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Cryptography today: provable security

1 Define model & security notion

@ This is done through a security game involving some &’

3 Formally prove security: Show that
no (efficient) adversary can win the
security game

o Often a too strong statement, as
it e.g. implies P # NP ®
o We can prove conditional result ®
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Time to relax?

Security proof implies:

@ Security against all known and
future attacks

@ Can we go home and relax?

broken in practice!

@ Provably secure systems get | @@@U]I}ﬂﬂw E@

@ So what’s wrong? Error in
proof? Wrong assumption?

failblog.org
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A beautiful theory

public parameters secret state

Y
Adversary Cryptosystem

@ Security proofs usually rely on the black-box model

° w’ has only black-box access to the cryptosystem
@ he can specify an input X
@ and gets the corresponding output Y
@ the computations within the box stay secret
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The cruel reality!

public parameters secret state

@ In the real world the black box is actually a physical device

@ Passive m can apply side-channel attacks: e.g. measuring
time, sound, heat while the crypto-device is working
@ This results in a leakage A about the secret state. Even partial
leakage suffices to break the cryptosystem [Kocher96]
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The cruel reality!

public parameters secret state

Yy’ \’/

@ In the real world the black box is actually a physical device

@ Passive m can apply side-channel attacks: e.g. measuring
time, sound, heat while the crypto-device is working

@ Active m can apply tampering attacks: e.g. expose it to UV
radiation, heating up the device

o The modified output can completely expose the secrets stored
in the device [BDLOQ]
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Let's try to help!
A general question

Consider any Boolean circuit C. Is it possible to formally prove that
C'is secure against an (as large as possible) class of fault attacks?

@ (' is a directed acyclic graph: & ;
vertices < gates, edges < wires — '
. . G | LM+
@ (' can be stateful: input X; and C 0
memory M, are used to produce Xi %,
output Y; and new state M, ‘ - Y;

@ (C can be randomized
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Lais iy o UL
Compilers

A possible solution using the notion of circuit compiler:

@ Transform C' in another circuit C, in such a way that tampering
in C' is detected with high probability

T — )

C
>]/\4\0

s [

- :>

@ @ is functionality preserving: C with initial state M, and C with
initial state My result in an identical output distribution
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The “real” world

@ Consider a computationally unbounded (oo, §)-adversary
tampering adaptively with C' for many rounds

@ In each round % can attack an unbounded number of wires

o For every wire he can choose between l (i.e. set a wire to 1),
~

<9 (i.e. reset a wire to 0) and i (i.e. flip the value of a wire)

@ Noisy Tampering: each attack fails independently with some
probability 0 < 9§ < 1

@ Faults can be either permanent or transient

@ Finally w’ gets the output of C when tampering is applied to
the computation
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Pswos]
Result of [IPSWO06]

@ Theorem: For integer t and security parameter k, there exists a
compiler that is (¢, 0)-tamper resilient

@ Proof based on the following assumption

There exist small, stateless and computation-independent tamper-
proof “gadgets” computing with simple encodings

@ Inefficient compiler. To achieve indistinguishability of 2%
o Blow-up is O(k3t)
o Requires O(k?) bits of fresh randomness per invocation
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Rest of this talk

© Our paradigm: trading leakage for efficiency

© Description of our compiler
© Proof sketch

© Conclusions and perspective
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Our result

@ Theorem: Let § < 1/2 and k be a security parameter. There
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Our result

@ Theorem: Let § < 1/2 and k be a security parameter. There
exists a compiler that is (00, 9, O(log|My|))-tamper resilient
@ Comparison with [IPSW06]:
@ We rely on the same axiom and require similar tamper-proof
components
e t =00 but 6 > 0 (the two models are incomparable)
@ Blow-up is only O(k) ©
@ No randomness needed at run-time ®
@ Corollary: Any scheme tolerating a logarithmic amount of
leakage on the secret key can be implemented in a
tamper-resilient way
@ Any Sig and PKE (security loss exponential in leakage)
o Positive results from leakage-resilient cryptography
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Our Compiler
What do we want from C7?

@ Simulation is hard because

@ Y; can't be directly forwarded
e M; is unknown

Idea: Guarantee that C outputs

@ Y; when no tampering happens (easy to simulate)
o Constant 0 if tampering occurs (we can reply with 0)

@ Avoid: Tampering successfully without being noticed
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Trading Leakage for Tamper-Resilience

Big picture of C' (k = 3)

ded stats
Encoded State ew encoded state

M;

y,é(-qg

Public input|

X; <%"o‘},
N

Public output

u]
|
1
ul
!

o>

D. Venturi (SAPIENZA University of Rome) Tamper-Proof Circuits



Trading Leakage for Tamper-Resilience

The core (red part)

—~
2 %
2 2

— :> —

D. Venturi (SAPIENZA University of Rome) Tamper-Proof Cir



Our Compiler
The core (red part)

C 7 C 7
%, %)
®
— i p—

@ The core of C consists of k sub-circuits (same topology as C)

16 / 23

Tamper-Proof Circuits

D. Venturi (SAPIENZA University of Rome)



Our Compiler
The core (red part)

C 7 C 7
%, %)
®
— i p—

@ The core of C consists of k sub-circuits (same topology as C)
o Awirew € {0,1} = MMC(w) = (w@®r,r,wdr, 1)

D. Venturi (SAPIENZA University of Rome) Tamper-Proof Circuits 16 / 23



Our Compiler
The core (red part)

C 7 C 7
(0]
— i pum—

@ The core of C consists of k sub-circuits (same topology as C)
o Awirew € {0,1} = MMC(w) = (w@®r,r,wdr, 1)
e NAND = NAND (see below)

D. Venturi (SAPIENZA University of Rome) Tamper-Proof Circuits 16 / 23



Our Compiler
The core (red part)

C 7 C 7
(0]
— i pum—

@ The core of C consists of k sub-circuits (same topology as C)
o Awirew e {0,1} = MMC(w) =(w@r,r,wdr, r)
e NAND = NAND (see below)

o Valid output of core: k copies of MMC(w), Yw € output of C'
(2k bits of randomness in total)

D. Venturi (SAPIENZA University of Rome) Tamper-Proof Circuits 16 / 23



Our Compiler
The core (red part)

C 7 C 7
(0]
— i pum—

@ The core of C consists of k sub-circuits (same topology as C)
o Awirew e {0,1} = MMC(w) =(w@r,r,wdr, r)
e NAND = NAND (see below)

o Valid output of core: k copies of MMC(w), Yw € output of C'
(2k bits of randomness in total)

@ Computes with MMC
MMC(w)
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@ The core of C consists of k sub-circuits (same topology as C)
o Awirew e {0,1} = MMC(w) =(w@r,r,wdr, r)
e NAND = NAND (see below)

o Valid output of core: k copies of MMC(w), Yw € output of C'
(2k bits of randomness in total)

@ Computes with MMC

MMC idi 4
() VMC(w NAND ) @ Invalid inputs generate 0

S/
Il

@ Assumed tamper-proof

MMC(w')
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@ Say output is 0, i.e. all wires are 0

and w wants to change it to 1

oA @ Just set every wire to 1: Prob. of
O success increases with # of wires!
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@ Say output is 0, i.e. all wires are 0

~ o) and m wants to change it to 1
— .
N N @ Just set every wire to 1: Prob. of
> N A \ success increases with # of wires!
O @ MMC prevents this attack: error will

~ o . propagate!
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Trading Leakage for Tamper-Resilience Our Compiler

@ Say output is 0, i.e. all wires are 0

> o) and m wants to change it to 1
N N @ Just set every wire to 1: Prob. of
> N A \ success increases with # of wires!
O @ MMC prevents this attack: error will
R —
> N N / propagate!
% @ Composition lemma: Tampering in a
> ON 7 sub-circuit = output of core will

contain invalid encoding w.h.p.
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Our Compiler
The cascade phase of [IPSW06]
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over many rounds!
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Our Compiler
The cascade phase of [IPSW06]

CASCADE PHASE

Secret state <

Public output

First half Second half

@ So changing the output of core will fail, but \m can tamper
over many rounds!
@ Cascade phase will avoid this

@ Invalid input = output will encode 0: self-destruct mechanism
o Tamper-proof gadgets of linear size (but same for every circuit)

D. Venturi (SAPIENZA University of Rome) Tamper-Proof Circuits 18 / 23



Why tamper-proof gadgets?

@ We don't know how to prove without them ®
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Trading Leakage for Tamper-Resilience Our Compiler

Why tamper-proof gadgets?

@ We don't know how to prove without them ®

)
'7)0 4/,7»

m
S/

@ Assume w can tamper inside the gadgets

@ Tampering with the input induces some distribution

@ The deeper we go the “worse” this distribution can be made

o Open question: find a construction for the NAND such that the
bias cannot be increased
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Proof sketch (1/2)
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Trading Leakage for Tamper-Resilience Proof

Proof sketch (1/2)

If “@’ tampers with C the following can happen
© Tampering changes encoding of w to encoding of 1 — w

@ Cannot be simulated
@ We show it happens with negligible probability

© No tampering: use black box access for simulation

© Tampering detected: output 0
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Trading Leakage for Tamper-Resilience Proof

Proof sketch (2/2)
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@ However does not know when this will happen
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@ However does not know when this will happen
@ Give as advice A = f(M,) the exact point of failure

@ In which invocation

@ At which point of the cascade phase
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@ However does not know when this will happen
@ Give as advice A = f(M,) the exact point of failure

@ In which invocation

O(log | My|) bits
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@ However does not know when this will happen
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@ In which invocation

O(log | My|) bits
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@ However does not know when this will happen
@ Give as advice A = f(M,) the exact point of failure

@ In which invocation

O(log | My|) bits

@ At which point of the cascade phase

@ Finally, simulation must continue even after self-destruct

o Looks trivial since the state is destroyed, but recall that faults
are persistent
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Take-home message
© It is possible to compile any circuit such that it resists an
unbounded number of faults
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Take-home message

© It is possible to compile any circuit such that it resists an
unbounded number of faults

© Trading a small amount of leakage can lead to efficient compilers

@ Where do we go from here?

@ Dependent errors

o Global tampering functions

o Eliminate tamper-proof gadgets

@ Implementation-independent model

D. Venturi (SAPIENZA University of Rome) Tamper-Proof Circuits 22 /23



Trading Leakage for Tamper-Resilience BEIEIELS

Questions?

THE END!
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