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Authentication

How do we guarantee authenticity of our message?

⇓
Message is sent along with a signature

Signature Schemes

Signature scheme = (Gen, Sig ,Ver)

Gen(1k): generate a signing/veri�cation key tuple

Sign(sk,m): generate a signature on a message

Ver(m, σ): outputs 0 or 1.

Existential Unforgeability

Adversary has access to signing oracle for messages of his choice.

Adversary outputs forgery Sigsk(m
∗) for m∗ of his choice

m∗ not asked to the signing oracle.
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Signatures in a leaky world

extend this model capturing leakage

modeling adversary extracting bits from the secret key:
I leakage function h : sk 7→ {0, 1}∗.
I bounded model: |h(sk)| < λ < |sk|

Signatures in the Bounded Model

Adversary has access to signing oracle
and
oracle O(sk)(h) returning h(sk)

Adversary outputs forgery Signsk(m
∗) for m∗ of his choice

m∗ not asked to the signing oracle.
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If signatures are short..

if leakage bigger then |σ| -> adversary can leak a signature!

Entropic Unforgeability [ADW09]

Adversary does not choose the challenge message.

Challenge message is drawn from a high min-entropy distribution

This Work

New model for signatures in the bounded model:
Number of forgeries depends on the amount of leakage

Nielsen, Venturi, Zottarel () Leakage from Short Signatures March 27th, 2014 4 / 21



If signatures are short..

if leakage bigger then |σ| -> adversary can leak a signature!

Entropic Unforgeability [ADW09]

Adversary does not choose the challenge message.

Challenge message is drawn from a high min-entropy distribution

This Work

New model for signatures in the bounded model:
Number of forgeries depends on the amount of leakage

Nielsen, Venturi, Zottarel () Leakage from Short Signatures March 27th, 2014 4 / 21



If signatures are short..

if leakage bigger then |σ| -> adversary can leak a signature!

Entropic Unforgeability [ADW09]

Adversary does not choose the challenge message.

Challenge message is drawn from a high min-entropy distribution

This Work

New model for signatures in the bounded model:
Number of forgeries depends on the amount of leakage

Nielsen, Venturi, Zottarel () Leakage from Short Signatures March 27th, 2014 4 / 21



1 New Security Notions

2 Generic Construction

3 Concrete Instantiation

4 Conclusions
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One-more Unforgeability

signature scheme S = (Gen, Sign,Ver), adversary A

Expone−more
S,A (k , λ, γ)

1 A is given veri�cation key vk

2 A can query Sign(sk, ·) and O(sk)

3 A outputs (m1, σ1), . . . , (mn, σn)

Exp outputs 1 ⇐⇒

Ver(mi , σi ) = 1 for every i

m1, . . . ,mn are pairwise distinct

mi were not asked to Signsk

n ≥ bλ/(γ|σ|)c+ 1
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Remark on Parameters

n ≥ bλ/(γ|σ|)c+ 1

γ = 1 implies optimal security

λ = 0 implies n = 1 -> standard unforgeability without leakage

λ < |σ| implies n = 1 -> standard leakage resilience

λ > |σ| �graceful� degradation

best we can ask for:

A can always leak at least bλ/|σ|c signatures

⇓

security implies A cannot forger even a signature more than that
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Is One More Unforgeability Too Weak?

adversary can produce n forgeries

bad if forgeries can be chosen at will

good if forgeries are decided after the leakage phase

assume there exists a simulator

looking at the state of A after leakage phase and producing a set Q∗

Q∗ contains all the messages A can forge

⇓
then all forgeries are determined by leakage
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A Simulation-based Security Notion

Costrained One-more Unforgeability

Expone−more
S,A1,A2

(k , λ, γ)

1 A1 is given veri�cation key vk

2 A1 can query Sign(sk, ·) and O(sk)

3 S is given A1's state st and outputs Q∗ st |Q∗| ≤ bλ/(γ|σ|)c
4 A2 is given st and Q∗ and outputs (m, σ)

Exp outputs 1 ⇐⇒
Ver(m, σ) = 1

m /∈ Q ∪ Q∗

Simulator determines signatures obtained through leakage
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Equivalence

Costrained one-more unforgeability is equivalent to One-more unforgeability

Consequences

forgeries are determined after leakage phase

A cannot choose to forge on messages at its will

similar to standard unforgeability with more signing queries from
leakage oracle
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Tools

Commitment Scheme

commit to a message m using randomness r

computationally binding: hard to open a commitment to two di�erent
messages

statistically hiding: commitment reveals no info about the message

homomorphic:
Commit(m0, r0) + Commit(m1, r1) = Commit(m0 +m1, r0 + r1)
Commit(m, r)c = Commit(c ·m, c · r)

Non Interactive Argument System

proving that x is in a language L using a witness w

zero-knowledge: a simulator with trapdoor can simulate valid proofs

extractability: can extract a witness from a valid proof
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Generic Construction

Signature Scheme

Gen : sample pk and crs. Choose a0, . . . , ad , r0, . . . , rd in F .

Compute comi = Commitpk(ai , ri ).
Output sk = (a, r) and vk = (crs, pk , {comi}i )

Sign : let f (X ) =
∑

aiX
i and compute f (m).

Output a proof π∏
i

commi

i = Commit(f (m),
∑
i

ri ·mi )

Ver : verify proof π
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Theorem

Assumptions

(Setup, Commit) is statistically hiding, computationally binding and
homomorphic

(Init, Prov, Ver) is NI zero-knowledge argument of knowledge

Given the assumptions above, the scheme is one-more unforgeable for

λ = d · log |F | and γ = log |F |/|σ|
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Proof Sketch

Lemma

Consider a challenger committing to a0, . . . , ad using randomness
r0, . . . , rd

Adversary sees the commitment and can leak λ bits from a, r

Adversary can open t commitments

Adversary wins if it outputs remaining d-t values of a

P[A wins] ≤ 2λ/|F |d−t

statistically hiding -> commitments reveals no information about a

leaking λ bits decrease min-entropy of λ
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Proof Sketch Continued

A playing one-more unforgeability experiment

use simulation trapdoor to simulate proof (zero-knowledge)

if A outputs n valid forgeries (mi , σi ) extract witnesses with extraction
trapdoor

we have n tuples (m̃j , r̃j) of openings for
∏

i com
mi

j

i

event Bad: for some j we have m̃j 6= f (mj)

in case Bad we have adversary breaking binding property

in case Bad we break property from Lemma

A wins with negligible probability
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A Concrete Instantiation

Linear Assumption

for g , g1, g2 ← G and a, b, c ← F

{g , g1, g2, ga
1 , g

b
2 , g

a+b} ≈ {g , g1, g2, ga
1 , g

b
2 , g

c}

Pedersen Commitment

h1, h2 in G, h2 = hb1

Commit(x , r) = hx1h
r
2 = hx+b·r

1

Groth Argument of Knowledge

with Pedersen:∏
i (com

mi

i ) =
∏

i (h
ai

1 h
ri
2 )

mi
=

∏
i (h

ai+b·ri
1 )m

i
= h

f (m)+br̃
1

use Groth NI proof of knowledge for discrete logarithm

Notice: |σ| is independent from |sk|
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Conclusions

1 two equivalent de�nitions of unforgeability with leakage

2 capture degradation of security when λ > |σ|
3 show forgeries depends only on the speci�c leakage

4 general construction for one-more unforgebility

5 application in identi�cation schemes

6 concrete instantiation under linear assumption where |σ| is
independent from |sk|
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