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Introduction

Queues with Non-Exponential Service Time - 1

All the queues analysed so far are queues where the
service time is exponentially distributed.
The exponential distribution is particulary easy to handle in
analytical modelling because of its memory-less property.
As we have seen, the key point is that if a job in service is
examined at any time while its service is continuing, the
distribution of the remaining service time will still be
exponentially distributed with the same mean value.
Hence we can define the system state at any time t by
using just a single variable, i. e. the number (of users) in
the system at time t .
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Introduction

Queues with Non-Exponential Service Time - 2

Unfortunately the assumption of exponential distribution
cannot be justified in all systems.
The system state at an arbitrary time instant t would
consist of both the number in the system at time t as well
as the residual service time for each customer currently in
service.
As a consequence the system is much harder to analyse.
Exact analytical modelling is however possible for
generally distributed service times in the case of single
server queues with infinite buffer, i. e. M/G/1/∞ queues
(M/G/1 in the following).
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Notation

Assumptions

Poisson Arrivals Departures
M/G/1

FCFS discipline.
The arrival process is considered Poisson with average
arrival rate λ. We denote with A(t) and a(t), respectively,
the cumulative distribution function and the probability
density function of the interarrival times.
The service time X is generally distributed with mean
E{X} = X . For X = t (t ≥ 0), the cumulative distribution
function is B(t) and the probability density function is b(t).
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Notation

The Residual Service Time

Consider a particular arrival of interest that enters the
queue; if the queue is non-empty it sees:

One or more customers waiting in the queue.
A customer currently in service with r seconds of residual
service time.

Let E{r} = R. Since the arrival process is Poisson in
nature, PASTA will hold, so that using Little’s result:

Mean Time Spent in Queue

Wq =
R

1− ρ
being ρ = λE {X} (< 1 for stability) .
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The Imbedded Markov Chain Approach

The System State...

The main idea is to choose carefully the time points where
the system state is observed, so that the Markov property
is satisfied and a single state system description will work.
One such set of time points are the time instants just after
the departure of a customer following service. We denote
with ti (i = 1,2,3, · · · ,∞) the time instants where the i-th
customers departs from the system.
At a time instant ti we define the system state ni to be the
number of customers left behind when the i-th customer
departs.
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The Imbedded Markov Chain Approach

...and its Evolution

Let ai+1 be the number of arrivals in the (i + 1)-th sevice
time. We have to consider two cases:

ni+1 = ni−u−1(ni)+ai+1 =

{
ai+1 for ni = 0
ni − 1 + ai+1 for ni = 1,2, · · ·
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The Imbedded Markov Chain Approach

State Distribution and Moments at Equilibrium

The previous equation may be used to obtain the
probabilities of the system states as observed by a
departing customer.
At first sight these probabilities seem to be not useful,
since they hold only for the departure instant. However:

One can show that for systems where the system state can
change at most by ±1, the system distribution as seen by
an arriving customer will be the same as that seen by a
departing customer (Kleinrock’s result).
Since the arrival process is Poisson, PASTA will hold.

Thus the results obtained for the departure instants will
also be the time averaged (ergodic) results at equilibrium.
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The Imbedded Markov Chain Approach

The P-K Transform Equation - 1

Taking the expectations of both sides of the system state
equation yelds E {u−1(ni)} = E {ai+1}, with

E {u−1(ni)} = 1− p0 E {ai+1} =

∫ ∞
0

(λt)b(t)dt = λX = ρ,

being p0 the probability of the system being empty. Thus
p0 = 1− ρ, as expected. Now let Gnj (z) be the generating
function of the state as seen by the j-th departing customer;
since future arrivals does not depend on the current state:

Gni (z) = E {zni} =
+∞∑
k=0

zkPr {ni = k}

⇒ Gni+1(z) = E
{

zni−u−1(ni )+ai+1
}

= E
{

zni−u−1(ni )
}

E {zai+1} .
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The Imbedded Markov Chain Approach

The P-K Transform Equation - 2

Since we are at equilibrium, we can drop the dependence on i .
Denote with Ga(z) = E {za} the generating function of the
number arriving in a service time; a simple calculation yelds

Ga(z) =

∫ +∞

0
E {za | service time = t}b(t)dt =

=

∫ +∞

0
e−λt(1−z)b(t)dt = LB(λ− λz),

being

LB(s) =

∫ +∞

0
e−stb(t)dt

the Laplace transform of b(t).
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The Imbedded Markov Chain Approach

The P-K Transform Equation - 3

Manipulating the expression derived for Gni+1(z) (dropping the
dependence on i) we get

Gn(z) = Ga(z)E
{

zn−u−1(n)
}

= Ga(z)

[
1
z
Gn(z)− 1

z
p0(1− z)

]
.

Hence

Pollaczeck-Khinchin Transform Equation

Gn(z) =
(1− ρ)(1− z)Ga(z)

Ga(z)− z
=

(1− ρ)(1− z)LB(λ− λz)

LB(λ− λz)− z
.
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The Imbedded Markov Chain Approach

Performance Evaluation - 1

At this point the worst is over. First of all, using the properties of
both generating functions and Laplace transforms we can write

G(1)
a (z) = −λL(1)

B (λ− λz) ⇒ G(1)
a (1) = −λL(1)

B (0) = λX = ρ

G(2)
a (z) = λ2L(2)

B (λ− λz) ⇒ G(2)
a (1) = λ2L(2)

B (0) = λ2X 2.

On the other hand using L’Hospital’s rule we get

G(1)
n (1) = lim

z→1
G(1)

n (z) = lim
z→1

(1− ρ)
[
(1− z)G(1)

a (z)− Ga(z)
]

G(1)
a (z)− 1

=

= −1− ρ
ρ− 1

= 1.
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The Imbedded Markov Chain Approach

Performance Evaluation - 2

Finally differentiating the P-K Transform Equation (up to the
second order), putting z = 1 and using earlier results we get:

−2(1− ρ)G(1)
n (1) + λ2X 2 = −2ρ(1− ρ).

Lastly, using the properties of the generating functions and
Little’s result we are done:

N = G(1)
n (1) = ρ+

λ2X 2

2(1− ρ)
W =

N
λ

= X +
λX 2

2(1− ρ)

Wq = W − X =
λX 2

2(1− ρ)
=

R
1− ρ

Nq = λWq =
λ2X 2

2(1− ρ)
.
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The Imbedded Markov Chain Approach

Distributions of Time Spent in System - 1

Now we are able to derive the distribution of time spent waiting
in queue and total time spent in system by a customer when
the queue is FCFS.
Consider the n-th arrival to the queue; it waits in the queue for a
time interval Qn before its service can start (Qn = 0 if the arrival
enters an empty queue). Once service starts, the customer
engages the server for the duration of a service time Xn. Hence
the total time spent in the system is Tn = Qn + Xn.
Denote with fQ(t) (fT (t)) the probability density function of the
queueing (total) delay Qn (Tn) spent in system by the n-th
arrival, with Laplace transform LQ(s) (LT (s)).
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The Imbedded Markov Chain Approach

Distributions of Time Spent in System - 2

Since the queue is FCFS in nature, the number of customers
that the n-th user will see left behind when he departs will be
the number of arrivals that occur while it is in the system. The
generating function for this random number is Gn(z), hence we
can write:

Gn(z) =

∫ +∞

0
E {zn | total time spent in the system = t} fT (t)dt =

=

∫ +∞

0
e−λt(1−z)fT (t)dt = LT (λ− λz),

and using the P-K Transform Equation yelds

LT (s) =
s(1− ρ)LB(s)

s − λ+ λLB(s)
LQ(s) =

LT (s)

LB(s)
=

s(1− ρ)
s − λ+ λLB(s)

.
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The M/D/1 Queue

The M/D/1 Queue - 1

The M/D/1 queue has Poisson arrivals like the M/G/1
queue, but the service times are fixed, i. e. deterministic.
This is a convenient way to model an Asynchronous
Transfer Mode (ATM) node with fixed size cells as the jobs
requiring service or a packet switching node in a computer
network where the packets are of fixed size.
Since the service time is deterministic, denoted with m the
(fixed) duration of service, we have b(t) = u0(t −m) so that

LB(s) = e−sm ρ = λm

X = m X 2 = m2.
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The M/D/1 Queue

The M/D/1 Queue - 1

Hence the analysis is straightforward:

M/D/1 Queue Performance

N = ρ+
ρ2m2

2(1− ρ)
W =

m(2− ρ)
2(1− ρ)

Wq =
mρ

2(1− ρ)
Nq =

ρ2m2

2(1− ρ)
.

Gn(z) =
(1− ρ)(1− z)e−ρ(1−z)

e−ρ(1−z) − z
.
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Exercises

Exercise 1

For a particular M/G/1 queue, the Laplace transform of the
service time is given by

LB(s) =
0.5s(µ1 + µ2) + µ1µ2

(s + µ1)(s + µ2)
.

Analyse the queue using the imbedded Markov chain approach.
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Exercises

Exercise 1 - Solution

The evaluation of the mean results on the mean queueing
parameters W ,Wq,N and Nq is straightforward, since it suffices
to compute X and X 2. Manipulating:

X = −
(

d
ds
LB(s)

)
s=0

=
0.5
µ1

+
0.5
µ2

X 2 =

(
d2

ds2LB(s)

)
s=0

=

(
s3µ2 + 3sµ2

1µ2 + µ3
1µ2 + µ1(s3 + 6s2µ2 + 3sµ2

2 + µ3
2)

(s + µ1)3(s + µ2)3

)
s=0

=
µ3

1µ2 + µ1µ
3
2

µ3
1µ

3
2

.
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Exercises

Exercise 1 - Solution

Finally using the P-K Transform Equation we can easily
evaluate the generating function of the number in the system:

Gn(z) =
(1− ρ)(1− z)LB(λ− λz)

LB(λ− λz)− z
.

Hence we can conclude:

LT (s) =
s(1− ρ)LB(s)

s − λ+ λLB(s)
LQ(s) =

s(1− ρ)
s − λ+ λLB(s)

.

Note that inverting the Laplace Transforms LT (s), LQ(s) will
give the associated probability density functions fT (t) and fQ(t).
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For Further Reading

For Further Reading I

S. K. Bose
An Introduction to Queueing Systems.
Kluwer Academic/Plenum Publishers, 2002.

R. B. Cooper
Introduction to Queueing Theory.
Elsevier North Holland, 1981.

L. Kleinrock
Queueing Systems. Volume 1: Theory.
Wiley-Interscience, 1975.
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