How to Trade Leakage for Tamper-Resilience

Daniele Venturi

Joint work with: Sebastian Faust (Katholieke Universiteit Leuven) Krzysztof Pietrzak (CWI Amsterdam)

SAPIENZA University of Rome

ICALP 2011 - Zurich, July 6 2011

《曰》 《國》 《臣》 《臣》 三臣

(4 伊下) イヨト イヨト

D. Venturi (SAPIENZA University of Rome)

Tamper-Proof Circuits

2 / 23

1 Define model & security notion

(4) (2) (4) (2) (4)

1 Define model & security notion

• This is done through a security game involving some

- 1 Define model & security notion
 - This is done through a security game involving some

2 Build cryptoscheme

- 1 Define model & security notion
 - This is done through a security game involving some

2 Build cryptoscheme

3 Formally prove security: Show that no (efficient) adversary can win the security game

- 1 Define model & security notion
 - This is done through a security game involving some

2 Build cryptoscheme

- - 3 Formally prove security: Show that no (efficient) adversary can win the security game
 - Often a too strong statement, as it e.g. implies $\mathbf{P}\neq\mathbf{NP}$ $\textcircled{\sc or}$

- 1 Define model & security notion
 - This is done through a security game involving some

2 Build cryptoscheme

- - 3 Formally prove security: Show that no (efficient) adversary can win the security game
 - Often a too strong statement, as it e.g. implies $\mathbf{P} \neq \mathbf{NP}$ \odot
 - We can prove conditional result ©

Security proof implies:

э

・ロト ・聞ト ・ヨト ・ヨト

Security proof implies:

• Security against all known and future attacks

ヨト・イヨト

- Security against all known and future attacks
- Can we go home and relax?

- Security against all known and future attacks
- Can we go home and relax?
- Provably secure systems get broken in practice!

- Security against all known and future attacks
- Can we go home and relax?
- Provably secure systems get broken in practice!
- So what's wrong? Error in proof? Wrong assumption?

- Security against all known and future attacks
- Can we go home and relax?
- Provably secure systems get broken in practice!
- So what's wrong? Error in proof? Wrong assumption?

Adversary

secret state

Cryptosystem

• Security proofs usually rely on the black-box model

• Security proofs usually rely on the black-box model

• has only black-box access to the cryptosystem

- Security proofs usually rely on the black-box model
- has only black-box access to the cryptosystem
 - he can specify an input X

- Security proofs usually rely on the black-box model
- has only black-box access to the cryptosystem
 - $\bullet\,$ he can specify an input X
 - $\bullet\,$ and gets the corresponding output Y

Adversary

Cryptosystem

- Security proofs usually rely on the black-box model
 - week.
 - has only black-box access to the cryptosystem
 - $\bullet\,$ he can specify an input X
 - $\bullet\,$ and gets the corresponding output Y
 - the computations within the box stay secret

public parameters

secret state

∃ ► < ∃ ►</p>

public parameters

secret state

• In the real world the black box is actually a physical device

• In the real world the black box is actually a physical device

• Passive can apply side-channel attacks: e.g. measuring time,

- In the real world the black box is actually a physical device
- Passive can apply side-channel attacks: e.g. measuring time, sound,

In the real world the black box is actually a physical device
Passive can apply side-channel attacks: e.g. measuring time, sound, heat while the crypto-device is working

- In the real world the black box is actually a physical device
- Passive [•] can apply side-channel attacks: e.g. measuring time, sound, heat while the crypto-device is working
 - This results in a leakage Λ about the secret state. Even partial leakage suffices to break the cryptosystem [Kocher96]

- In the real world the black box is actually a physical device
- Passive can apply side-channel attacks: e.g. measuring time, sound, heat while the crypto-device is working

• Active can apply tampering attacks: e.g. expose it to UV radiation,

- In the real world the black box is actually a physical device
- Passive can apply side-channel attacks: e.g. measuring time, sound, heat while the crypto-device is working
- Active can apply tampering attacks: e.g. expose it to UV radiation, heating up the device

- In the real world the black box is actually a physical device
- Passive can apply side-channel attacks: e.g. measuring time, sound, heat while the crypto-device is working
- Active value of the apply tampering attacks: e.g. expose it to UV radiation, heating up the device
 - The modified output can completely expose the secrets stored in the device [BDL00]

・ 戸 ト ・ ヨ ト ・ ヨ ト

D. Venturi (SAPIENZA University of Rome)

6 / 23

A general question

Question:

Consider any Boolean circuit C.

A general question

Question:

Consider any Boolean circuit C.

• C is a directed acyclic graph: vertices \Leftrightarrow gates, edges \Leftrightarrow wires

A general question

Question:

Consider any Boolean circuit C.

- C is a directed acyclic graph: vertices \Leftrightarrow gates, edges \Leftrightarrow wires
- C can be stateful: input X_i and memory M_i are used to produce output Y_i and new state M_{i+1}

A general question

Question:

Consider any Boolean circuit C.

- C is a directed acyclic graph: vertices \Leftrightarrow gates, edges \Leftrightarrow wires
- C can be stateful: input X_i and memory M_i are used to produce output Y_i and new state M_{i+1}
- \bullet C can be randomized

A general question

Question:

Consider any Boolean circuit C. Is it possible to formally prove that C is secure against an (as large as possible) class of fault attacks?

- C is a directed acyclic graph:
 vertices ⇔ gates, edges ⇔ wires
- C can be stateful: input X_i and memory M_i are used to produce output Y_i and new state M_{i+1}
- C can be randomized

Compilers

A possible solution using the notion of circuit compiler:

イヨト・イヨト

Compilers

A possible solution using the notion of circuit compiler:

• Transform C in another circuit \widehat{C} , in such a way that tampering in \widehat{C} is detected with high probability
Compilers

A possible solution using the notion of circuit compiler:

• Transform C in another circuit \widehat{C} , in such a way that tampering in \widehat{C} is detected with high probability

Compilers

A possible solution using the notion of circuit compiler:

• Transform C in another circuit \widehat{C} , in such a way that tampering in \widehat{C} is detected with high probability

Compilers

A possible solution using the notion of circuit compiler:

• Transform C in another circuit \widehat{C} , in such a way that tampering in \widehat{C} is detected with high probability

• Φ is functionality preserving: C with initial state M_0 and \widehat{C} with initial state \widehat{M}_0 result in an identical output distribution

• Consider a computationally unbounded (∞, δ) -adversary tampering adaptively with \widehat{C} for many rounds

• Consider a computationally unbounded (∞, δ) -adversary tampering adaptively with \widehat{C} for many rounds

In each round
 can attack an unbounded number of wires

8 / 23

• Consider a computationally unbounded (∞, δ) -adversary tampering adaptively with \widehat{C} for many rounds

- In each round ^{***} can attack an unbounded number of wires
 - For every wire he can choose between

- Consider a computationally unbounded (∞, δ) -adversary tampering adaptively with \widehat{C} for many rounds
- In each round ^w can attack an unbounded number of wires

Tamper-Proof Circuits

• For every wire he can choose between \sum (i.e. set a wire to 1),

- Consider a computationally unbounded (∞, δ) -adversary tampering adaptively with \widehat{C} for many rounds
- In each round ^w can attack an unbounded number of wires
 - For every wire he can choose between \sum (i.e. set a wire to 1),
 - (i.e. reset a wire to 0)

- Consider a computationally unbounded (∞, δ) -adversary tampering adaptively with \widehat{C} for many rounds
- In each round ^(w) can attack an unbounded number of wires
 - For every wire he can choose between (i.e. set a wire to 1),
 (i.e. reset a wire to 0) and (i.e. flip the value of a wire)

- Consider a computationally unbounded (∞, δ) -adversary tampering adaptively with \widehat{C} for many rounds
- In each round ⁽⁾ can attack an unbounded number of wires
 - For every wire he can choose between \sum (i.e. set a wire to 1),
 - (i.e. reset a wire to 0) and \sum (i.e. flip the value of a wire)
- Noisy Tampering: each attack fails independently with some probability $0<\delta\leq 1$

- Consider a computationally unbounded (∞, δ) -adversary tampering adaptively with \widehat{C} for many rounds
- In each round ^(w) can attack an unbounded number of wires
 - For every wire he can choose between \sum (i.e. set a wire to 1),
 - \bigcirc (i.e. reset a wire to 0) and \checkmark (i.e. flip the value of a wire)
- Noisy Tampering: each attack fails independently with some probability $0<\delta\leq 1$
 - Faults can be either permanent or transient

- Consider a computationally unbounded (∞, δ) -adversary tampering adaptively with \widehat{C} for many rounds
- In each round ⁽⁾ can attack an unbounded number of wires
 - For every wire he can choose between \sum (i.e. set a wire to 1),
 - (i.e. reset a wire to 0) and \swarrow (i.e. flip the value of a wire)
- Noisy Tampering: each attack fails independently with some probability $0<\delta\leq 1$
 - Faults can be either permanent or transient
- Finally we gets the output of \widehat{C} when tampering is applied to the computation

- 4 伊ト 4 ヨト 4 ヨト

イロト イポト イヨト イヨト

伺下 イヨト イヨト

(4) (2) (4) (2) (4)

э

(4 伊下) イヨト イヨト

[IPSW06]

(t, 0)-tamper resilience of [IPSW06]

Apply up to t faults

・ 同下 ・ ヨト ・ ヨト

D. Venturi (SAPIENZA University of Rome)

• <u>Theorem</u>: For integer t and security parameter k, there exists a compiler that is (t, 0)-tamper resilient

イヨト・イヨト

- <u>Theorem</u>: For integer t and security parameter k, there exists a compiler that is (t, 0)-tamper resilient
- Proof based on the following assumption

- <u>Theorem</u>: For integer t and security parameter k, there exists a compiler that is (t, 0)-tamper resilient
- Proof based on the following assumption

Axiom

There exist small, stateless and computation-independent tamperproof "gadgets" computing with simple encodings

10 / 23

- <u>Theorem</u>: For integer t and security parameter k, there exists a compiler that is (t, 0)-tamper resilient
- Proof based on the following assumption

Axiom

There exist small, stateless and computation-independent tamperproof "gadgets" computing with simple encodings

• Inefficient compiler. To achieve indistinguishability of 2^{-k}

- <u>Theorem</u>: For integer t and security parameter k, there exists a compiler that is (t, 0)-tamper resilient
- Proof based on the following assumption

Axiom

There exist small, stateless and computation-independent tamperproof "gadgets" computing with simple encodings

- Inefficient compiler. To achieve indistinguishability of 2^{-k}
 - Blow-up is $O(k^3t)$

(4月) イヨト イヨト

- <u>Theorem</u>: For integer t and security parameter k, there exists a compiler that is (t, 0)-tamper resilient
- Proof based on the following assumption

Axiom

There exist small, stateless and computation-independent tamperproof "gadgets" computing with simple encodings

- Inefficient compiler. To achieve indistinguishability of 2^{-k}
 - Blow-up is $O(k^3t)$
 - Requires $O(k^2)$ bits of fresh randomness per invocation

- 4 伊ト 4 ヨト 4 ヨト

Our paradigm: trading leakage for efficiency

(B) (B)

- Our paradigm: trading leakage for efficiency
- Obscription of our compiler

ヨト・イヨト

- Our paradigm: trading leakage for efficiency
- Description of our compiler
- Proof sketch

ヨト・イヨト

- Our paradigm: trading leakage for efficiency
- Description of our compiler
- Proof sketch
- Onclusions and perspective

$(\infty, \delta, \overline{\lambda})$ -tamper resilience

$(\infty, \delta, \overline{\lambda})$ -tamper resilience

D. Venturi (SAPIENZA University of Rome)

12 / 23

$(\infty, \delta, \overline{\lambda})$ -tamper resilience

(4) (2) (4) (2) (4)

D. Venturi (SAPIENZA University of Rome)

12 / 23

12 / 23

Ξ

Apply unbounded # faults

(4) (2) (4) (2) (4)

D. Venturi (SAPIENZA University of Rome)

D. Venturi (SAPIENZA University of Rome)

D. Venturi (SAPIENZA University of Rome)

Tamper-Proof Circuits

12 / 23

$(\infty, \delta, \lambda)$ -tamper resilience

D. Venturi (SAPIENZA University of Rome)

Tamper-Proof Circuits

12 / 23

Our result

• <u>Theorem</u>: Let $\delta < 1/2$ and k be a security parameter. There exists a compiler that is $(\infty, \delta, O(\log |M_0|))$ -tamper resilient

- <u>Theorem</u>: Let $\delta < 1/2$ and k be a security parameter. There exists a compiler that is $(\infty, \delta, O(\log |M_0|))$ -tamper resilient
- Comparison with [IPSW06]:

- Theorem: Let $\delta < 1/2$ and k be a security parameter. There exists a compiler that is $(\infty, \delta, O(\log |M_0|))$ -tamper resilient
- Comparison with [IPSW06]:
 - We rely on the same axiom and require similar tamper-proof components

- <u>Theorem</u>: Let $\delta < 1/2$ and k be a security parameter. There exists a compiler that is $(\infty, \delta, O(\log |M_0|))$ -tamper resilient
- Comparison with [IPSW06]:
 - We rely on the same axiom and require similar tamper-proof components
 - $t = \infty$ but $\delta > 0$ (the two models are incomparable)

- <u>Theorem</u>: Let $\delta < 1/2$ and k be a security parameter. There exists a compiler that is $(\infty, \delta, O(\log |M_0|))$ -tamper resilient
- Comparison with [IPSW06]:
 - We rely on the same axiom and require similar tamper-proof components
 - $t = \infty$ but $\delta > 0$ (the two models are incomparable)
 - Blow-up is only O(k) \bigcirc

- <u>Theorem</u>: Let $\delta < 1/2$ and k be a security parameter. There exists a compiler that is $(\infty, \delta, O(\log |M_0|))$ -tamper resilient
- Comparison with [IPSW06]:
 - We rely on the same axiom and require similar tamper-proof components
 - $t = \infty$ but $\delta > 0$ (the two models are incomparable)
 - Blow-up is only O(k) \bigcirc
 - No randomness needed at run-time ③

Our result

- <u>Theorem</u>: Let $\delta < 1/2$ and k be a security parameter. There exists a compiler that is $(\infty, \delta, O(\log |M_0|))$ -tamper resilient
- Comparison with [IPSW06]:
 - We rely on the same axiom and require similar tamper-proof components
 - $t = \infty$ but $\delta > 0$ (the two models are incomparable)
 - Blow-up is only O(k) \bigcirc
 - No randomness needed at run-time ©
- Corollary: Any scheme tolerating a logarithmic amount of leakage on the secret key can be implemented in a tamper-resilient way

- 4 伊ト 4 ヨト 4 ヨト

Our result

- <u>Theorem</u>: Let $\delta < 1/2$ and k be a security parameter. There exists a compiler that is $(\infty, \delta, O(\log |M_0|))$ -tamper resilient
- Comparison with [IPSW06]:
 - We rely on the same axiom and require similar tamper-proof components
 - $t = \infty$ but $\delta > 0$ (the two models are incomparable)
 - Blow-up is only O(k) \bigcirc
 - No randomness needed at run-time ©
- Corollary: Any scheme tolerating a logarithmic amount of leakage on the secret key can be implemented in a tamper-resilient way
 - Any Sig and PKE (security loss exponential in leakage)

イロト イポト イヨト イヨト

Our result

- <u>Theorem</u>: Let $\delta < 1/2$ and k be a security parameter. There exists a compiler that is $(\infty, \delta, O(\log |M_0|))$ -tamper resilient
- Comparison with [IPSW06]:
 - We rely on the same axiom and require similar tamper-proof components
 - $t = \infty$ but $\delta > 0$ (the two models are incomparable)
 - Blow-up is only O(k) \bigcirc
 - No randomness needed at run-time ③
- Corollary: Any scheme tolerating a logarithmic amount of leakage on the secret key can be implemented in a tamper-resilient way
 - Any Sig and PKE (security loss exponential in leakage)
 - Positive results from leakage-resilient cryptography

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

(3)

(B) (B)

ヨト・イヨト

コト・イヨト

ヨト・イヨト

Simulation is hard because

Our Compiler

- Simulation is hard because
 - Y_i can't be directly forwarded

- Simulation is hard because
 - Y_i can't be directly forwarded
 - M_i is unknown

- Simulation is hard because
 - Y_i can't be directly forwarded
 - M_i is unknown
- Idea: Guarantee that \widehat{C} outputs

- Simulation is hard because
 - Y_i can't be directly forwarded
 - *M_i* is unknown
- Idea: Guarantee that \widehat{C} outputs
 - Y_i when no tampering happens (easy to simulate)

- Simulation is hard because
 - Y_i can't be directly forwarded
 - *M_i* is unknown
- Idea: Guarantee that \widehat{C} outputs
 - Y_i when no tampering happens (easy to simulate)
 - Constant 0 if tampering occurs (we can reply with 0)

- Simulation is hard because
 - Y_i can't be directly forwarded
 - M_i is unknown
- Idea: Guarantee that \widehat{C} outputs
 - Y_i when no tampering happens (easy to simulate)
 - Constant 0 if tampering occurs (we can reply with 0)
- Avoid: Tampering successfully without being noticed

Big picture of \widehat{C} (k = 3)

• • = • • = •

ヨト イヨト

D. Venturi (SAPIENZA University of Rome)

16 / 23

• The core of \widehat{C} consists of k sub-circuits (same topology as C)

The core of Ĉ consists of k sub-circuits (same topology as C)
A wire w ∈ {0,1} ⇒ MMC(w) = (w ⊕ r, r, w̄ ⊕ r', r')

• The core of \widehat{C} consists of k sub-circuits (same topology as C)

- A wire $w \in \{0,1\} \Rightarrow \operatorname{MMC}(w) = (w \oplus r, r, \overline{w} \oplus r', r')$
- NAND \Rightarrow NAND (see below)

• The core of \widehat{C} consists of k sub-circuits (same topology as C)

- A wire $w \in \{0,1\} \Rightarrow \operatorname{MMC}(w) = (w \oplus r, r, \overline{w} \oplus r', r')$
- NAND \Rightarrow NAND (see below)
- Valid output of core: k copies of MMC(w), ∀w ∈ output of C (2k bits of randomness in total)

• The core of \widehat{C} consists of k sub-circuits (same topology as C)

- A wire $w \in \{0,1\} \Rightarrow \operatorname{MMC}(w) = (w \oplus r, r, \overline{w} \oplus r', r')$
- NAND \Rightarrow NAND (see below)
- Valid output of core: k copies of MMC(w), ∀w ∈ output of C (2k bits of randomness in total)

Computes with MMC

• The core of \widehat{C} consists of k sub-circuits (same topology as C)

- A wire $w \in \{0,1\} \Rightarrow \operatorname{MMC}(w) = (w \oplus r, r, \overline{w} \oplus r', r')$
- NAND \Rightarrow NAND (see below)

MMC(w NAND w')

- Valid output of core: k copies of MMC(w), ∀w ∈ output of C (2k bits of randomness in total)
 - Computes with MMC
 - Invalid inputs generate 0^4

NA

D. Venturi (SAPIENZA University of Rome)

MMC(w)

• The core of \widehat{C} consists of k sub-circuits (same topology as C)

- A wire $w \in \{0,1\} \Rightarrow \operatorname{MMC}(w) = (w \oplus r, r, \overline{w} \oplus r', r')$
- NAND \Rightarrow NAND (see below)

MMC(w NAND w')

 Valid output of core: k copies of MMC(w), ∀w ∈ output of C (2k bits of randomness in total)

• Invalid inputs generate 0^4

• Assumed tamper-proof

MMC(w)

MMC(w')

・ロト ・聞ト ・ヨト ・ヨト

Say output is 0, i.e. all wires are 0
 and wants to change it to 1

Say output is 0, i.e. all wires are 0 and wants to change it to 1
Just set every wire to 1: Prob. of success increases with # of wires!

• Say output is 0, i.e. all wires are 0

and \checkmark wants to change it to 1

- Just set every wire to 1: Prob. of success increases with # of wires!
- MMC prevents this attack: error will propagate!

• Say output is 0, i.e. all wires are 0

and \checkmark wants to change it to 1

- Just set every wire to 1: Prob. of success increases with # of wires!
- MMC prevents this attack: error will propagate!
- Composition lemma: Tampering in a sub-circuit ⇒ output of core will contain invalid encoding w.h.p.

• So changing the output of core will fail, but ^{we} can tamper over many rounds!

- So changing the output of core will fail, but 😻 can tamper over many rounds!
- Cascade phase will avoid this

- So changing the output of core will fail, but 😻 can tamper over many rounds!
- Cascade phase will avoid this
 - Invalid input ⇒ output will encode 0: self-destruct mechanism

- So changing the output of core will fail, but 🦋 can tamper over many rounds!
- Cascade phase will avoid this
 - Invalid input \Rightarrow output will encode 0: self-destruct mechanism
 - Tamper-proof gadgets of linear size (but same for every circuit)

 $\bullet\,$ We don't know how to prove without them $\odot\,$

A B F A B F

 $\bullet\,$ We don't know how to prove without them $\odot\,$

 $\bullet\,$ We don't know how to prove without them $\odot\,$

• Tampering with the input induces some distribution

 $\bullet\,$ We don't know how to prove without them $\odot\,$

- Tampering with the input induces some distribution
- The deeper we go the "worse" this distribution can be made

 $\bullet\,$ We don't know how to prove without them $\odot\,$

- Tampering with the input induces some distribution
- The deeper we go the "worse" this distribution can be made
- Open question: find a construction for the NAND such that the bias cannot be increased

→ Ξ →

tampers with \widehat{C} the following can happen

O Tampering changes encoding of w to encoding of 1 - w

tampers with \widehat{C} the following can happen

- **O** Tampering changes encoding of w to encoding of 1 w
 - Cannot be simulated

 $\overleftarrow{m{\psi}}$ tampers with \widehat{C} the following can happen

() Tampering changes encoding of w to encoding of 1 - w

- Cannot be simulated
- We show it happens with negligible probability

 \clubsuit tampers with \widehat{C} the following can happen

() Tampering changes encoding of w to encoding of 1 - w

- Cannot be simulated
- We show it happens with negligible probability
- No tampering: use black box access for simulation

 \clubsuit tampers with \widehat{C} the following can happen

- **(**) Tampering changes encoding of w to encoding of 1 w
 - Cannot be simulated
 - We show it happens with negligible probability
- No tampering: use black box access for simulation
- Tampering detected: output 0

• However does not know when this will happen

• Give as advice $\Lambda = f(M_0)$ the exact point of failure

• However Cor does not know when this will happen

• Give as advice $\Lambda = f(M_0)$ the exact point of failure

In which invocation

• However Corr does not know when this will happen

- Give as advice $\Lambda = f(M_0)$ the exact point of failure
 - In which invocation
 - At which point of the cascade phase

• However 🖤 does not know when this will happen

• Give as advice $\Lambda=f(M_0)$ the exact point of failure

bits

In which invocation

• At which point of the cascade phase

• However 🥨 does not know when this will happen

• Give as advice $\Lambda = f(M_0)$ the exact point of failure

bits

In which invocation

• At which point of the cascade phase

• Finally, simulation must continue even after self-destruct

However Content of the second state of the second sta

• Give as advice $\Lambda=f(M_0)$ the exact point of failure

bits

In which invocation

• At which point of the cascade phase

- Finally, simulation must continue even after self-destruct
 - Looks trivial since the state is destroyed, but recall that faults are persistent

Take-home message

It is possible to compile any circuit such that it resists an unbounded number of faults

Take-home message

- It is possible to compile any circuit such that it resists an unbounded number of faults
- **2** Trading a small amount of leakage can lead to efficient compilers

Conclusions

Take-home message

- It is possible to compile any circuit such that it resists an unbounded number of faults
- **2** Trading a small amount of leakage can lead to efficient compilers
 - Where do we go from here?

Take-home message

- It is possible to compile any circuit such that it resists an unbounded number of faults
- **2** Trading a small amount of leakage can lead to efficient compilers
 - Where do we go from here?
 - Dependent errors
Take-home message

- It is possible to compile any circuit such that it resists an unbounded number of faults
- **2** Trading a small amount of leakage can lead to efficient compilers
 - Where do we go from here?
 - Dependent errors
 - Global tampering functions

Take-home message

- It is possible to compile any circuit such that it resists an unbounded number of faults
- **2** Trading a small amount of leakage can lead to efficient compilers
 - Where do we go from here?
 - Dependent errors
 - Global tampering functions
 - Eliminate tamper-proof gadgets

Take-home message

- It is possible to compile any circuit such that it resists an unbounded number of faults
- **2** Trading a small amount of leakage can lead to efficient compilers
 - Where do we go from here?
 - Dependent errors
 - Global tampering functions
 - Eliminate tamper-proof gadgets
 - Implementation-independent model

Questions?

D. Venturi (SAPIENZA University of Rome)

Ξ

A B F A B F