of size 2i−1) spanned by the first i− 1 columns. We get further

∆(n, d) = Pr[¬En] =
n∑
i=1

Pr[¬Ei|Ei−1] =
n∑
i=1

2i−1−n−d ≤ 2−d.
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