On the Connection between Leakage Tolerance and Adaptive Security

Daniele Venturi

Aarhus University

PKC 2013—Nara

Joint work with Jesper Buus Nielsen and Angela Zottarel

• Secret communication (in a world where public-key crypto exists)

• Secret communication (in a world where public-key crypto exists)

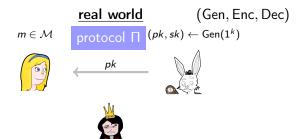
real world

 $m \in \mathcal{M}$

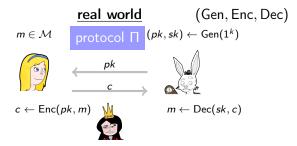
• Secret communication (in a world where public-key crypto exists)

(Gen, Enc, Dec)

• Secret communication (in a world where public-key crypto exists)

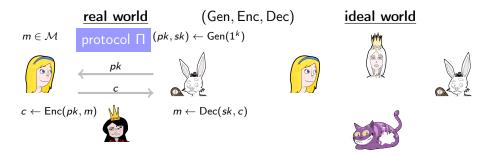


• Secret communication (in a world where public-key crypto exists)

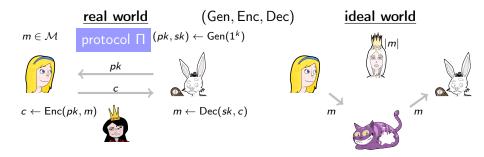


1

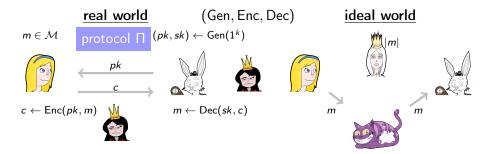
• Secret communication (in a world where public-key crypto exists)



• Secret communication (in a world where public-key crypto exists)

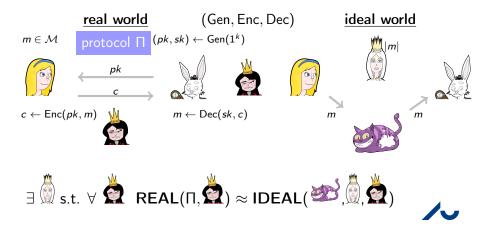


• Secret communication (in a world where public-key crypto exists)

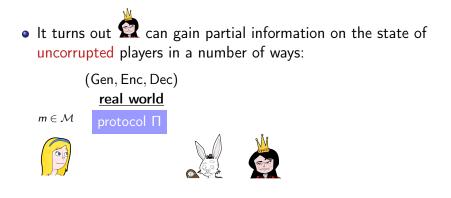


10

• Secret communication (in a world where public-key crypto exists)

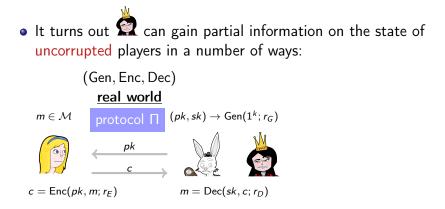


• It turns out a can gain partial information on the state of uncorrupted players in a number of ways:

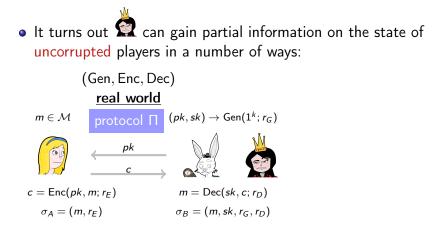


1

3 / 19



1



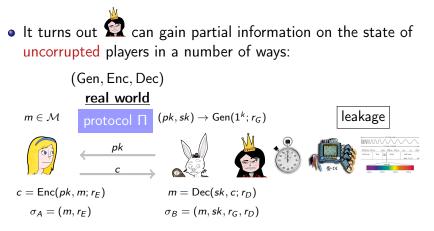
∕~

3 / 19

• It turns out 🕱 can gain partial information on the state of uncorrupted players in a number of ways: (Gen, Enc, Dec) real world protocol \sqcap $(pk, sk) \rightarrow \text{Gen}(1^k; r_G)$ leakage $m \in \mathcal{M}$ pk $c = \text{Enc}(pk, m; r_E)$ $m = \text{Dec}(sk, c; r_D)$ $\sigma_{\Delta} = (m, r_{\rm F})$ $\sigma_B = (m, sk, r_G, r_D)$

D. Venturi (Aarhus) Leakage Tolerance and Adaptive Security PKC 2013—Nara

3 / 19



• Even partial leakage on σ_A or σ_B sufficient to put security of the scheme under attack on edge

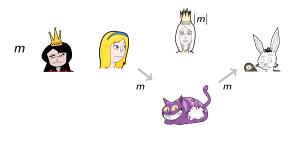
• In the UC framework 🗒 could have a very hard life

- In the UC framework 🖗 could have a very hard life
 - e.g., semantic security impossible for a single bit of leakage on m

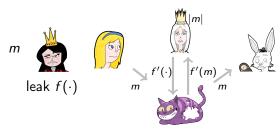
- In the UC framework 🖗 could have a very hard life
 - e.g., semantic security impossible for a single bit of leakage on m
- Natural fix: Allow to leak on the ideal state

- In the UC framework 🕅 could have a very hard life
 - e.g., semantic security impossible for a single bit of leakage on m
- Natural fix: Allow to leak on the ideal state

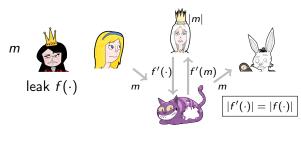
- In the UC framework 🕅 could have a very hard life
 - e.g., semantic security impossible for a single bit of leakage on m
- Natural fix: Allow to leak on the ideal state



- In the UC framework 🕅 could have a very hard life
 - e.g., semantic security impossible for a single bit of leakage on m
- Natural fix: Allow to leak on the ideal state



- In the UC framework 🖗 could have a very hard life
 - e.g., semantic security impossible for a single bit of leakage on m
- Natural fix: Allow to leak on the ideal state



• At TCC 2012 Bitanski, Canetti and Halevi defined simulation-based leakage tolerance in the UC framework

- At TCC 2012 Bitanski, Canetti and Halevi defined simulation-based leakage tolerance in the UC framework
- Leakage is modeled as a partial form of passive corruption

- At TCC 2012 Bitanski, Canetti and Halevi defined simulation-based leakage tolerance in the UC framework
- Leakage is modeled as a partial form of passive corruption

- At TCC 2012 Bitanski, Canetti and Halevi defined simulation-based leakage tolerance in the UC framework
- Leakage is modeled as a partial form of passive corruption
 - \bullet Instead of seeing the entire state, ${\ensuremath{\underline{\ensuremath{\underline{B}}}}}$ can leak part of it
- Their main result is that passive adaptive security implies leakage tolerance for a large class of functionalities

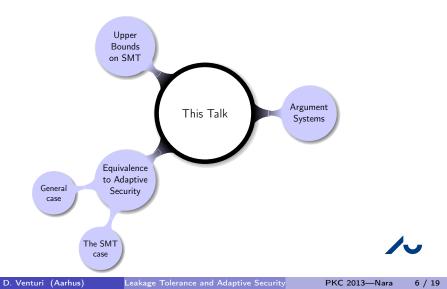
- At TCC 2012 Bitanski, Canetti and Halevi defined simulation-based leakage tolerance in the UC framework
- Leakage is modeled as a partial form of passive corruption
 - \bullet Instead of seeing the entire state, ${\mitstar}{\mitstar}$ can leak part of it
- Their main result is that passive adaptive security implies leakage tolerance for a large class of functionalities
 - Intuition: If a can fake the entire real state, it can also simulate any leakage from it!

- At TCC 2012 Bitanski, Canetti and Halevi defined simulation-based leakage tolerance in the UC framework
- Leakage is modeled as a partial form of passive corruption
 - \bullet Instead of seeing the entire state, ${\mitstar}{\mitstar}$ can leak part of it
- Their main result is that passive adaptive security implies leakage tolerance for a large class of functionalities
 - Intuition: If a can fake the entire real state, it can also simulate any leakage from it!

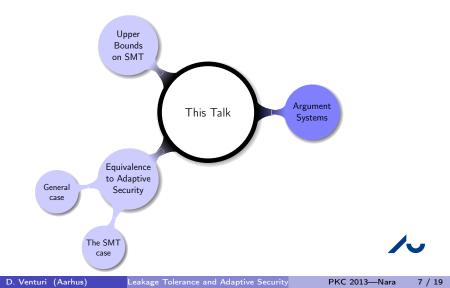
5 / 19

• This work: We look at the other direction

Roadmap



Roadmap

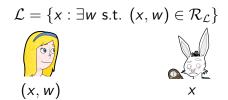


• An argument system is an interactive protocol in which \bigcirc convinces \checkmark that some x is in $\mathcal{L} \subset NP$

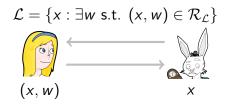
• An argument system is an interactive protocol in which \bigcirc convinces \checkmark that some x is in $\mathcal{L} \subset NP$

$$\mathcal{L} = \{x : \exists w \text{ s.t. } (x, w) \in \mathcal{R}_{\mathcal{L}}\}$$

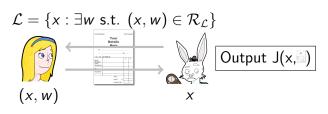
• An argument system is an interactive protocol in which \bigcirc convinces \checkmark that some x is in $\mathcal{L} \subset \mathsf{NP}$



• An argument system is an interactive protocol in which \bigcirc convinces \swarrow that some x is in $\mathcal{L} \subset \mathsf{NP}$

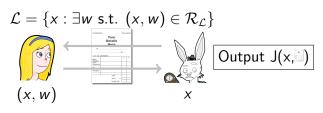


• An argument system is an interactive protocol in which \bigcirc convinces \checkmark that some x is in $\mathcal{L} \subset \mathsf{NP}$



Arguments of knowledge

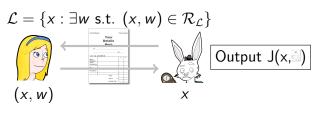
• An argument system is an interactive protocol in which \bigcirc convinces \checkmark that some x is in $\mathcal{L} \subset \mathbf{NP}$



• Completeness: If $x \in \mathcal{L}$ the proof always succeeds

Arguments of knowledge

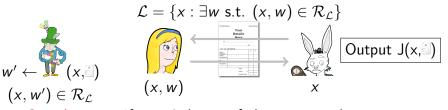
• An argument system is an interactive protocol in which \bigcirc convinces \checkmark that some x is in $\mathcal{L} \subset \mathsf{NP}$



- Completeness: If $x \in \mathcal{L}$ the proof always succeeds
- Computational soundness: A computationally bounded 📁 can cheat only with small probability

Arguments of knowledge

• An argument system is an interactive protocol in which \bigcirc convinces \checkmark that some x is in $\mathcal{L} \subset \mathbf{NP}$



- Completeness: If $x \in \mathcal{L}$ the proof always succeeds
- Computational soundness: A computationally bounded 🥬 can cheat only with small probability
- Argument of knowledge: We can extract a valid *w* in polynomial time from an accepting proof

 Let AM(ρ, λ) be the class of argument systems with ρ messages and total communication complexity λ

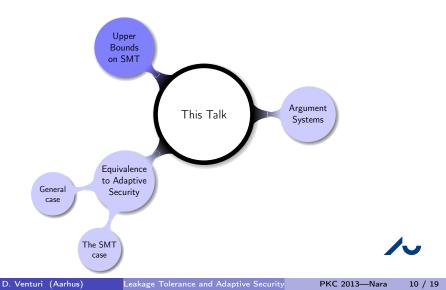
- Let $AM(\rho, \lambda)$ be the class of argument systems with ρ messages and total communication complexity λ
- At STOC '92 Kilian showed that every language in NP has an argument of knowledge in AM(4, poly(log k))

- Let $AM(\rho, \lambda)$ be the class of argument systems with ρ messages and total communication complexity λ
- At STOC '92 Kilian showed that every language in NP has an argument of knowledge in AM(4, poly(log k))
 - Such arguments are often called succinct

- Let $AM(\rho, \lambda)$ be the class of argument systems with ρ messages and total communication complexity λ
- At STOC '92 Kilian showed that every language in NP has an argument of knowledge in AM(4, poly(log k))
 - Such arguments are often called succinct
 - Main ingredients: PCP theorem + Merkle trees

9 / 19

Roadmap

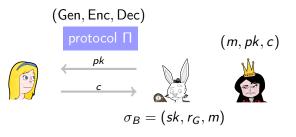


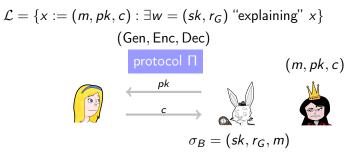
Leakage-tolerant SMT requires large keys

Theorem: Assume collision resistant function ensembles exist. Let Π be a leakage tolerant protocol for SMT tolerating poly-logarithmic leakage. Then,

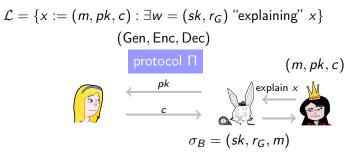
$$|\mathcal{SK}| \ge (1-\epsilon)|\mathcal{M}|$$
 for negligible ϵ .

ん

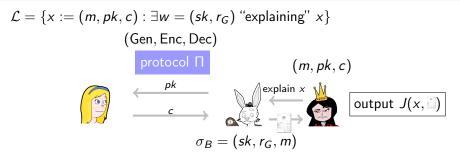


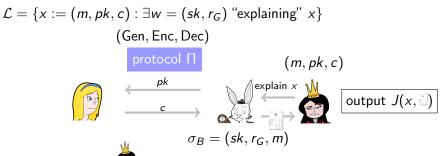


1

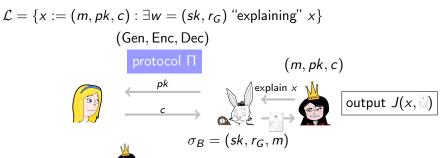


ん



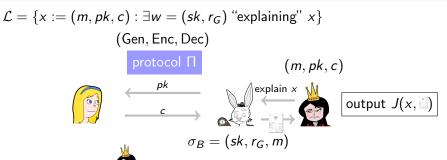


• In the attack 💭 plays the verifier in the proof system and simulates the interaction with the prover via leakage queries



- In the attack 💭 plays the verifier in the proof system and simulates the interaction with the prover via leakage queries
 - The above can be done because knows a witness and the communication complexity is at most poly-logarithmic

D. Venturi (Aarhus) Leakage Tolerance and Adaptive Security PKC 2013—Nara 12 / 19



- In the attack 💭 plays the verifier in the proof system and simulates the interaction with the prover via leakage queries
 - The above can be done because knows a witness and the communication complexity is at most poly-logarithmic
 - 😰 can compute the verifier's next message and "hard-wire" the result in the next leakage query

D. Venturi (Aarhus)

Leakage Tolerance and Adaptive Security

• It follows by leakage tolerance that $\exists \overset{\textcircled{}}{\textcircled{}}$ simulating $\overset{\textcircled{}}{\textcircled{}}$'s view

- It follows by leakage tolerance that $\exists \overset{\textcircled{}}{\bigcirc}$ simulating $\overset{\textcircled{}}{\bigstar}$'s view
 - In particular note that "translates" leakage queries on the real state to leakage queries on the ideal state

- It follows by leakage tolerance that $\exists \overset{@}{\otimes} simulating \overset{@}{\otimes} s$ view
 - In particular note that "translates" leakage queries on the real state to leakage queries on the ideal state
- Since the proof is for sure valid in the real world, so it must be in the ideal world, i.e. $x = (m, pk, c) \in \mathcal{L}$ by soundness

- It follows by leakage tolerance that $\exists \overset{@}{\longrightarrow} simulating \overset{@}{\bigstar}$'s view
 - In particular note that "translates" leakage queries on the real state to leakage queries on the ideal state
- Since the proof is for sure valid in the real world, so it must be in the ideal world, i.e. $x = (m, pk, c) \in \mathcal{L}$ by soundness

$$M_{pk,c} := \{m' \in \mathcal{M} : \exists sk' \text{ explaining } c\}$$

- It follows by leakage tolerance that $\exists \overset{@}{\longrightarrow} simulating \overset{@}{\bigstar}$'s view
 - In particular note that "translates" leakage queries on the real state to leakage queries on the ideal state
- Since the proof is for sure valid in the real world, so it must be in the ideal world, i.e. $x = (m, pk, c) \in \mathcal{L}$ by soundness

$$M_{pk,c} := \{m' \in \mathcal{M} : \exists sk' \text{ explaining } c\}$$

$$\underline{\mathsf{Claim:}} \ \mathbb{P}[m \in M_{pk,c}] \geq 1 - \epsilon$$

• It follows by leakage tolerance that $\exists \bigcup^{m}$ simulating \bigotimes^{m} 's view

- In particular note that "translates" leakage queries on the real state to leakage queries on the ideal state
- Since the proof is for sure valid in the real world, so it must be in the ideal world, i.e. $x = (m, pk, c) \in \mathcal{L}$ by soundness

$$M_{pk,c} := \{ m' \in \mathcal{M} : \exists sk' \text{ explaining } c \}$$

$$\underline{\text{Claim:}} \mathbb{P}[m \in M_{pk,c}] \geq 1 - \epsilon \Rightarrow |M_{pk,c}| \geq (1 - \epsilon)|\mathcal{M}|$$

• It follows by leakage tolerance that $\exists \overset{\textcircled{}}{\bigcirc}$ simulating $\overset{\textcircled{}}{\bigstar}$'s view

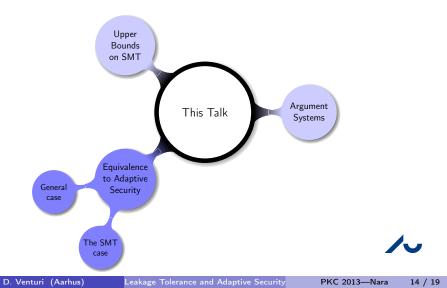
- In particular note that "translates" leakage queries on the real state to leakage queries on the ideal state
- Since the proof is for sure valid in the real world, so it must be in the ideal world, i.e. $x = (m, pk, c) \in \mathcal{L}$ by soundness

$$\mathcal{M} \qquad \mathcal{M}_{pk,c} \qquad \underbrace{\mathsf{C}}_{\forall}$$

$$M_{pk,c} := \{ m' \in \mathcal{M} : \exists sk' \text{ explaining } c \}$$

 $\begin{array}{l} \underline{\mathsf{Claim:}} \ \mathbb{P}[m \in M_{pk,c}] \geq 1 - \epsilon \Rightarrow |M_{pk,c}| \geq (1 - \epsilon)|\mathcal{M}| \\ \\ \forall m_0 \neq m_1 \in M_{pk,c} \ \text{it is} \ sk_0 \neq sk_1 \Rightarrow |\mathcal{SK}| \geq |M_{pk,c}| \end{array}$

Roadmap



<u>Theorem</u>: Let Π be a leakage tolerant protocol for SMT tolerating poly-logarithmic leakage at the receiver side at the end of the protocol execution. Then Π is passively secure against an adaptive corruption of the receiver at the end of the protocol execution.

Theorem: Let Π be a leakage tolerant protocol for SMT tolerating poly-logarithmic leakage at the receiver side at the end of the protocol execution. Then Π is passively secure against an adaptive corruption of the receiver at the end of the protocol execution.

• Consider the same 🗟 as before in the real world of the leakage game, but now ask to leak an argument of knowledge for $x \in \mathcal{L}$

<u>Theorem</u>: Let Π be a leakage tolerant protocol for SMT tolerating poly-logarithmic leakage at the receiver side at the end of the protocol execution. Then Π is passively secure against an adaptive corruption of the receiver at the end of the protocol execution.

- Consider the same \bigotimes as before in the real world of the leakage game, but now ask to leak an argument of knowledge for $x \in \mathcal{L}$
- From this we get a valid simulator 💭 in the ideal world

<u>Theorem</u>: Let Π be a leakage tolerant protocol for SMT tolerating poly-logarithmic leakage at the receiver side at the end of the protocol execution. Then Π is passively secure against an adaptive corruption of the receiver at the end of the protocol execution.

- Consider the same $\widehat{\mathbf{Q}}$ as before in the real world of the leakage game, but now ask to leak an argument of knowledge for $x \in \mathcal{L}$
- From this we get a valid simulator 🕅 in the ideal world
- Since the proof will accept with overwhelming probability, a simulator $\overset{\sim}{\textcircled{0}}$ for the adaptive security game can run $\overset{\leftrightarrow}{\textcircled{0}}$ and extract from it a consistent state $w = (sk, r_G)$

• Unfortunately, such state may not look indistinguishable from the real state! The difficulty will be to "enforce" indistinguishability

- Unfortunately, such state may not look indistinguishable from the real state! The difficulty will be to "enforce" indistinguishability
- To argue indistinguishability consider the following $\hat{\underline{\mathbf{G}}}(\tilde{\underline{\mathbf{\delta}}})$ in the leakage game

- Unfortunately, such state may not look indistinguishable from the real state! The difficulty will be to "enforce" indistinguishability
- To argue indistinguishability consider the following $\hat{\underline{\mathbf{G}}}(\tilde{\underline{\mathbf{\delta}}})$ in the leakage game
 - Let the protocol flow leading to x = (m, pk, c) and $w = (sk, r_G)$

- Unfortunately, such state may not look indistinguishable from the real state! The difficulty will be to "enforce" indistinguishability
- To argue indistinguishability consider the following $\overset{\sim}{(a)}(\overset{\sim}{\underline{b}})$ in the leakage game
 - Let the protocol flow leading to x = (m, pk, c) and $w = (sk, r_G)$
 - Leak (1) h = H(w); (2) a proof that x and h are consistent; (3) a guess $b = \overleftarrow{\mathfrak{Q}}(m, w)$; (4) a proof that b and h are consistent

- Unfortunately, such state may not look indistinguishable from the real state! The difficulty will be to "enforce" indistinguishability
- To argue indistinguishability consider the following $\overset{\sim}{(a)}(\overset{\sim}{\underline{b}})$ in the leakage game
 - Let the protocol flow leading to x = (m, pk, c) and $w = (sk, r_G)$
 - Leak (1) h = H(w); (2) a proof that x and h are consistent; (3) a guess $b = \overleftarrow{a}(m, w)$; (4) a proof that b and h are consistent
 - Output b

- Unfortunately, such state may not look indistinguishable from the real state! The difficulty will be to "enforce" indistinguishability
- To argue indistinguishability consider the following $\hat{\underline{\mathbb{Q}}}(\check{\underline{\mathbb{A}}})$ in the leakage game
 - Let the protocol flow leading to x = (m, pk, c) and $w = (sk, r_G)$
 - Leak (1) h = H(w); (2) a proof that x and h are consistent; (3)
 - a guess $b = \bigotimes^{m}(m, w)$; (4) a proof that b and h are consistent
 - Output *b*
- We use $\overset{\textcircled{0}}{\textcircled{0}}$ to build $\overset{\textcircled{0}}{\textcircled{0}}$ in the adaptive security game

- Unfortunately, such state may not look indistinguishable from the real state! The difficulty will be to "enforce" indistinguishability
- To argue indistinguishability consider the following $\hat{\underline{Q}}(\check{\underline{\diamond}})$ in the leakage game
 - Let the protocol flow leading to x = (m, pk, c) and $w = (sk, r_G)$
 - Leak (1) h = H(w); (2) a proof that x and h are consistent; (3)
 - a guess $b = \mathbf{\hat{Q}}(m, w)$; (4) a proof that b and h are consistent • Output b
- We use $\overset{\textcircled{0}}{\textcircled{0}}$ to build $\overset{\textcircled{0}}{\textcircled{0}}$ in the adaptive security game
 - If we now extract *w* from the proof in (2) above, we get the right distribution (unless collision resistance is broken)

• The previous statement can be generalized to an arbitrary *n*-party protocol where a single party gets corrupted at the end of the protocol execution

- The previous statement can be generalized to an arbitrary *n*-party protocol where a single party gets corrupted at the end of the protocol execution
- However, the proof breaks down when $t \ge 2$ parties can be corrupted

- The previous statement can be generalized to an arbitrary *n*-party protocol where a single party gets corrupted at the end of the protocol execution
- However, the proof breaks down when $t \ge 2$ parties can be corrupted
 - The reason is that we cannot send anymore $\widehat{\mathbb{Q}}$ into the parties and leak its guess, since now we should get $\widehat{\mathbb{Q}}(w_1, \ldots, w_t)$ and it is not clear how to leak this value from small leakages $f(w_1), \ldots, f(w_t)$

- The previous statement can be generalized to an arbitrary *n*-party protocol where a single party gets corrupted at the end of the protocol execution
- However, the proof breaks down when $t \ge 2$ parties can be corrupted
 - The reason is that we cannot send anymore $\widehat{\mathbf{Q}}$ into the parties

and leak its guess, since now we should get $\mathfrak{Q}(w_1, \ldots, w_t)$ and it is not clear how to leak this value from small leakages $f(w_1), \ldots, f(w_t)$

• We obtain in this case a weaker form of adaptive security, i.e. we can still extract a consistent internal state but this may not be indistinguishable from a real state

• We have studied the connection between adaptive security and simulation-based leakage tolerance

- We have studied the connection between adaptive security and simulation-based leakage tolerance
- Bitansky *et al.* [BCH12] proved that adaptive security implies leakage tolerance for a large class of functionalities

- We have studied the connection between adaptive security and simulation-based leakage tolerance
- Bitansky *et al.* [BCH12] proved that adaptive security implies leakage tolerance for a large class of functionalities
- We have shown that for some corruption case and for poly-logarithmic leakage

- We have studied the connection between adaptive security and simulation-based leakage tolerance
- Bitansky *et al.* [BCH12] proved that adaptive security implies leakage tolerance for a large class of functionalities
- We have shown that for some corruption case and for poly-logarithmic leakage
 - SMT requires a key as long as the message being encrypted

- We have studied the connection between adaptive security and simulation-based leakage tolerance
- Bitansky *et al.* [BCH12] proved that adaptive security implies leakage tolerance for a large class of functionalities
- We have shown that for some corruption case and for poly-logarithmic leakage
 - SMT requires a key as long as the message being encrypted
 - Leakage tolerance implies adaptive security

Thank You!

Beaser and Tik Z, drawings by Andrea Chronopoulos

1

D. Venturi (Aarhus)

Leakage Tolerance and Adaptive Security