On the Non-Malleability of the Fiat-Shamir Transform

Sebastian Faust¹ Markulf Kohlweiss² Giorgia Azzurra Marson³ Daniele Venturi¹

¹Aarhus University

²Microsoft Research, Cambridge

³TU Darmstadt

INDOCRYPT 2012

Faust, Kohlweiss, Marson, Venturi

Non-malleability of Fiat-Shamir

INDOCRYPT'12 1 / 17

Our result in a nutshell

Fiat-Shamir

Sigma Protocol

Our result in a nutshell

Fiat-Shamir

non-malleable NIZK

Sigma Protocol

Fiat-Shamir

non-malleable NIZK

Thought to be a folklore result...

Fiat-Shamir

non-malleable NIZK

- Thought to be a folklore result...
- ... but formalization non trivial

Fiat-Shamir

non-malleable NIZK

- Thought to be a folklore result...
- ... but formalization non trivial

Our contribution:

 Formalize notions in RO model (analog to CRS model)

Fiat-Shamir

non-malleable NIZK

- Thought to be a folklore result...
- ... but formalization non trivial

Our contribution:

- Formalize notions in RO model (analog to CRS model)
- Prove Fiat-Shamir NIZKs to be simulation-sound and -extractable under mild requirements

Fiat-Shamir

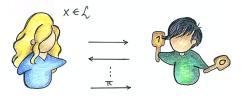
non-malleable NIZK

- Thought to be a folklore result...
- ... but formalization non trivial

Our contribution:

- Formalize notions in RO model (analog to CRS model)
- Prove Fiat-Shamir NIZKs to be simulation-sound and -extractable under mild requirements
- Corollary (of known applications of NIZKs):
 - efficient leakage-resilient CCA2-secure PKE
 - efficient KDM CCA2-secure PKE
 - efficient leakage-resilient signatures

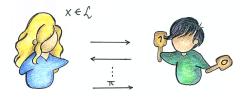
Established notions and known results


- Interactive protocols
- Non-interactive protocols
- Non-malleability for NIZKs

Established notions and known results

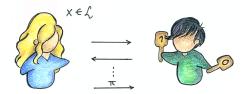
- Interactive protocols
- Non-interactive protocols
- Non-malleability for NIZKs

2 Our contribution


- Properties of the Fiat-Shamir transform
- Applications

Prover \mathcal{P}

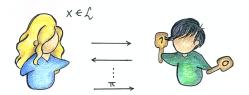
Verifier \mathcal{V}



Prover \mathcal{P}

Verifier \mathcal{V}

- *P* wants to convince *efficient V* that string *x* belongs to language *L*
- \blacksquare interaction leads to proof π



Prover \mathcal{P}

Verifier \mathcal{V}

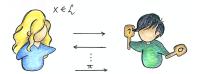
- *P* wants to convince *efficient V* that string *x* belongs to language *L*
- \blacksquare interaction leads to proof π

 V outputs verdict: accept or reject

Prover \mathcal{P}

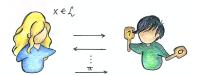
Verifier \mathcal{V}

- *P* wants to convince *efficient V* that string *x* belongs to language *L*
- \blacksquare interaction leads to proof π


 V outputs verdict: accept or reject

Completeness + Soundness

In a *zero-knowledge* proof, \mathcal{P} convinces \mathcal{V} that a statement is true, but \mathcal{V} does not learn anything beyond its validity

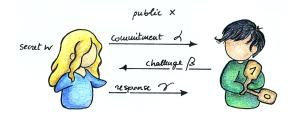


In a *zero-knowledge* proof, \mathcal{P} convinces \mathcal{V} that a statement is true, but \mathcal{V} does not learn anything beyond its validity

Whatever \mathcal{V} learns from interaction with \mathcal{P} ...

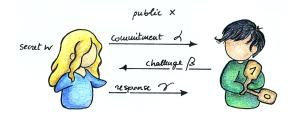
In a *zero-knowledge* proof, \mathcal{P} convinces \mathcal{V} that a statement is true, but \mathcal{V} does not learn anything beyond its validity

Whatever \mathcal{V} learns from interaction with \mathcal{P} ...


 \dots can be **simulated** by efficient algorithm ${\cal S}$

Sigma protocols

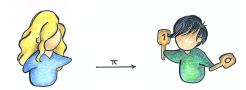
- \mathcal{P} and \mathcal{V} share input x
- P holds private input w
 (w wintess for x ∈ L)
- 3-move interaction
 - 1 commitment
 - 2 challenge
 - 3 response


public × secret w challinge B response V

- **\mathbf{P}** and $\mathcal V$ share input x
- P holds private input w
 (w wintess for x ∈ L)
- 3-move interaction
 - 1 commitment
 - 2 challenge
 - 3 response

Honest-verifier zero knowledge (HVZK) Zero knowledge only for *honest-but-curious* V

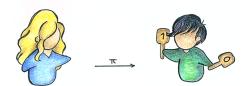
- **\mathbf{P}** and $\mathcal V$ share input x
- P holds private input w
 (w wintess for x ∈ L)
- 3-move interaction
 - 1 commitment
 - 2 challenge
 - 3 response


- Honest-verifier zero knowledge (HVZK) Zero knowledge only for *honest-but-curious* V
- Special soundness

Exists efficient extractor \mathcal{E}_{sp} that outputs witness given two different accepting proof with same α

How to prove in zero knowledge without interaction

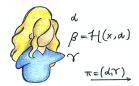
Non-interactive proofs


- \mathcal{P} sends single message π
- Can it be zero knowledge?

How to prove in zero knowledge without interaction

Non-interactive proofs

- \mathcal{P} sends single message π
- Can it be zero knowledge?
- Standard model: non-interactive ZK (NIZK) exists only for trivial languages


How to prove in zero knowledge without interaction

Non-interactive proofs

- \mathcal{P} sends single message π
- Can it be zero knowledge?
- Standard model: non-interactive ZK (NIZK) exists only for trivial languages

Fiat-Shamir transform

- Introduced to build efficient signature schemes [FS86]
- Turns 3-move IP into non-interactive ones
- *H* is a "good hash function" (modeled as a RO)

How to prove in zero knowledge without interaction

Non-interactive proofs

- \mathcal{P} sends single message π
- Can it be zero knowledge?
- Standard model: non-interactive ZK (NIZK) exists only for trivial languages

Fiat-Shamir transform

- Introduced to build efficient signature schemes [FS86]
- Turns 3-move IP into non-interactive ones
- \mathcal{H} is a "good hash function" (modeled as a RO)

The Fiat-Shamir transform turns any Sigma protocol Σ into a *non-interactive zero-knowledge* protocol Σ_{FS}

Faust, Kohlweiss, Marson, Venturi

Non-malleability of Fiat-Shamir

B=H(x,a)

T=(dr)

A proof is **sound** if no malicious $\check{\mathcal{P}}$ can convince \mathcal{V} to accept false statements

A proof is **sound** if no malicious $\check{\mathcal{P}}$ can convince \mathcal{V} to accept false statements

- - could forward simulated fake proofs
 - could create new fake proofs from simulated ones

A proof is **sound** if no malicious $\check{\mathcal{P}}$ can convince \mathcal{V} to accept false statements

- Problem: when malicious
 Ď observes simulated proofs
 - could forward simulated fake proofs (no way to prevent!)
 - could create new fake proofs from simulated ones
- need to strengthen soundness [S99]

A proof is **sound** if no malicious $\check{\mathcal{P}}$ can convince \mathcal{V} to accept false statements

- - could forward simulated fake proofs (no way to prevent!)
 - could create new fake proofs from simulated ones

need to strengthen soundness [S99]

A NIZK is *simulation-sound* if no $\check{\mathcal{P}}$ can produce fresh accepting proofs of false statements, even if she observes simulated (fake) proofs

Knowledge extraction for IP

- \mathcal{P} proves that she knows witness w for $x \in \mathcal{L}$
- Formally: if *P* convinces *V*...

Knowledge extraction for IP

- \mathcal{P} proves that she knows witness w for $x \in \mathcal{L}$
- Formally: if \mathcal{P} convinces \mathcal{V} ...

■ ... then *E* can extract *w* (*E* can rewind *P*)

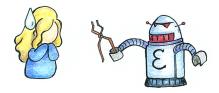
Knowledge extraction for IP

- \mathcal{P} proves that she knows witness w for $x \in \mathcal{L}$
- Formally: if *P* convinces *V*...

Analogously, for NIZK proofs: Weak simulation extractability

- $\blacksquare \mathcal{P}$ obtains simulated proof by \mathcal{S}
- \mathcal{P} succeeds if outputs fresh proof
- \blacksquare algorithm ${\mathcal E}$ can run ${\mathcal P}$
- $\blacksquare \mathcal{E}$ rewinds \mathcal{P}

■ ...then *E* can extract *w* (*E* can rewind *P*)


Knowledge extraction for IP

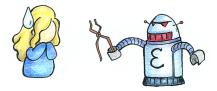
- \mathcal{P} proves that she knows witness w for $x \in \mathcal{L}$
- Formally: if \mathcal{P} convinces \mathcal{V} ...

Analogously, for NIZK proofs: Weak simulation extractability

- $\blacksquare \mathcal{P}$ obtains simulated proof by \mathcal{S}
- \mathcal{P} succeeds if outputs fresh proof
- \blacksquare algorithm ${\mathcal E}$ can run ${\mathcal P}$
- $\blacksquare \mathcal{E}$ rewinds \mathcal{P}

■ ... then *E* can extract *w* (*E* can rewind *P*)

A NIZK proof $(\mathcal{P}, \mathcal{V})$ is *simulation-extractable* if \mathcal{P} observes simulated proofs for (possibly false) statements and, whenever \mathcal{P} succeeds, \mathcal{E} extracts a valid witness


Knowledge extraction for IP

- \mathcal{P} proves that she knows witness w for $x \in \mathcal{L}$
- Formally: if *P* convinces *V*...

Analogously, for NIZK proofs: Weak simulation extractability

- $\blacksquare \mathcal{P}$ obtains simulated proof by \mathcal{S}
- \mathcal{P} succeeds if outputs fresh proof
- \blacksquare algorithm ${\mathcal E}$ can run ${\mathcal P}$
- $\blacksquare \mathcal{E}$ rewinds \mathcal{P}

■ ...then *E* can extract *w* (*E* can rewind *P*)

 $\begin{array}{l} \textbf{Strong simulation-extractability}\\ \mathcal{E} \text{ on-line extractor (does not rewind } \mathcal{P}) \end{array}$

A NIZK proof $(\mathcal{P}, \mathcal{V})$ is *simulation-extractable* if \mathcal{P} observes simulated proofs for (possibly false) statements and, whenever \mathcal{P} succeeds, \mathcal{E} extracts a valid witness

Established notions and known results

- Interactive protocols
- Non-interactive protocols
- Non-malleability for NIZKs

2 Our contribution

- Properties of the Fiat-Shamir transform
- Applications

Efficient simulation-sound and extractable NIZKs

Fiat-Shamir paradigm applied to a specific Sigma protocol to get simulation-sound NIZKs in the RO model [FP01]

Efficient simulation-sound and extractable NIZKs

Fiat-Shamir paradigm applied to a specific Sigma protocol to get simulation-sound NIZKs in the RO model [FP01] In general?

Our main result:

The Fiat-Shamir transform yields **simulation sound** NIZKs under mild assumptions.

Efficient simulation-sound and extractable NIZKs

Fiat-Shamir paradigm applied to a specific Sigma protocol to get simulation-sound NIZKs in the RO model [FP01] In general?

Our main result:

The Fiat-Shamir transform yields **simulation sound** NIZKs under mild assumptions.

Theorem 1. Let Σ be a three-round HVZK interactive protocol with quasi-unique responses. Then, in the RO model, Σ_{FS} is simulation-sound.

Efficient simulation-sound and extractable NIZKs

Fiat-Shamir paradigm applied to a specific Sigma protocol to get simulation-sound NIZKs in the RO model [FP01] In general?

Our main result:

The Fiat-Shamir transform yields **simulation sound** and **extractable** NIZKs under mild assumptions.

Theorem 1. Let Σ be a three-round HVZK interactive protocol with quasi-unique responses. Then, in the RO model, Σ_{FS} is simulation-sound.

Theorem 2. Let Σ be a sigma-protocol with quasi-unique responses. Then, in the RO model, Σ_{FS} is weakly simulation-extractable.

Efficient simulation-sound and extractable NIZKs

Fiat-Shamir paradigm applied to a specific Sigma protocol to get simulation-sound NIZKs in the RO model [FP01] In general?

Our main result:

The Fiat–Shamir transform yields **simulation sound** and **extractable** NIZKs under mild* assumptions.

Theorem 1. Let Σ be a three-round HVZK interactive protocol with quasi-unique responses. Then, in the RO model, Σ_{FS} is simulation-sound.

Theorem 2. Let Σ be a sigma-protocol with quasi-unique responses. Then, in the RO model, Σ_{FS} is weakly simulation-extractable.

 * A 3-move protocol has quasi-unique responses if it is hard to find two valid proofs which differ only in γ

Non-malleability of Fiat-Shamir

Simulation-sound and extractable NIZKs as building-blocks:

- from CPA to CCA security for public-key encryption
- Key-dependent message (KDM) security
- Leakage-resilient signatures

Chosen-ciphertext security

Twin encryption and zero-knowledge proof

Naor-Yung transformation

- start from PKE scheme
- encrypt message twice under two independent public keys
- add proof of equality of plaintexts

(witness = message + randomness used by Enc)

Chosen-ciphertext security Twin encryption and zero-knowledge proof

Naor-Yung transformation

- start from PKE scheme
- encrypt message twice under two independent public keys
- add proof of equality of plaintexts

(witness = message + randomness used by Enc)

CPA-secure PKE +		NIZK proof
yields CCA	security	
[NY90]		

Chosen-ciphertext security Twin encryption and zero-knowledge proof

Naor-Yung transformation

- start from PKE scheme
- encrypt message twice under two independent public keys
- add proof of equality of plaintexts

(witness = message + randomness used by Enc)

CPA-secure PKE + simulation-sound NIZK proof yields CCA2 security [NY90] [S99]

Chosen-ciphertext security Twin encryption and zero-knowledge proof

Naor-Yung transformation

- start from PKE scheme
- encrypt message twice under two independent public keys

add proof of equality of plaintexts

(witness = message + randomness used by Enc)

LR-CPA-secure PKE + simulation-sound NIZK proof yields LR-CCA2 security [NY90] [S99] [NS09]

Chosen-ciphertext security <u>Twin encryption and zero-knowledge proof</u>

Naor-Yung transformation

- start from PKE scheme
- encrypt message twice under two independent public keys

add proof of equality of plaintexts

(witness = message + randomness used by Enc)

LR-CPA-secure PKE + simulation-sound NIZK proof yields LR-CCA2 security [NY90] [S99] [NS09]

Our concrete instantiation:

- LR-CPA PKE scheme, generalization of ElGamal [BHHO09]
- NIZK protocol Σ_{FS} derived from sigma protocol associated with the corresponding NY language

A PKE scheme has *key-dependent message* security if it remains secure even given the encryption of some (known) functions of the decryption key A PKE scheme has *key-dependent message* security if it remains secure even given the encryption of some (known) functions of the decryption key

The Naor-Yung paradigm preserves KDM security [CCS09]:

CPA + KDM-CPA PKEs + simulation-sound NIZK proof yields KDM-CCA2 security

A PKE scheme has *key-dependent message* security if it remains secure even given the encryption of some (known) functions of the decryption key

The Naor-Yung paradigm preserves KDM security [CCS09]:

CPA + KDM-CPA PKEs + simulation-sound NIZK proof yields KDM-CCA2 security

Our concrete instantiation:

- ElGamal + BHHO PKE schemes
- NIZK protocol Σ_{FS} derived from sigma protocol associated with corresponding NY language

Generic construction based on hard relations [DHLW10]:

Generic construction based on hard relations [DHLW10]:

- \blacksquare leakage-resilient hard relation ρ
- **simulation-extractable** NIZK $(\mathcal{P}, \mathcal{V})$ for ρ'
 - $(\rho' \text{ derived from } \rho \text{ by including message to be signed})$

Generic construction based on hard relations [DHLW10]:

- \blacksquare leakage-resilient hard relation ρ
- **simulation-extractable** NIZK $(\mathcal{P}, \mathcal{V})$ for ρ'
 - (
 ho' derived from ho by including message to be signed)

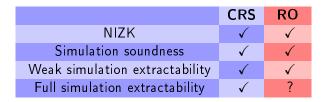
Our instantiation:

- NIZK protocol Σ_{FS} derived from sigma protocol associated to ho'
- Σ_{FS} is only weakly simulation-extractable

Generic construction based on hard relations [DHLW10]:

- \blacksquare leakage-resilient hard relation ρ
- **simulation-extractable** NIZK $(\mathcal{P}, \mathcal{V})$ for ho'
 - (
 ho' derived from ho by including message to be signed)

Our instantiation:


- \blacksquare NIZK protocol Σ_{FS} derived from sigma protocol associated to ρ'
- Σ_{FS} is only weakly simulation-extractable
- Construction still works! (factor 2 loss in leakage)

Generic construction based on hard relations [DHLW10]:

- \blacksquare leakage-resilient hard relation ρ
- **simulation-extractable** NIZK $(\mathcal{P}, \mathcal{V})$ for ρ'
 - (
 ho' derived from ho by including message to be signed)

Our instantiation:

- \blacksquare NIZK protocol Σ_{FS} derived from sigma protocol associated to ρ'
- Σ_{FS} is only weakly simulation-extractable
- Construction still works!* (factor 2 loss in leakage)
 - * Weak simulation extractability guarantees that ${\mathcal E}$ extracts w with non-negligible probability

Our contribution:

- Formalized security properties for NIZKs in the RO model
- Proved Fiat-Shamir transform to yield simulation-sound and weakly simulation-extractable NIZKs
- Applications: LR-CCA2 and KDM-CCA2 secure PKEs, LR signaures

Our contribution:

- Formalized security properties for NIZKs in the RO model
- Proved Fiat-Shamir transform to yield simulation-sound and weakly simulation-extractable NIZKs
- Applications: LR-CCA2 and KDM-CCA2 secure PKEs, LR signaures

Our contribution:

- Formalized security properties for NIZKs in the RO model
- Proved Fiat-Shamir transform to yield simulation-sound and weakly simulation-extractable NIZKs
- Applications: LR-CCA2 and KDM-CCA2 secure PKEs, LR signaures

Open Problem:

Can we achieve full simulation extractability?

Thank you for your attention

© CASED

