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Abstract

A classic theorem of Erdős and Pósa states that there exists a constant c such that for all

positive integers k and graphs G, either G contains k vertex disjoint cycles, or there exists

a subset of at most ck log k vertices intersecting every cycle of G. We consider the following

generalization of the problem: fix a subset S of vertices of G. An S-cycle is a cycle containing

at least one vertex of S. We show that again there exists a constant c′ such that G either

contains k disjoint S-cycles, or there exists a set of at most c′k log k vertices intersecting every

S-cycle. The proof yields an algorithm for finding either the disjoint S-cycles or the set of

vertices intersecting every S-cycle. An immediate consequence is an O(logn)-approximation

algorithm for finding disjoint S-cycles.

1 Introduction

A classic theorem of Erdős and Pósa states that every graph G either contains many disjoint

cycles or there exists a bounded subset of vertices intersecting every cycle in G. Specifically,

they give the following theorem.

Theorem 1 ([8]) There exists a constant c such that for all graphs G and for all positive

integers k, G either contains k vertex disjoint cycles, or there exists a set X ⊆ V (G) with

|X| ≤ ck log k such that G−X contains no cycle.

Erdős and Pósa also show that the bound on the size of the set X is best up to the value

of the constant c, as for all positive integers k, there exist graphs Gk and a constant c′ such

that Gk does not contain either k disjoint cycles nor does Gk contain a set X of size at most

c′k log k intersecting all the cycles.

In this paper, we consider the following question. Let G be a graph and S be a subset of

the vertices. An S-cycle in G is a cycle containing at least one vertex in S. An S-cycle vertex

(edge) hitting set is a subset X ⊆ V (G) (X ⊆ E(G)) such that every S-cycle contains at least

one vertex (edge) of X. We consider the extension of Erdős and Pósa’s theorem to S-cycles.

Kakimura, Kawarabayashi and Marx [12] give the first result along these lines, showing that

for every graph G and set S of vertices, either there exist k disjoint S-cycles or there exists

an S-cycle vertex hitting set of size at most 40k2 log2 k. The main result of this article, given

in the next theorem, shows that we can achieve the same bound on the hitting set as in the

original theorem of Erdős and Pósa. The proof yields an algorithm for finding such cycles or

a hitting set. Throughout the article, when we refer to algorithms for a fixed graph, we will

use n to indicate the number of vertices and m for the number of edges of the graph.
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Theorem 2 There exists a constant cv such that for all graphs G, S ⊆ V (G), and positive

integers k, either there exist k vertex disjoint S-cycles, or there exists an S-cycle vertex hitting

set X with |X| ≤ cvk log k. There exists an O(nm)-time algorithm which given in input G, S

and k, returns either k vertex disjoint S-cycles or an S-cycle vertex hitting set of size at most

cvk log k.

The bound of cvk log k on the size of the hitting set is again best possible, as we can consider

the same graphs Gk showing Theorem 1 has the optimal bound and fix S := V (Gk).

This paper is organized as follows. In the next section, we see that the analogous statement

for edge disjoint S-cycles follows by a simple construction from the vertex disjoint version. We

also present an approximation algorithmic result which follows immediately as a consequence

of Theorem 2. Section 3 contains the proof of Theorem 2.

2 Related questions

In this section, we first consider the problem of finding edge disjoint cycles instead of vertex

disjoint cycles. We then move on to an application of Theorem 2.

2.1 Edge versus vertex disjoint cycles

Historically, when looked at from an algorithmic point of view, the problem of finding edge

disjoint (instead of vertex disjoint) cycles has perhaps received more attention. Here we note

that the natural edge disjoint version of Theorem 2 follows by an easy construction.

Corollary 1 There exists a constant ce such that the following holds for all graphs G, S ⊆
V (G), and positive integers k. Either there exist k edge disjoint S-cycles, or there exists an S-

cycle edge hitting set Z ⊆ E(G) with |Z| ≤ cek log k. There exists an O(nm2)-time algorithm

which takes as input G, S, and k, and outputs either k edge disjoint S-cycles, or the hitting

set Z ⊆ E(G) with |Z| ≤ cek log k.

Proof. Let G, S, and k be given. For all vertices v ∈ V (G), let d(v) be the degree of v. We

define disjoint sets of vertices Xv = {x1v, x2v, . . . , x
d(v)+1
v } for all vertices v ∈ V (G). For every

edge uv in G, we define new vertices xuuv, xvuv and xmiduv . Let D = {xuuv, xvuv, xmiduv : uv ∈ E(G)}.
We let Ḡ be the graph with vertex set

V (Ḡ) =
⋃

v∈V (G)

Xv ∪D

and edge set

E(Ḡ) ={xvuvxiv, xuuvxju : uv ∈ E(G) and 1 ≤ i ≤ d(v) + 1, 1 ≤ j ≤ d(u) + 1}

∪ {xuuvxmiduv , xvuvx
mid
uv : uv ∈ E(G)}.

Thus Ḡ is obtained from G by subdividing every edge exactly 3 times, and then repeatedly

replicating each vertex v of the original graph exactly d(v) times. We let S̄ := {xmiduv :

either u or v ∈ S}. For every cycle in Ḡ which uses at least one vertex of the form xmiduv ,

there is a corresponding cycle in G. Moreover, if we consider two vertex disjoint cycles, each

of which uses a vertex of the form xmiduv , then they will correspond to edge disjoint cycles

in the original graph G. Also, note |V (Ḡ)| ≤
∑
v∈V (G)(d(v) + 1) + 3|E(G)| ≤ 6|E(G)| and

|E(Ḡ)| =
∑
v∈V (G) d(v)(d(v) + 1) + 2|E(G)| ≤ 4|V (G)||E(G)|.

By Theorem 2, either there exist k vertex disjoint S̄-cycles in Ḡ, corresponding to k edge

disjoint S-cycles in G, or there exists a hitting set X ⊆ V (Ḡ) of the S̄-cycles. We claim that

we can assume xiv /∈ X for all v ∈ V (G), 1 ≤ i ≤ d(v) + 1. Assume such a vertex xiv is

contained in X. If there exists an index j 6= i such that xjv /∈ X, then X \ {xiv} is also a

2



S̄-cycle hitting set. Alternatively, if no such j exists, then the set X ′ := (X \ {xiv : 1 ≤ i ≤
d(v) + 1}) ∪ {xvuv : u is adjacent v in G } is a S̄-cycle hitting set on strictly fewer vertices.

We conclude that we may assume every vertex in X is of the form xuuv, xvuv, or xmiduv for some

edge uv. Thus, X directly yields a set of edges in G intersecting every S-cycle. We also have

the desired algorithm which either finds the disjoint cycles or the hitting set. The bound on

the running time follows from the bounds on the size of Ḡ and the run time given in Theorem

2. This completes the proof of the corollary. �

2.2 Approximation algorithms for finding disjoint S-cycles

The problem of finding a maximum number of either edge or vertex disjoint cycles in a graph

has been widely studied, and it is known to be NP-hard, even in the special case when at-

tempting to determine if the edge set of a graph can be decomposed into edge disjoint triangles

[7]. This has lead to the study of approximation algorithms to find many disjoint cycles. An

α-approximation algorithm (for a maximization problem) returns an answer at least 1/α of

the optimal value. The value α is called the approximation factor of the algorithm.

Caprara, Panconesi, and Rizzi [3] showed that a modified greedy algorithm yields aO(logn)-

approximation algorithm to find a maximum set of edge disjoint cycles. Krivelevich et al. [14]

later improved the analysis to yield an O(log1/2 n)-approximation factor. This is essentially

best possible, as Friggstad and Salavatipour [10] show that for all ε > 0 it is impossible to

achieve a Ω(log1/2−ε n)-approximation algorithm unless NP ⊆ DTIME(npolylog(n)).

If we consider the problems of finding a maximum set of edge or vertex disjoint S-cycles, the

directed variant of the problem has been studied. In [14], the authors show that there exists

an O(n
2
3 )-approximation algorithm to find a maximum number of edge disjoint S-cycles in

directed graphs. In a recent result, Kamikura and Kawarabayashi [11] have shown that while

there does not exist an analogous theorem to Theorem 2 in directed graphs, there does exist

a function f(k) such that for any directed graph D and subset S of the vertices, either there

exist k directed S-cycles such that every vertex of D is in at most five of the cycles, or there

exists a set of at most f(k) vertices intersecting every such S-cycle.

An immediate corollary to Theorem 2 and Corollary 1 is the following approximation

algorithm.

Corollary 2 There exists an O(logn)-approximation algorithm to find the maximum number

of (either vertex or edge) disjoint S-cycles in a graph.

We quickly outline the proof. Given a graph G and S ⊆ V (G), we repeatedly apply the

algorithm given in Theorem 2 to find an integer k and disjoint S-cycles C1, C2, . . . , Ck such

that there do not exist k+ 1 disjoint S-cycles. Therefore, there exists an S-cycle hitting set of

size at most c(k+ 1) log(k+ 1), and thus our set C1, C2, . . . , Ck of disjoint S-cycles is within a

factor of c′ log(k) ≤ c′ logn of the optimal value for some slightly larger constant c′. It would

be interesting to know if the analysis of the algorithm can be improved, as in [14], to give a

log1/2 n-approximation factor.

The dual problem of finding a minimal set of vertices intersecting every cycle, known as

the feedback vertex set, is a classic problem in the theory of computing. There exists a 2-

approximation algorithm for the feedback vertex set problem as well as its natural weighted

generalization. See [1], [2], [4]. The S-feedback vertex set problem seeks a minimum set

of vertices intersecting every S-cycle. There exists an 8-approximation algorithm for the

problem, due to Even, Noar, and Zosin [9] and the problem has recently been shown to

be fixed parameter tractable by Cygan et al [5] and independently by Kawarabayashi and

Kobayashi [13].
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3 Proof of Theorem 2

In this section, we give the proof of Theorem 2. We follow the main idea of Simonovits’ [15]

(see also [6]) proof of the original theorem of Erdős and Pósa, by generalizing it to consider the

case when we are only interested in cycles that intersect a fixed set of vertices. The proof of

Simonovits immediately gives a fast algorithm which either finds disjoint cycles or a bounded

size hitting set. Our proof also gives an algorithm, although we must work slightly harder to

extract it.

Before proceeding, we will need several definitions. Let G be a graph. Given a path P

in the graph, the subpath of P with endpoints x and y in V (P ) is denoted xPy. If we let

X ⊆ V (G) be a subset of the vertices, then P is an X-path if P has at least two vertices, both

endpoints of P are in X, and P has no internal vertex in X. Similarly, if H is a subgraph of

G, then an H-path is a V (H)-path which is not an edge of H. Given a second path Q, we

say that P and Q are internally disjoint if no internal vertex of P is contained in V (Q) and

vice versa. Finally, given a second graph J , we denote by G ∪ J the graph with vertex set

V (G) ∪ V (J) and edge set E(G) ∪ E(J).

We define a (2, 3)-graph to be a graph with minimum degree two and maximum degree

three. Let G be a (2, 3)-graph. We will refer to the set B := {v ∈ V (G) : deg(v) = 3} as the

branch vertices of G. A segment of G is either a B-path or a cycle forming a component of

G. Let S ⊆ V (G) be a subset of the vertices. A subset Z ⊆ V (G) is an S-segment hitting set

if for every segment P of G such that (V (P ) \ B) ∩ S 6= ∅, there exists z ∈ Z ∩ (V (P ) \ B)

such that z ∈ S. We will specifically focus on (2, 3)-graphs where every cycle in the graph is

an S-cycle. Call such a graph a (2, 3) S-cycle graph.

The proof of Simonovits proceeds by considering a (2, 3)-subgraph H in a graph G which

is maximal by containment as a subgraph. If H is sufficiently large (in terms of the number of

branch vertices) then H will contain k disjoint cycles. Otherwise, one can find a hitting set for

the cycles contained in H using the maximality of H. In our proof, we will instead consider

a maximal (2, 3)-subgraph where every cycle in the subgraph is an S-cycle. Thus, in order

to use the algorithm given by the proof, we need to show that one can efficiently find such

a maximal (2, 3) S-cycle subgraph. We first give a characterization of maximal (2, 3) S-cycle

subgraphs.

Lemma 3 Let G be a graph and Σ ⊆ E(G). Let H be a (2, 3) S-cycle subgraph of G, and let

B be the branch vertices of H. Then there exists a (2, 3) S-cycle subgraph H ′ which strictly

contains H as a subgraph if and only if one of the following holds.

1. There exists an S-cycle C in G− V (H).

2. There exists an (H −B)-path P in G−B such that V (P ) ∩ S 6= ∅.

3. Let Y1, Y2, . . . , Yl the vertex sets of the components of H−S. There exists an (H−B)-path

P in G−B with endpoints in distinct pieces of the partition Y1 \B, Y2 \B, . . . , Yl \B.

Proof. It is easy to see that if the cycle C in 1 or the path P in 2 or 3 exists, then either H∪C
or H ∪ P is a (2, 3) S-cycle subgraph. Thus, it remains to show that if there exists a (2, 3)

S-cycle subgraph H ′ strictly containing H, then one of the outcomes 1− 3 holds. Fix such a

subgraph H ′. If H ′ contains a cycle which is disjoint from V (H), then 1 holds. Otherwise,

there exists a (H −B)-path P . We may assume that V (P ) ∩ S = ∅, lest 2 hold. If P violates

the condition for 3, then there exists a path Q linking the endpoints of P in H − S. But then

P ∪ Q is a cycle contained in H ∪ P ⊆ H ′ which does not intersect S, a contradiction. This

completes the proof of the lemma. �

In order to take advantage of Lemma 3, we will need to find either a cycle C or path P

satisfying one of the possibilities 1 − 3 in the statement of Lemma 3. We will give a linear
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time algorithm to do so which depends on the so called block decomposition of the graph.

Let G be a graph. Recall that a block of G is a maximal subgraph containing no cut-vertex.

As shown by Tarjan [16], the blocks of a connected graph intersect to form a tree-structure

called the block decomposition. Moreover, such a block decomposition can be found in O(m)

time. In the same work, Tarjan shows that given a vertex x and a pair of vertices {u, v}, if

there does not exist a cut vertex separating x from {u, v}, then in time O(m), one can find

two internally disjoint paths from x to the set {u, v} with distinct ends in {u, v}.

Lemma 4 Let G be a graph, and let S ⊆ V (G) be a subset of the vertices. There exists an

O(nm)-time algorithm which finds a maximal (by containment as a subgraph) (2, 3) S-cycle

subgraph H.

Proof. Let H be a (2, 3) S-cycle subgraph of G. We will see that in time O(m), we can

find either a path or cycle satisfying 1, 2, or 3 in the statement of Lemma 3, or alternately

determine that no such path or cycle exists. Thus, by iterating this process at most O(n)

times, we find a maximal by subgraph containment (2, 3) S-cycle subgraph of G. Fix B to be

the set of branch vertices of H.

First, in time O(m), we can find block decompositions of the components of G− V (H). If

some block contains a vertex of S and at least three vertices total, then by Tarjan’s algorithm

for finding two internally disjoint paths, we can find an S-cycle avoiding V (H) satisfying 1. If

no such block exists, then no such S-cycle can exist avoiding V (H).

We now attempt to find a path satisfying 2. Again, in time O(m), we find block decom-

positions of the components of (G − B) − E(H). Each leaf L of the block decomposition

has a unique vertex xL which is a cut vertex separating L − xL from the rest of the graph

(G−B)−E(H). By repeatedly deleting the set of vertices V (L)−xL of leaves L of the block

decompositions for which L−xL does not contain a vertex of V (H)−B, we find the maximum

subgraph J of (G−B)−E(H) such that for any vertex x ∈ V (J)−V (H), there does not exist

a cut vertex separating x from the set V (H)−B. Note that if there exists a path satisfying 2,

it must be contained in the subgraph J . If there exists a component of J containing at least

two vertices of {u, v} ⊆ V (H)−B and a vertex x ∈ S, we can find two paths from x to {u, v}
in time O(m), yielding a V (H)−B path containing a vertex of S as desired by 2.

Finally, we find the partition of V (H) − S into subsets Y1, . . . , Yl inducing connected

components of H − S for some value l. In time O(m), we can determine the connected

components of (G − B) − E(H) and specifically determine if there exists a component K

containing vertices from Yi and Yj for i 6= j. If such a component K and indices i and j

exist, then there exists a path satisfying either 2 or 3 in the statement of Lemma 3. If no such

component and pair of indices exist, then there does not exist an H−B path satisfying 3. We

conclude that H is a maximal (2, 3) S-cycle subgraph, as desired. �

The next lemma contains the majority of the work in the proof of the main theorem.

Lemma 5 Let G be a graph and S ⊆ V (G). Let k be a positive integer. Let H be a maximal

(2, 3)-subgraph such that every cycle contained in H is an S-cycle. Let B be the set of branch

vertices of H. Then either G contains k disjoint S-cycles, or there exists an S-cycle hitting

set Z with |Z| ≤ 5
2
|B| + 2k. There exists an O(nm)-time algorithm which given in input G,

H, S and k outputs either the k disjoint cycles or the hitting set Z.

Proof. Let G, S, and H be given. Let B be the set of branch vertices of H. Note by Lemma

3, there does not exist either an S-cycle C which is disjoint from V (H), nor an (H −B)-path

P in G−B such that V (P ) ∩ S 6= ∅.
Let X be an inclusion-wise minimal S-segment hitting set of H. Note, that X contains at

most one vertex in each segment of H, and exactly one from each segment of length at least
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two which intersects S in a vertex of V (P ) \B. Note that H has at most k components which

are cycles and at most 3
2
|B| segments which are paths. Consequently, |X| ≤ 3

2
|B|+ k.

Consider the graph H − (B ∪X). Every component is a subpath of some segment of H.

Note that here we are using the property that each segment of H which is a cycle must be

an S-cycle and therefore contains a vertex of X. We will see that the set B ∪X is almost an

S-cycle hitting set. Every S-cycle which does not intersect B∪X can only intersect the graph

H in a limited manner. For a subset A ⊆ V (H), we will refer to the vertices of H which have

a neighbor (in H) in the set A as the H-neighbors of A.

Claim 6 There does not exist an S-cycle C disjoint from B ∪X which intersects V (H) in at

least two vertices.

Proof. Assume the claim is false and pick such a C to minimize E(H − (B ∪X)) ∪ E(C).

We will derive a contradiction to the maximality of H.

As a case, assume that there exists an (H − (B ∪ X))-path P contained in C such that

P has both endpoints in the same component of H − (B ∪X). Let the endpoints of P be x

and y, and let the component of H − (B ∪X) containing x and y be labeled Q. The path P

does not contain a vertex of S, lest we violate the maximality of H. Assume that the subpath

xQy does contain a vertex of S. We claim that in this case, H ∪ P violates our choice of H

maximal. The cycle P ∪ xQy is an S-cycle. Any other cycle of H ∪ P which contains P must

contain the H-neighbors of V (Q) in B ∪X. Since Q contains a vertex of S, it follows that at

least one neighbor of Q in B ∪X must be in the set S. Thus, every cycle of H ∪P contains a

vertex of S, a contradiction.

It follows that the path xQy does not contain a vertex in S. Let R be the subpath of C

connecting x and y which does not contain the edges E(P ). Then R ∪ xQy is a closed walk,

which may or may not repeat edges and vertices in xQy. Consider the subgraph formed by

the edges E(R)4 E(xQy) where 4 denotes the symmetric difference. It is a union of edge

disjoint cycles and isolated vertices. Moreover, any isolated vertex must be an internal vertex

of xQy. It follows that the symmetric difference must contain a cycle with at least one vertex

in S. Fix C′ to be such an S-cycle contained in E(R)4E(xQy). We claim that C′ intersects

V (H) in at least two vertices. The cycle C′ must intersect H by the maximality of H. Assume

that C′ intersects H in exactly one vertex. Every edge of C′ which is not contained in H is

an edge of C. Thus, it follows that C′ is a proper subgraph of C, a contradiction. This proves

that C′ intersects H in at least two vertices. However, this contradicts our choice of C to

minimize the edge set E(H − (B ∪X)) ∪ E(C), as we have avoided the edges of P .

We conclude that every (H − (B ∪ X))-path P contained in C has endpoints in distinct

components of H − (B ∪X). As C is an S-cycle, there exists some component, again call it

Q, of H − (B ∪X) and internally disjoint subpaths P1, P2, P3 of C such that

1. P2 shares exactly one endpoint with P1 and one endpoint with P3,

2. P2 is a subpath of Q and V (P2) ∩ S 6= ∅,

3. and both P1 and P3 are (H − (B ∪X))-paths.

Since Q contains a vertex of S, V (Q) has at least one H-neighbor in S ∩ (X ∪ B). It follows

that for either i = 1 or i = 3, every cycle of H ∪ Pi must contain a vertex of S, contradicting

the maximality of H. This contradiction completes the proof of the claim that there does not

exist an S-cycle which intersects H − (B ∪X) in at least two vertices. �

There do not exist S-cycles in G−(B∪X) which are disjoint from V (H), nor do there exist

such cycles intersecting V (H) in two or more vertices. Consider now two S-cycles, C1 and C2

in G− (B ∪X), which each intersect V (H) in exactly one vertex. Let V (Ci) ∩ V (H) = vi for

i = 1, 2 and assume that v1 6= v2. It follows, then that V (C1) ∩ V (C2) = ∅. Otherwise, there
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exists a path P contained in C1∪C2 from v1 to v2 which intersects S and is internally disjoint

from V (H). However, in this case, the subgraph H ∪ P contradicts the maximality of H.

Let C be the set of all S-cycles in G that avoid B ∪ X and meet V (H) in exactly one

vertex (necessarily of degree 2 in H). Let Y ⊆ V (H) \ (B ∪X) be the set of those vertices.

For each y ∈ Y pick an S-cycle Cy ∈ C that meets H in the vertex y. Consider the set

C′ := {Cy | y ∈ Y }. As we observed above, the cycles {Cy : y ∈ Y } are pairwise disjoint.

Thus, if |Y | ≥ k, we see that there exist k pairwise disjoint S-cycles, and otherwise the set

Z := B ∪X ∪ Y is the desired S-cycle hitting set.

The only remaining claim is to show that there exists an algorithm to find either the

disjoint S-cycles or the hitting set Z. We first greedily select a minimal S-segment hitting set

X. Set C and Y to be the empty set. As long as the |Y | ≤ k, we check whether there exists

an S-cycle in G− (B ∪X ∪ Y ). If such a cycle C exists, it must intersect V (H) \ (B ∪X) in

exactly one vertex y. We let C = C ∪ C and Y = Y ∪ y and repeat. We return C if |Y | ≥ k,

and otherwise return X ∪B ∪ Y . This completes the proof of the lemma. �

The proof of Simonovits proceeds by defining the following constants:

Definition For k ∈ N, let

rk := log k + log log k + 4 (1)

sk :=

{
4krk if k ≥ 2

2 if k ≤ 1
(2)

and proving the following lemma.

Lemma 7 ([15]) Let k ∈ N, and let H be a 3-regular multigraph. If |V (H)| ≥ sk, then H

contains at least k disjoint cycles.

An immediate consequence of the proof of the lemma is that the cycles can be greedily selected,

i.e. in time O(n) we can find a cycle of length O(log k). Consequently, to find the k cycles,

repeatedly find such a minimal cycle, delete it, and recurse on the smaller graph. Thus the k

disjoint cycles can be found in time O(nm).

The proof of Theorem 2 now follows easily from the lemmas.

Proof. [Theorem 2] Assume we are given a graph G, S ⊆ V (G), and k ≥ 1 a positive

integer. Let n = |V (G)| and m = |E(G)|. Let sk be the value given in Lemma 7. We let H

be a maximal (2, 3)-subgraph of G such that every cycle in H is an S-cycle. By Lemma 4, we

can find such an H in time O(nm). Let B be the set of branch vertices of H. If |B| ≥ sk,

then H contains k disjoint cycles, all of which are necessarily S-cycles. Moreover, we can find

them in O(nm) time. Thus, we may assume that |B| < sk. By Lemma 5, either there exist k

disjoint S-cycles or there exists an S-cycle hitting set of size at most 5
2
sk + 2k ≤ cvk log k for

an appropriate choice of cv. Moreover, Lemma 5 gives an algorithm to find either the cycles

or the hitting set in time O(nm), as desired. �
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