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This is done through a security game involving some

2 Build cryptoscheme

3 Formally prove security: Show that
no (efficient) adversary can win the
security game

Often a too strong statement, as
it e.g. implies P 6= NP /

We can prove conditional result ,
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A beautiful theory

public parameters secret state

Adversary Cryptosystem

Y

Security proofs usually rely on the black-box model

has only black-box access to the cryptosystem

he can specify an input X
and gets the corresponding output Y
the computations within the box stay secret

D. Venturi (SAPIENZA University of Rome) Tamper-Proof Circuits 4 / 23



Failure of the black-box model

The cruel reality!

public parameters secret state

D. Venturi (SAPIENZA University of Rome) Tamper-Proof Circuits 5 / 23



Failure of the black-box model

The cruel reality!

public parameters secret state

In the real world the black box is actually a physical device

D. Venturi (SAPIENZA University of Rome) Tamper-Proof Circuits 5 / 23



Failure of the black-box model

The cruel reality!

public parameters secret state

X

In the real world the black box is actually a physical device

Passive can apply side-channel attacks: e.g. measuring
time,

D. Venturi (SAPIENZA University of Rome) Tamper-Proof Circuits 5 / 23



Failure of the black-box model

The cruel reality!

public parameters secret state

X

In the real world the black box is actually a physical device

Passive can apply side-channel attacks: e.g. measuring
time, sound,

D. Venturi (SAPIENZA University of Rome) Tamper-Proof Circuits 5 / 23



Failure of the black-box model

The cruel reality!

public parameters secret state

X

In the real world the black box is actually a physical device

Passive can apply side-channel attacks: e.g. measuring
time, sound, heat while the crypto-device is working

D. Venturi (SAPIENZA University of Rome) Tamper-Proof Circuits 5 / 23



Failure of the black-box model

The cruel reality!

public parameters secret state

Y,Λ

In the real world the black box is actually a physical device

Passive can apply side-channel attacks: e.g. measuring
time, sound, heat while the crypto-device is working

This results in a leakage Λ about the secret state. Even partial
leakage suffices to break the cryptosystem [Kocher96]
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Failure of the black-box model

The cruel reality!

public parameters secret state

Y ′

In the real world the black box is actually a physical device

Passive can apply side-channel attacks: e.g. measuring
time, sound, heat while the crypto-device is working

Active can apply tampering attacks: e.g. expose it to UV
radiation, heating up the device

The modified output can completely expose the secrets stored
in the device [BDL00]

D. Venturi (SAPIENZA University of Rome) Tamper-Proof Circuits 5 / 23



Trading Leakage for Tamper-Resilience Let’s try to help!

A general question

D. Venturi (SAPIENZA University of Rome) Tamper-Proof Circuits 6 / 23



Trading Leakage for Tamper-Resilience Let’s try to help!

A general question

Question:

Consider any Boolean circuit C.

D. Venturi (SAPIENZA University of Rome) Tamper-Proof Circuits 6 / 23



Trading Leakage for Tamper-Resilience Let’s try to help!

A general question

Question:

Consider any Boolean circuit C.

C is a directed acyclic graph:
vertices ⇔ gates, edges ⇔ wires

D. Venturi (SAPIENZA University of Rome) Tamper-Proof Circuits 6 / 23



Trading Leakage for Tamper-Resilience Let’s try to help!

A general question

Question:

Consider any Boolean circuit C.

C is a directed acyclic graph:
vertices ⇔ gates, edges ⇔ wires

C can be stateful: input Xi and
memory Mi are used to produce
output Yi and new state Mi+1

D. Venturi (SAPIENZA University of Rome) Tamper-Proof Circuits 6 / 23



Trading Leakage for Tamper-Resilience Let’s try to help!

A general question

Question:

Consider any Boolean circuit C.

C is a directed acyclic graph:
vertices ⇔ gates, edges ⇔ wires

C can be stateful: input Xi and
memory Mi are used to produce
output Yi and new state Mi+1

C can be randomized

D. Venturi (SAPIENZA University of Rome) Tamper-Proof Circuits 6 / 23



Trading Leakage for Tamper-Resilience Let’s try to help!

A general question

Question:

Consider any Boolean circuit C. Is it possible to formally prove that
C is secure against an (as large as possible) class of fault attacks?

C is a directed acyclic graph:
vertices ⇔ gates, edges ⇔ wires

C can be stateful: input Xi and
memory Mi are used to produce
output Yi and new state Mi+1
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in Ĉ is detected with high probability

D. Venturi (SAPIENZA University of Rome) Tamper-Proof Circuits 7 / 23



Trading Leakage for Tamper-Resilience Let’s try to help!

Compilers

A possible solution using the notion of circuit compiler:

Transform C in another circuit Ĉ, in such a way that tampering
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Compilers

A possible solution using the notion of circuit compiler:

Transform C in another circuit Ĉ, in such a way that tampering
in Ĉ is detected with high probability

Φ
=⇒

Φ is functionality preserving: C with initial state M0 and Ĉ with
initial state M̂0 result in an identical output distribution
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Consider a computationally unbounded (∞, δ)-adversary

tampering adaptively with Ĉ for many rounds

In each round can attack an unbounded number of wires

For every wire he can choose between (i.e. set a wire to 1),

(i.e. reset a wire to 0) and (i.e. flip the value of a wire)

Noisy Tampering: each attack fails independently with some
probability 0 < δ ≤ 1

Faults can be either permanent or transient

Finally gets the output of Ĉ when tampering is applied to
the computation
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Trading Leakage for Tamper-Resilience [IPSW06]

(t, 0)-tamper resilience of [IPSW06]

Φ
=⇒

Black box access Apply up to t faults

Indistinguishable

Note: faults are error-free, i.e. δ = 0
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Result of [IPSW06]

Theorem: For integer t and security parameter k, there exists a
compiler that is (t, 0)-tamper resilient

Proof based on the following assumption

Axiom

There exist small, stateless and computation-independent tamper-
proof “gadgets” computing with simple encodings

Inefficient compiler. To achieve indistinguishability of 2−k

Blow-up is O(k3t)
Requires O(k2) bits of fresh randomness per invocation
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Rest of this talk

1 Our paradigm: trading leakage for efficiency

2 Description of our compiler

3 Proof sketch

4 Conclusions and perspective
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Our result

Theorem: Let δ < 1/2 and k be a security parameter. There
exists a compiler that is (∞, δ, O(log|M0|))-tamper resilient

Comparison with [IPSW06]:

We rely on the same axiom and require similar tamper-proof
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Comparison with [IPSW06]:

We rely on the same axiom and require similar tamper-proof
components
t = ∞ but δ > 0 (the two models are incomparable)
Blow-up is only O(k) ,

No randomness needed at run-time ,

Corollary: Any scheme tolerating a logarithmic amount of
leakage on the secret key can be implemented in a
tamper-resilient way

Any Sig and PKE (security loss exponential in leakage)
Positive results from leakage-resilient cryptography
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What do we want from Ĉ?

Y ′
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Xi, ,
Xi

Yi

Simulation is hard because

Yi can’t be directly forwarded
Mi is unknown

Idea: Guarantee that Ĉ outputs

Yi when no tampering happens (easy to simulate)
Constant 0 if tampering occurs (we can reply with 0)

Avoid: Tampering successfully without being noticed
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Φ
=⇒

The core of Ĉ consists of k sub-circuits (same topology as C)

A wire w ∈ {0, 1} ⇒ MMC(w) = (w ⊕ r, r, w ⊕ r′, r′)

NAND ⇒ N̂AND (see below)
Valid output of core: k copies of MMC(w), ∀w ∈ output of C
(2k bits of randomness in total)

Computes with MMC

Invalid inputs generate 04

Assumed tamper-proof
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Why MMC?

Say output is 0, i.e. all wires are 0

and wants to change it to 1

Just set every wire to 1: Prob. of
success increases with # of wires!

MMC prevents this attack: error will
propagate!

Composition lemma: Tampering in a
sub-circuit ⇒ output of core will
contain invalid encoding w.h.p.
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The cascade phase of [IPSW06]

So changing the output of core will fail, but can tamper
over many rounds!

Cascade phase will avoid this

Invalid input ⇒ output will encode 0: self-destruct mechanism
Tamper-proof gadgets of linear size (but same for every circuit)
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Why tamper-proof gadgets?

We don’t know how to prove without them /

Assume can tamper inside the gadgets

Tampering with the input induces some distribution
The deeper we go the “worse” this distribution can be made

Open question: find a construction for the N̂AND such that the
bias cannot be increased
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Yi

If tampers with Ĉ the following can happen
1 Tampering changes encoding of w to encoding of 1− w

Cannot be simulated
We show it happens with negligible probability

2 No tampering: use black box access for simulation

3 Tampering detected: output 0
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Y ′
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However does not know when this will happen

Give as advice Λ = f(M0) the exact point of failure

O(log |M0|) bits
In which invocation

At which point of the cascade phase

Finally, simulation must continue even after self-destruct

Looks trivial since the state is destroyed, but recall that faults
are persistent
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Take-home message

1 It is possible to compile any circuit such that it resists an
unbounded number of faults

2 Trading a small amount of leakage can lead to efficient compilers

Where do we go from here?

Dependent errors
Global tampering functions
Eliminate tamper-proof gadgets
Implementation-independent model
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Trading Leakage for Tamper-Resilience Conclusions

Questions?

THE END!
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