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Abstract

A signed graph is a pair (G,⌃) where G is a graph and ⌃ is a subset of the edges of G. A circuit
of G is even (resp. odd) if it contains an even (resp. odd) number of edges of ⌃. A blocking pair of
(G,⌃) is a pair of vertices s, t such that every odd circuit intersects at least one of s or t. In this paper,
we characterize when the blocking pairs of a signed graph can be represented by 2-cuts in an auxiliary
graph. We discuss the relevance of this result to the problem of recognizing even cycle matroids and
to the problem of characterizing signed graphs with no odd-K5 minor.

1 Introduction

In this article, we will consider graphs with multiple edges and loops. Let G be a graph. For a set
X ✓ E(G), we write VG(X) to refer to the set of vertices incident to an edge of X and G[X] for the
subgraph with vertex set VG(X) and edge set X . A subset C of edges is a cycle if G[C] is a graph where
every vertex has even degree. An inclusion-wise minimal non-empty cycle is a circuit.

A signed graph is a pair (G,⌃) where G is a graph and ⌃ ✓ E(G). A subset B ✓ E(G) is even (resp.
odd) if |B \⌃| is even (resp. odd). In particular an edge e is odd if and only if e 2 ⌃. We say that ⌃

0 is a
signature of (G,⌃) if (G,⌃) and (G,⌃0

) have the same set of even cycles. Equivalently, ⌃0 is a signature
of (G,⌃) if ⌃4⌃

0 is a cut of G. We say that (G,⌃0
) is obtained from (G,⌃) by resigning. Given a graph

H and S ✓ V (H), �H(S) := {(u, v) 2 E(H) : u 2 S, v 62 S} and we write �H(v) for �H({v}). 1 Let
⇤
wollan@di.uniroma1.it

1Throughout the paper we shall omit indices when there is no ambiguity. For instance we may write �(v) for �H(v).
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(G,⌃) be a signed graph. A vertex s is a blocking vertex if for every odd circuit C, s 2 V (C). A pair of
vertices s, t is a blocking pair if for every odd circuit C, {s, t} \ V (C) 6= ;. Denote by loopG(u) the set
of loops of G at vertex u. The set of all loops of G is denoted loopG. It can be readily checked that s is a
blocking vertex of (G,⌃) if and only if there exists a signature ⌃

0 ✓ �G(s)[ loopG(s). Similarly, s, t is a
blocking pair if and only if there exists a signature ⌃

0 ✓ �G(s)[ �G(t)[ loopG(s)[ loopG(t). Blocking
pairs play an important role in a variety of problems on signed graphs as we will see in Section 2.

1.1 Displaying all blocking vertices

Let G be a graph with disjoint vertex sets A and B. An A� B path is a path of H with one endpoint in
A and one endpoint in B. We use “a� b path” as shorthand for “{a}� {b} path” and similarly, “a�B

path” as shorthand for “{a}�B path”. Let G be a graph with a vertex v and a set ↵ ✓ �G(v) and suppose
that loopG(v) \ ↵ = ;. We say that H is obtained from G by splitting v into v1 and v2 according to ↵ if
V (H) = (V (G) \ {v}) [ {v1, v2} and

E(H) =

�
(x, y) : (x, y) 2 E(G) \ �G(v)

 
[

�
(x, v1) : (x, v) 2 E(G) \ ↵

 
[
�
(x, v2) : (x, v) 2 E(G) \ ↵

 
.

Consider now a signed graph (G,⌃) with a blocking vertex s. Suppose that we wish to describe the
set of all blocking vertices of (G,⌃). We may assume that (G,⌃) has no odd loop ⌦ (for otherwise
⌦ 2 loopG(s) and s is the unique blocking vertex). Thus there exists a signature ⌃

0 ✓ �G(s). Let
H be obtained from G by splitting s into s1 and s2 according to ⌃

0. Observe now that there exists a
bijection between odd circuits of (G,⌃) and s1 � s2 paths of H . It follows that the blocking vertices of
(G,⌃) consist of s and vertices of H that are cut vertices separating s1 and s2. Thus if a signed graph
has blocking vertices, these vertices can be displayed as special cut vertices in an auxiliary graph. In this
paper we show analogous results for blocking pairs. Namely, we will show that if a signed graph has a
blocking pair, then either it is special (i.e. is one of a number of well defined classes of signed graphs), or
we can display every blocking pair as a special 2-separation in an auxiliary graph. We will get a number
of different results depending on the connectivity conditions we consider.

1.2 Displaying blocking pairs using an auxiliary graph

In this section we show how to construct our auxiliary graph. We first need a number of definitions. For
a set U of vertices, we denote by G[U ] the subgraph of G induced on the set U of vertices. We denote by
G� U the subgraph G[V (G) \ U ], and we use G� v as shorthand notation for G� {v}. We define the
boundary of X in G as BG(X) := VG(X) \ VG(

¯X) where ¯X := E(G) \ X and the interior of X in G

as IG(X) := VG(X) \ BG(X). A separator in the graph G is a subset X of the edges which satisfies the
property that G[X] and G[

¯X] are both connected and that X, ¯X are non-empty. The order of a separator
is given by |BG(X)|. A k-separator is a separator of order k. A k-separation is a separator X of order k

where |X|, | ¯X| � k.
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We say that ~H is an LR-graph if ~H is a graph with exactly two directed edges L and R and moreover,
L and R are not loops. Consider a signed graph (G,⌃) with no even loops where ⌃ ✓ �(s) [ �(t) [
loop(s) [ loop(t), for some s, t 2 V (G) (s, t is a blocking pair). Suppose first there are no edges in ⌃

with both endpoints in {s, t} and construct an LR-graph ~H as follows:

• split s into s1 and s2 according to ⌃ \ �G(s),

• split t into t1 and t2 according to ⌃ \ �G(t),

• add directed edges L = (s1, t1) and R = (s2, t2).

Then we say that ~H is obtained by unfolding (G,⌃) on s, t and that (G,⌃) is obtained by folding ~H .
Suppose now that there is an edge f 2 ⌃ with both endpoints in {s, t}. Then f behaves as if it consists

of two series edges with exactly one in ⌃. Namely, if f is an odd loop with endpoints s (resp. t), we add
the edge (s1, s2) (resp. (t1, t2)); if f is an odd edge with endpoints s and t, we add the edge (s1, t2) or
(s2, t1), chosen arbitrarily; (the choice depends on which of the two series edges used to represent f is
in ⌃). Suppose now there is an edge f /2 ⌃ with endpoints in s and t. Then f behaves as it it consists
of two series edges with the same parity. Namely, we add the edge (s1, s2) or (t1, t2), chosen arbitrarily;
(the choice depends on whether both, or none of the two series edges used to represent f are in ⌃).

For any vertex v 2 V (

~H), the corresponding vertex of v in G is defined as follows. If v /2
{s1, s2, t1, t2}, then v is a vertex of G and it is its own corresponding vertex. If v 2 {s1, s2}, then s

is the corresponding vertex to v, and similarly, if v 2 {t1, t2}, then t is the corresponding vertex to v.

Remark 1. Let (G,⌃) be a signed graph with a blocking pair s, t and a signature ⌃ ✓ �(s) [ �(t) [
loop(s) [ loop(t). Let ~H be obtained by unfolding (G,⌃) on s, t. Let X ✓ E(

~H), where L 2 X and
R /2 X . Given a vertex v of ~H denote by v̂ the corresponding vertex of G.

(1) If B ~H(X) = {x}, then x̂ is a blocking vertex of (G,⌃).

(2) If B ~H(X) = {x, y}, then x̂, ŷ is a blocking pair of (G,⌃).

Proof. For (1) let W = {x} and cW = {x̂} for (2) let W = {x, y} and cW = {x̂, ŷ}. Let C be an arbitrary
odd circuit of (G,⌃). By the definition of ~H , C is a path of ~H joining the tail of L and the tail of R or
the head of L and the head of R. As L 2 X and R /2 X , we have ; 6= V ~H(C) \ B ~H(X) = V ~H(C) \W .
Hence, cW \ VG(C) 6= ; and cW intersects every odd circuit of (G,⌃).

An LR-separator of ~H is a separator X of ~H of order 2, where L 2 X and R /2 X . We say that the
LR-separator X in Remark 1(2) displays the blocking pair {x̂, ŷ}.

1.3 The main results

In this paper we characterize when it is possible to unfold a signed graph and display all blocking pairs
by LR-separators. We do this under various connectivity conditions. These connectivity conditions are
motivated in Section 2.
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1.3.1 3-connected even cycle matroid

We assume that the reader is familiar with the basics of matroid theory. See Oxley [14] for the definition
of the terms used here. Let G be a graph. We denote by cycle(G) the set of all cycles of G. The set
cycle(G) is the set of cycles of the graphic matroid of G. We identify cycle(G) with that matroid. We
can extend this definition to a larger class of matroids. Let (G,⌃) be a signed graph. We denote by
ecycle(G,⌃) the set of all even cycles of (G,⌃). The set ecycle(G,⌃) is the set of cycles of a binary
matroid known as the even-cycle matroid [26]. We identify ecycle(G,⌃) with that matroid.

Theorem 2. Let (G,⌃) be a signed graph such that ecycle(G,⌃) is 3-connected and is not a graphic
matroid. If (G,⌃) has at least one blocking pair, then exactly one of the following holds:

(1) it can be unfolded such that every blocking pair can be displayed as an LR-separator, or

(2) it is an Octahedron, a Kite, a Saucer, or a Pinwheel.

We need to describe the terms Octahedron, Kite, Saucer and Pinwheel.
Before we can proceed we require a number of definitions. Let G be a graph and consider X ✓ E(G).

We say that a path P is an s � t|X path (or a path of type s � t|X) if s, t 2 V (X) and P is an
s � t path of G[X] avoiding all vertices in B(X) \ {s, t}. If B(X) = {v1, v2, v3}, I(X) = {z} and
E(X) = {(z, v1), (z, v2), (z, v3)}, then X is a triad. We say that X is solid if G[X] is connected, there
exists a circuit C in G[X], B(X) = {v1, v2, v3} and for i = 1, 2, 3 there exist V (C) � vi paths Pi of
G[X] where P1, P2, P3 are vertex disjoint. (A path Pi in the previous definition may consists of a single
vertex.) A triangle is a set of three edges that forms a circuit. Note that if X is a triangle of G then X is
solid (in that case each of P1, P2, P3 consists of a different vertex of the triangle X).

1.3.2 Octahedron

A signed graph (G,⌃) is an Octahedron if (after possibly resigning) there exist vertices a, b, c, d, s, t, and
a partition A, B, C, D of E(G) such that,

(i) B(A) = {a, c, s}, B(B) = {b, c, t}, B(C) = {b, d, s}, B(D) = {a, d, t};

(ii) A, B,C, D are solid;

(iii) ⌃ =

�
A \ �(s)

�
[
�
D \ �(t)

�
.

An Octahedron is represented in Figure 1. A shaded region centered around a vertex indicates that every
edge incident to that vertex that is in that region is odd. Kites come in three distinct flavors that we
describe next.
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1.3.3 Kite of Type I

A signed graph (G,⌃) is a Kite of Type I if (after possibly resigning) there exist vertices a, b, c, s, t, an
edge ⌦ = (a, t), where t 2 B(B) and a partition A, B,C, {⌦} of E(G) such that,

(i) B(A) = {a, b, s}, B(B) = {b, c, t}, B(C) = {a, c, s};

(ii) A is solid or a triad and both B and C are solid;

(iii) ⌃ =

�
A \ �(s)

�
[ {⌦}.

A Kite of Type I is represented in Figure 2. A shaded region centered around a vertex indicates that every
edge incident to that vertex that is in that region is odd. The thick edge is also odd.

1.3.4 Kite of Type II

We say that (G,⌃) is a Kite of Type II if (after possibly resigning) there exist distinct vertices a, b, c, s, t,
an edge ⌦ = (a, t) where t 2 B(B) and a partition A, B,C, {⌦} of E(G) such that,

(i) B(A) = {a, b, s}, B(B) = {a, b, c, t}, B(C) = {a, c, s};

(ii) There exist paths P1, . . . , P8 of the following types:

P1 : s� a|A P2 : s� b|A P3 : b� c|B P4 : t� b|B

P5 : s� a|C P6 : s� c|C P7 : t� c|B P8 : t� a|B;

(iii) ⌃ =

�
�(s) \A

�
[ {⌦}.

A Kite of Type II is represented in Figure 2.

1.3.5 Kite of Type III

A signed graph (G,⌃) is a Kite of Type III if (after possibly resigning) there exist vertices a, b, c, s, t, an
edge ⌦ = (a, t), where t 2 B(B) and a partition A, B,C, D, {⌦} of E(G) such that,

(i) B(A) = {a, b, s}, B(B) = {b, c, t}, B(C) = {a, c, s}, B(D) = {a, b, c}.

(ii) There exist paths P1, . . . , P8 of the following types:

P1 : s� a|A P2 : s� b|A P4 : t� b|B P5 : s� a|C

P6 : s� c|C P7 : t� c|B

(iii) D is solid or a triad.

(iv) ⌃ =

�
A \ �(s)

�
[ {⌦}.

A Kite of Type III is represented in Figure 2.
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1.3.6 Saucer

We say that (G,⌃) is a Saucer if (after possibly resigning) there exist distinct vertices a, b, c, d, s, t, an
edge ⌦ = (a, t) where t 2 I(D) and a partition A1, A2, C1, C2, D, {⌦} of E(G) such that,

(i) B(A1) = {a, d, s}, B(A2) = {a, b, d}, B(C1) = {a, c, s}, B(C2) = {a, b, c}, B(D) = {a, b};

(ii) There exist paths Q1, . . . , Q10 of the following types:

Q1 : s� a|A1 Q2 : s� d|A1 Q3 : d� b|A2 Q4 : a� d|A1 [A2 Q5 : s� a|C1

Q6 : s� c|C1 Q7 : c� b|C2 Q8 : a� c|C1 [ C2 Q9 : t� a|D Q10 : t� b|D;

(iii) ⌃ =

�
�(s) \A1

�
[ {⌦}.

A Saucer is represented in Figure 3. A shaded region centered around a vertex indicates that, every edge
incident to that vertex that is in that region, is odd. The thick edges is also odd.

A1

A2

C1

C2

D

a

b

s

t

⌦

a

b

cd

Figure 3: Saucer.

1.3.7 Pinwheel

Let H be a graph with a partition B1, . . . , Br of E(H) and distinct vertices u1, . . . , ur. Then H is a flower
F := (B1, . . . , Br, u1, . . . , ur) if for all i = 1, . . . , r, H[Bi] is connected and BH(Bi) = {ui, ui+1}
(where r + 1 = 1). We say that Bi is a petal of F and that ui and ui+1 are the attachments of Bi. The
flower F is maximal if no petal has a cut-vertex separating its attachments. Maximal flowers correspond
to generalized circuits as introduced by Tutte in [21].

A signed graph (H,�) is an odd flower if H is a maximal flower and every odd circuit intersects every
petal. Finally, a signed graph (G,⌃) is a Whirligig with hub h 2 V (G) if all its blocking pairs contain h,
it has no blocking vertex, and the signed graph (H,�) :=

�
G� h,⌃ \ �G(h)

�
is an odd flower.

Remark 3. Let (G,⌃) be a Whirligig with hub h. Then H := G�h is a flower F = (B1, . . . , Br, u1, . . . , ur)

and the following properties hold,
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(1) for every i 2 [r] there exists a signature ⌃

0 of (G,⌃) where ⌃

0 \ E(H) = �H(ui) \Bi;

(2) the blocking pairs of (G,⌃) are the sets
�
{h, ui} : i 2 [r]

 
.

Proof. (1) follows from the definition of odd flower. (2) because of (1) for every i 2 [r], {h, ui} is a
blocking pair. By hypothesis, every blocking pair is of the form {h, u}. Suppose u 6= ui for every i 2 [r].
Then u 2 IH(Bi) for some i 2 [r]. It follows that u must be a cut vertex separating the attachments of
Bi, contradicting the fact that H is maximal.

Let (G,⌃), and H be as in Remark 3. Consider a signature ⌃

0 where ⌃

0 \ E(H) = �H(u1) \ B1. Let
ı̂ is the largest index i 2 [r] for which there exists an edge (h, w) 2 ⌃

0 where w 2 VH(Bi) \ {ui, u1}.
Let |̂ is the smallest index j 2 [r] for which there exists an edge (h, w) 2 E(G) \ ⌃

0 where w 2
VH(Bj) \ {uj+1, u1}. Note, that since (G,⌃0

) has no blocking vertex, (h, u1) is not the only odd (resp.
even) edge incident to the hub h. In particular, ı̂, |̂ are well defined. We say that (G,⌃) is 1-degenerate
if either (a) there is no edge (h, u1) 2 ⌃

0 and ı̂  |̂ or (b) there is an edge (h, u1) 2 ⌃

0 and ı̂ = 1 or
|̂ = r. Roughly speaking (G,⌃) is 1-degenerate if the edges incident to the hub are ordered such that,
starting from u1, all odd edges occur prior to the even edges. We define similarly what it means for the
Whirligig to be k-degenerate for any k 2 [r] (relabel vertex uk by u1 and apply the previous definition).
A Pinwheel is a Whirligig that is not k-degenerate for any k 2 [r].

Whirligigs are represented in Figure 4. A shaded region centered around a vertex indicates that, every
edge incident to that vertex that is in that region, is odd. The thick edges are also odd. For the Whirligig
on the left we have ı̂ = |̂ = 2, hence it is 1-degenerate.

B1 B2

B3

B4

B5

u1 u3

u4u5

h

u2

Figure 4: Left: 1-degenerate Whirligig. Right: Pinwheel.

1.3.8 Nearly 4-connected signed graphs

A signed graph that has no odd cycle is said to be bipartite. A separator X of a graph G is trivial if
at least one of I(X) and I(

¯X) is empty. We say that a signed graph (G,⌃) is nearly 4-connected if it
satisfies the following conditions:
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(a) | loopG |  1 and if e 2 loopG, then e 2 ⌃;

(b) G \ loopG is 2-connected; 2

(c) if G has a 2-separation X then (after possibly replacing X with ¯X)
(G[X],⌃ \X) is non-bipartite and ¯X = {e, f} where |{e, f} \ ⌃| = 1;

(d) if G has a non-trivial 3-separation X , then (G[X],⌃ \X) and (G[

¯X],⌃ \ ¯X) are non-bipartite.

An Octahedron is trivial if each of A, B,C, D form a triangle. A Kite is basic if it is a Kite of Type II
and I(A) = I(C) = ;.

Theorem 4. Let (G,⌃) be a signed graph that is nearly 4-connected and has no blocking vertex. Suppose
that no triangle is a signature. If (G,⌃) has at least one blocking pair, then exactly one of the following
holds:

(1) it can be unfolded such that every blocking pair can be displayed as an LR-separator, or

(2) it is a trivial Octahedron, a basic Kite, or a Pinwheel.

1.4 Outline of the paper

In Section 2 we discuss potential applications to Theorems 2 and 4. (Note, except for the definition of
Lovász-flips, the material presented in that section is not required for the remainder of the paper.) It is
shown in Section 3 that these theorems follow from two results, namely Theorem 12 and Proposition 13.
The proof of the former is given in Section 4 while the latter result is proved in Section 5.

2 Applications

In this section, we illustrate how the study of blocking pairs plays a critical role in two open problems
namely, the problem of recognizing even cycle matroids in polynomial time and the problem of charac-
terizing signed graphs that are odd-K5 free.

2.1 Recognizing even cycle matroids

If M is a binary matroid that is given by its 0, 1 matrix representation, then it can be checked in poly-
nomial time whether M is a graphic matroid [20, 16, 10, 22]. Zaslavsky [25, 26] introduced the class
of signed graphic matroids. Pendavingh and Van Zwam [12] gave a recognition algorithm for the class
of near-regular signed-graphic matroids. A recognition algorithm for the class of binary signed-graphic
matroids is given in [11]. However, no such algorithm exists for the class of even cycle matroids. In
this section we shall outline some of the challenges we face in finding such an algorithm and explain the
relevance of Theorem 2.

2For a graph G and D ✓ E(G), G \ D denotes the graph obtained from G by deleting edges D.
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2.1.1 Representations of graphic matroids are nice

A graph G is a representation of a graphic matroid M if M = cycle(G). Consider a graph G and
let X ✓ E(G). Suppose that B(X) = {t1, t2}, for some t1, t2 2 V (G). Let G0 be obtained by
identifying vertices t1, t2 of G[X] with vertices t2, t1 of G[X] respectively. Then G0 is obtained from G

by a Whitney-flip on X . We will also call Whitney-flip the operation consisting of identifying two vertices
from distinct components, or the operation consisting of partitioning the graph into components each of
which is a block of G. Two graphs are equivalent if one can be obtained from the other by a sequence
of Whitney-flips. As Whitney-flips preserve cycles, equivalent graphs are representations of the same
graphic matroid. Whitney [24] proved the following seminal result.

Theorem 5. All representations of a graphic matroid are equivalent.

In particular, if a graphic matroid is 3-connected, it has a unique representation. This key property greatly
facilitates the problem of recognizing graphic matroids.

2.1.2 Representations of even cycle matroids are naughty

A signed graph (G,⌃) is a representation of an even cycle matroids M if M = ecycle(G,⌃). Unfor-
tunately, there is no simple description of the set of all representations of an even cycle matroid [8, 13].
Suppose that (G1,⌃1) and (G2,⌃2) are signed graphs where G1 and G2 are equivalent and ⌃2 is ob-
tained from ⌃1 by resigning. Then (G1,⌃1) and (G2,⌃2) are equivalent. Equivalent signed graphs
are representations of the same even cycle matroid. There is no analogue, for even cycle matroids, to
Theorem 5 as the following result indicates.

Remark 6. For any integer k there is a even cycle matroid M with |E(M)| = 4k and 2

k pairwise
inequivalent representations.

We construct an example of such a matroid using the LR graphs introduced in the previous section.

Proof of Remark 6. Let k � 1 be any integer and let ~H be the LR-graph with V (

~H) = {v1, . . . , vk+1}[
{v01, . . . , v0k+1} and edges L = (v1, v

0
1), R = (vk+1, v

0
k+1) and (vi, vi+1), (v

0
i, v

0
i+1), (vi, v

0
i+1), (v

0
i, vi+1)

for all i 2 [k]. Let (G,⌃) be obtained by folding ~H and let M = ecycle(G,⌃). For any j 2 [k] define

Xj = {L} [ {(vi, vi+1), (v
0
i, v

0
i+1), (vi, v

0
i+1), (v

0
i, vi+1) : i = 1, . . . , j � 1}.

Let J ✓ [k] and let ~HJ be obtained from ~H by doing a sequence of Whitney-flips on sets Xj for all
j 2 J (since the sets Xj are nested it is easy to check that the order in which the Whitney-flips are done
do not change the outcome). Let (GJ ,⌃) be obtained by folding ~HJ . (Note, ⌃ does not depend on the
particular choice of J .) We leave it to the reader to verify that (GJ ,⌃) is a representation of M and that
for any pair J1, J2 ✓ [k] with J1 6= J2 the corresponding signed graphs (GJ1 ,⌃) and (GJ2 ,⌃) are not
equivalent.
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If an even cycle matroid is graphic, then a complete description of its representations is known [3, 17].
Namely the following holds.

Theorem 7. If an even cycle matroid is graphic, then any two or its representations are related by a
sequence of Whitney-flips, resignings, and Lovász-flips.

We include the definition of “Lovász-flip” here as it will arise again in Section 3. Consider a blocking pair
v1, v2 of (G,⌃). We may assume, after possibly resigning, that ⌃ ✓ �(v1)[�(v2)[ loop(v1)[ loop(v2).
We can construct a signed graph (G0,⌃) from (G,⌃) by replacing the endpoints x, y of every odd edge
e with the endpoints x0, y0 as follows:

• if {x, y} = {v1, v2} then x0 = y0 (i.e. e becomes a loop);

• if x = y (i.e. e is a loop) then x0 = v1 and y0 = v2;

• if x = vi for some i 2 [2] and y 6= v1, v2, then x0 = v3�i and y0 = y.

In this case, we say that (G0,⌃) is obtained from (G,⌃) by a Lovász-flip on v1, v2. It can be easily
verified that Lovász-flips preserve even cycles. (Note, any two signed graphs (GJ1 ,⌃) and (GJ2 ,⌃) in
Remark 6 are related by a sequence of Lovász-flips.)

2.1.3 Extending representations

Given a matroid M and C, D ✓ E(M), N := M/C \ D denotes the matroid obtained by contracting
elements C and deleting elements D. Then N is a minor of M and M is a major of N . We define minor
operations on signed graphs next. Let (G,⌃) be a signed graph and let e 2 E(G). Then (G,⌃) \ e is
defined as (G\e,⌃�{e}). We define (G,⌃)/e as (G\e, ;) if e is an odd loop of (G,⌃) and as (G\e,⌃)

if e is an even loop of (G,⌃); otherwise (G,⌃)/e is equal to (G/e,⌃0
), 3 where ⌃

0 is any signature of
(G,⌃) which does not contain e. Consider M = ecycle(G,⌃) and disjoint sets C, D ✓ E(M). Let
N := M/C \ D and let (H,�) := (G,⌃)/C \ D. Then it can be readily checked that (H,�) is a
representation of N . We say that (G,⌃) extends the representation (H,�) of N to the major M . The
following is proved in [9].

Remark 8. Suppose (G,⌃) has a blocking pair s1, s2 and ⌃ ✓ �(s1) [ �(s2). For i = 1, 2, let Hi be
obtained from G by splitting si into s0i, s

00
i according to ⌃ \ �G(si) and adding an edge ⌦ = (s0i, s

00
i ).

Then ecycle(H1,⌃) = ecycle(H2,⌃).

In the previous remark, let N := ecycle(G,⌃) and M := ecycle(H1,⌃) = ecycle(H2,⌃). In general
(H1,⌃) and (H2,⌃) need not be equivalent. Hence, a representation with a blocking pair of a matroid N

may extend into several inequivalent representations of a major of M . Indeed, if M is a major of N , it is
possible for M to have 2

k times as many inequivalent representation as N where k = |E(M)|� |E(N)|.
When we exclude blocking pairs however, the problem is better behaved as we explain next. An even

cycle is non-degenerate if none of its representation has a blocking pair. The following was proved in [9].
3For a graph G and D ✓ E(G), G/D denotes the graph obtained from G by contracting edges D.
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Theorem 9. Let M be a 3-connected even cycle matroid which contains as a minor a non-degenerate 3-
connected matroid N . Then the number of inequivalent representations of M is at most twice the number
of inequivalent representations of N .

Moreover, the proof of the previous theorem is constructive so that the representations of M can be
constructed from the representations of N .

Suppose we are now given a 3-connected binary matroid M (given by a 0, 1 matrix) as well as
a fixed size 3-connected non-degenerate minor N of M . Then we can check if M is an even cycle
matroid as follows. Using Seymour’s splitter theorem [15] we find a sequence of 3-connected matroids
N0, N1, . . . , Nk with N0 = N and Nk = M where, for any i 2 [k], Ni�1 = Ni/e or Ni�1 = Ni \ e for
e 2 E(Ni) \ E(Ni�1). Then we find the set of all inequivalent representations of N0 (there are only a
constant number of these since N0 has fixed size). Finally, for all i 2 [k], we construct the representations
of Ni from Ni�1 (see Theorem 9). If any representation of N = N0 extends to M = Nk then M is an
even cycle matroid, otherwise it is not.

As the example in Remark 6 illustrates, it is not possible to bound the number of inequivalent rep-
resentations of an even cycle matroid. We can generalize the notion of equivalence, however, so that,
all representations of the matroid in the proof of Remark 6 are “equivalent” under this new equivalence
relation. We plan to prove an analogue to Theorem 9 with this new definition of equivalence (replacing,
in the hypothesis, the condition that N be non-degenerate, with the condition that N be non-graphic).
This would lead naturally to a recognition algorithm for even cycle matroids.

It is clear from Remark 8 however, that in order to understand the extensions of a representation
(G,⌃) of a matroid N to a major M we need a complete understanding of the blocking pairs of (G,⌃).
Theorem 2 is precisely the tool that is required.

2.2 Structure of odd-K5 free signed graphs

Graphs without K4 minors are series parallel graphs. Wagner [23] showed that graphs without K5 minors
can be constructed by pasting planar graphs and one special graph along edges and triangles. It is natural
to try to extend these results to signed graphs. An odd-Kn is the signed graph

�
Kn, E(Kn)

�
. A signed

graph is odd-Kn free if it does not have an odd-Kn minor. Gerards [5] gave a structural characterization
of odd-K4 free signed graphs. Recently Conforti and Gerards gave a structure theorem for a subclass
of signed graphs without odd-K5 minors [1]. No structural characterization exists for the class of all
odd-K5 free signed graphs, however. These signed graphs play an important role in multi-commodity
flow problems [7, 4]. We wish to outline how Theorem 4 is relevant to the study of this class of signed
graphs.

The following are basic classes of odd-K5-free signed graphs (G,⌃) [6]:

(B1) G is planar;

(B2) (G,⌃) has a blocking pair;

12



(B3) (G,⌃) has an even-face embedding on the double pinched sphere;

(B4) (G,⌃) has an even-face embedding on the pinched projective plane;

(B5) (G,⌃) has an even-face embedding on the Klein bottle.

There are other basic classes that we omit here in the interest of brevity.
We can define decompositions operations for a signed graph (G,⌃) (analogous to the operations in

Wagner [23] theorem) with the property that (G,⌃) is odd-K5 free if and only if each of its parts is odd-
K5 free. A signed graph is irreducible if cannot be decomposed. It can be shown that irreducible signed
graphs are nearly 4-connected. 4 We wish to prove that every irreducible odd-K5 free signed graph is in a
basic class or belongs to a “thin” (highly structured) class of signed graphs that we can fully describe. A
set of signed graphs U is unavoidable if every odd-K5 free signed graph that is irreducible but not basic
has a minor in U . A general proof strategy is to find an unavoidable set U and then for each (H,�) 2 U
prove the conjecture for the signed graphs with a minor (H,�). The success of such a strategy hinges on
our ability to find such a set U where none of the signed graphs are in a basic class.

As a proof of concept, let us sketch a strategy for finding an unavoidable set U where none of the
signed graphs are in (B1) or (B2). Kuratowski’s theorem says that every graph that is not planar must
either contain K5 or K3,3 as a minor. Thus, if we let U1 be the set of all signed graphs that are of the
form (K5,⌃) (and not equivalent to odd-K5) and of the form (K3,3,⌃), then U1 is unavoidable. Clearly,
no signed graph (H,�) 2 U1 is in (B1), but (H,�) may have a blocking pair, i.e. may be in (B2).

We require some definition and a conjecture to proceed further. Let F be a set of signed graphs and
let (G,⌃) be a signed graph. Then (H,�) is an F-minor of (G,⌃) if it is a minor of (G,⌃) that has a
minor in F . We say that (G,⌃) is minimally blocking-pair free with respect to F if (G,⌃) has a minor in
F , it has no blocking pair, it is nearly 4-connected, and every F-minor (H,�) that is nearly 4-connected
has a blocking pair.

Conjecture 10. Let F be a finite set of nearly 4-connected signed graphs. Let F 0 be the set of signed
graphs that are minimally blocking-pair free with respect to F . Then F 0 is finite, moreover, we can find
an explicit description of F 0 from F .

Thus if the conjecture holds, we can construct a finite set U2 that is minimally blocking-pair free with
respect to U1. Then U2 is an unavoidable set and no signed graph in U2 is in either (B1) or (B2).

Theorem 4 states that if a nearly 4-connected signed graph (H,�) has a blocking pair and it is not
one of two special families of signed graphs (or a trivial Octahedron), then either � is a triangle or we
can represent every blocking pair as a 2-separation in an auxiliary graph with labeled vertices. Thus, the
problem of finding signed graphs (G,⌃) which contain (H,�) as a minor but do not have blocking pairs
themselves reduces to finding graphs containing the auxiliary graph as a minor and which do not have
certain 2-separations. There are standard techniques, known as blocking sequences, which allow one to

4In this particular decomposition scheme we are not attempting to bound the number of parts of the decomposition, otherwise
a slightly less restrictive connectivity condition needs to be considered.
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find graphs containing a fixed minor which do not have certain separations. See [2] for more details. We
conclude that Theorem 4 offers a tool for proving Conjecture 10 and hence, for the study of signed graphs
with no odd-K5 minor.

3 A generalization

3.1 Nearly 3-connected signed graphs

We first find a common relaxation to the notion of 3-connected even cycle matroids and nearly 4-
connected signed graphs. Recall that a signed graph is bipartite if it has no odd cycles. A signed graph
(G,⌃) is nearly 3-connected if it satisfies the following conditions:

(a) | loopG |  1 and if e 2 loopG, then e 2 ⌃;

(b) G \ loopG is 2-connected;

(c) if G has a non-trivial 2-separation X , then (G[X],⌃ \X) and (G[

¯X],⌃ \ ¯X) are non-bipartite.

Clearly, every nearly 4-connected signed graph is nearly 3-connected. In [13] it is shown,

Proposition 11. If ecycle(G,⌃) is 3-connected, then (G,⌃) is nearly 3-connected.

3.2 Statement of the main results

We present two results on nearly 3-connected signed graphs in this subsection and explain how these
imply Theorems 2 and 4. Let us call a signed graph (G,⌃) timid if it has at least one blocking pair and it
cannot be unfolded such that every blocking pair can be displayed as an LR-separator.

A signed graph (G,⌃) is a Shredder if there exists distinct vertices x1, x2, x3, a signature ⌃

0 and a
partition C0, C1, C2, C3 of E(G) (where Ci is possibly empty for some values of i) such that:

(i) B(Ci) ✓ {x1, x2, x3} for all i 2 {0} [ [3], and

(ii) ⌃

0 \ Ci = �(xi) \ Ci for all i 2 [3] and ⌃

0 \ C0 = ;.

A Shredder is represented in Figure 5. The vertices on the dotted lines are to be identified. A shaded
region centered around a vertex indicates that every edge incident to that vertex that is in that region
is odd. We now state the two key results of the paper.
Theorem 12. Let (G,⌃) be a nearly 3-connected signed graph that has no blocking vertex. If (G,⌃) is
timid, then it is either a Shredder, an Octahedron, a Kite, a Saucer, or a Pinwheel.

Proposition 13. Nearly 3-connected Octahedrons, Kites, Saucers, and Pinwheels are timid.

We distinguish two cases for Theorem 12. The case where any two blocking pairs of (G,⌃) share a
vertex is proved in Section 3.5 (Proposition 17). The case where there exists disjoint blocking pairs for
(G,⌃) is addressed in Section 4 (Theorem 20). Finally, the proof of Proposition 13 is given in Section 5.
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Figure 5: Shredder

3.3 A corollary: Theorem 2

We require the following observation,

Remark 14. If the signed graph (G,⌃) has a blocking vertex, then ecycle(G,⌃) is graphic.

Proof. Let s denote the blocking vertex. Then there exists a signature ⌃

0 where ⌃

0 ✓ �G(s) [ loopG(s).
Let H be obtained from G by splitting v into v1, v2 according to ⌃

0 (and replacing any edge in loopG(s)\
⌃

0 by a (v1, v2) edge). Then ecycle(G,⌃) = cycle(H).

Lemma 15. If (G,⌃) is a Shredder, then ecycle(G,⌃) is graphic.

Proof. Let x1, x2, x3, C0, C1, C2, C3 and ⌃

0 as given in the definition of Shredder. We may assume that
C1 has no edges with both endpoints in {x1, x2, x3} as we can redefine C0, C2, C3 so as to contain these
edges. Let B denote the cut �G(V (C1) \ {x1, x2, x3}). Let � denote the signature ⌃

04B. Then

� =

⇥
(�G(x2) [ �G(x3)) \ C1

⇤
[
⇥
�G(x2) \ C2

⇤
[
⇥
�G(x3) \ C3

⇤
.

Hence, all odd edges have an endpoint in {x2, x3}. Let (H,�) be the signed graph obtained from (G,�)

by a Lovász-flip on x2, x3. Observe that both C2 and C3 are 2-separators of H . Let H 0 be obtained
from H by a Whitney-flip on both C2 and C3. Note that (H,�) has a blocking vertex v. As Lovász-flips
preserve even cycles, ecycle(G,�) = ecycle(H,�). The result now follows from Remark 14.

Proof of Theorem 2. Since ecycle(G,⌃) is 3-connected, it follows by Proposition 11 that (G,⌃) is
nearly 3-connected. As (G,⌃) is not graphic, Remark 14 implies that (G,⌃) has no blocking vertex.
Hence, (G,⌃) satisfies the hypothesis of Theorem 12. Suppose (1) does not hold, i.e. (G,⌃) is timid.
Together with Lemma 15 it implies that (2) holds. Suppose that (2) holds. Then Proposition 13 implies
that (G,⌃) is timid, i.e. (1) does not hold.

3.4 A corollary: Theorem 4

We require the following observations.

Remark 16. Let (G,⌃) be nearly 4-connected.
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(1) If (G,⌃) is a Shredder, then ⌃ is contained in a triangle.

(2) If (G,⌃) is an Octahedron, then it is a trivial Octahedron.

(3) If (G,⌃) is a Kite, then it is a basic Kite.

(4) (G,⌃) is not a Saucer.

Proof. In this proof (c),(d) refer to the conditions of nearly 4-connected signed graphs (see Section 1.3.8).
(1) Let x1, x2, x3, C0, C1, C2, C3 and ⌃

0 as given in the definition of Shredder. If V (G) = {x1, x2, x3}
the result is trivial. Thus we may assume, after possibly resigning and relabeling the sets Xi, that
I(X0) 6= ;. It follows from conditions (c) and (d) that I(Xi) = ; for i = 1, 2, 3. Hence, all edges
of X1 [X2 [X3 have both ends in {x1, x2, x3}. (2) Since A, B, C, D are solid, it follows from condi-
tions (d) that each of A, B,C, D are triangles. (3) If (G,⌃) is a Kite of Type I or of Type III, then the
separation B [ {⌦} contradicts condition (d). Condition (d) also implies that I(A) = I(C) = ;. (4) If
(G,⌃) is a Saucer, then the separation D [ {⌦} contradicts (c).

Proof of Theorem 4. Since (G,⌃) is nearly 4-connected, it is nearly 3-connected. Suppose (1) does not
hold, i.e. (G,⌃) is timid. Then by Theorem 12 and Remark 16, (2) must hold. Suppose that (2) holds.
Then Proposition 13 implies that (1) does not hold.

3.5 The case without disjoint blocking pairs

We prove the following result in this section.

Proposition 17. Let (G,⌃) be a nearly 3-connected signed graph that has no blocking vertex. If (G,⌃)

is timid and has no two disjoint blocking pairs, then it is either a Shredder or a Pinwheel.

A blocking pair triple in a signed graph (G,⌃) is a set of three distinct vertices x1, x2, x3 such that each
of {x1, x2}, {x2, x3} and {x1, x3} are blocking pairs.

Lemma 18. A signed graph without blocking vertices and with a blocking pair triple is a Shredder.

Proof. Suppose that (G,⌃) has a blocking pair triple x1, x2, x3. Let k � 1 be a positive integer, and let
Z1, . . . , Zk be the components of G� {x1, x2, x3}. Pick a signature ⌃

0 such that ⌃

0 ✓ �(x1) [ �(x2) [
�(x3). For every j 2 [k], we let Bj be the set of edges �(V (Zj)) [ E(Zj), i.e. the edges of Zj along
with the edges with one endpoint in V (Zj) and the other endpoint contained in {x1, x2, x3}. For every
i 2 [3] and j 2 [k], the edge set �(xi) \ Bj is either entirely contained in ⌃

0 or is disjoint from ⌃

0,
lest there exists an odd cycle contained in Bj which avoids vertices of {x1, x2, x3} \ {xi}, contradicting
the fact that {x1, x2, x3} \ {xi} is a blocking pair. Thus, we may assume (by possibly considering the
signature ⌃

0 4 �(V (Zj)), for j 2 [k]) that for all indices j 2 [k], the set (Bj \ �(xi)) \ ⌃

0 6= ; for at
most one index i 2 [3]. Let X be the set of edges with both endpoints in {x1, x2, x3}. Suppose first that
X = ;. Then the statement now follows if we let C0 = {Bj : j 2 [k] and Bj \ ⌃ = ;} and for i 2 [3],
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we let Ci = {Bj : j 2 [k] and Bj \ ⌃ ✓ �(xi)}. If X 6= ;, add all even edges of X to C0, add odd
edges (x1, x2) and (x1, x3) of X to B1 and add odd edge (x2, x3) of X to B2. Then the statement still
holds.

Lemma 19. Let (G,⌃) be a nearly 3-connected signed graph that has no blocking vertex. If (G,⌃) is
timid and all blocking pairs use the same vertex, then it is a Pinwheel.

Proof. Let (G,⌃) denote a timid signed graph where the set of all blocking pairs is of the form
�
{h, ui} :

i 2 [r]}. Since (G,⌃) is timid, r � 2. Define (H,�) :=

�
G�h,⌃\�(h)

�
. Then u1, . . . , ur are blocking

vertices of (H,�). We may assume, after possibly resigning, that � ✓ �H(u1). Let H 0 be obtained
from H by splitting u1 into vertices u�1 and u+

1 according to �. Then (see Section 1.1) the vertices
u2, . . . , ur are exactly the cut vertices of H 0 separating u�1 and u+

1 . It follows that H is a maximal flower
F = (B1, . . . , Br, u1, . . . , ur) for some petals B1, . . . , Br and that (H,�) is an odd flower. In particular,
(G,⌃) is a Whirligig with hub h.

Suppose for a contradiction that (G,⌃) is not a Pinwheel, i.e. it is k-degenerate for some k 2 [r]. We
may assume (after possibly relabeling the petals and attachments) that it is 1-degenerate. Let ⌃

0, ı̂, |̂ be
as in the definition of 1-degenerate Whirligig given in Section 1.3.7. Then either

(a) there is no edge (h, u1) 2 ⌃

0 and ı̂  |̂ or

(b) there is an edge (h, u1) 2 ⌃

0 and ı̂ = 1 or |̂ = r.

Let ~H be the LR-graph obtained from (G,⌃0
) by unfolding on h, u1. We will show that every blocking

pair h, ui can be displayed as an LR-separation of ~H thereby contradicting the fact that (G,⌃) is timid.
Denote by h� (resp. h+) the tail of L (resp. R) of ~H and denote by v�1 (resp. v+

1 ) the head of L (resp.
R) of ~H . For i 2 [r], define,

Yi := B1 [ . . . [Bi�1

Xi := {L} [ Yi [ {e 2 E(

~H) : e = (h�, w) or e = (h+, w) where w 2 VH(Yi)}.

Note, that L 2 Xi and R /2 Xi. Consider i 2 [r]. By the definition of unfolding, if there exists
e = (h, v1) 2 E(G) \ ⌃

0 then either e = (h�, v�1 ) or e = (h+, v+
1 ) in ~H . Suppose first that (a)

occurs. Then by construction, for all i 2 [r] where i < |̂ we have that B ~H(Xi) = (h�, ui), and for all
i 2 [r]where i � |̂ we have that B ~H(Xi) = (h+, ui). Hence, blocking pairs of (G,⌃) are displayed as
LR-separators. Suppose now that (b) occurs. We consider the case where ı̂ = 1 only as the case where
|̂ = r is similar. By the definition of unfolding we can choose the edge e = (h, u1) 2 ⌃

0 of G to have
endpoints h+, v�1 in ~H . Then (h, u1) is displayed by the LR-separator, {L} and by construction, for all
i 2 {2, . . . , r}, B ~H(Xi) = (h+, ui).

Proof of Proposition 17. Construct an auxiliary graph H with V (H) = V (G) as follows: (u, v) 2
E(H) if and only if {u, v} is a blocking pair of (G,⌃). By hypothesis, E(H) 6= ; and H has no two
independent edges. It follows that H is a triangle or H is a star. In the former case, Lemma 18 implies
that (G,⌃) is a Shredder. In the latter case, Lemma 19 implies that (G,⌃) is a Pinwheel.

17



3.6 Organization of the remainder of the paper

Theorem 12 will follow from Proposition 17 and the following result.

Theorem 20. Let (G,⌃) be a nearly 3-connected signed graph that has no blocking vertex. If (G,⌃) is
timid and has two disjoint blocking pairs, then it is either a Shredder, an Octahedron, a Kite, or a Saucer.

Theorem 20 and Proposition 13 are proved in Section 4 and in Section 5 respectively.

4 The proof of Theorem 20

We say that a signed graph is relevant if it satisfies the following properties:

(h1) it is nearly 3-connected;

(h2) it has no blocking vertex;

(h3) it has two disjoint blocking pairs;

(h4) it has no blocking triple;

(h5) it is timid.

Because of (h1) a relevant signed graph has no even loops and because of (h3) it has no odd loops either.
If (G,⌃) satisfies the hypothesis of Theorem 20 it satisfies conditions (h1), (h2), (h3) and (h5). If in
addition, it is not a Shredder, then by Lemma 18 it also satisfies (h4), hence it is relevant. Therefore,

Remark 21. To prove Theorem 20 it suffices to show that a relevant signed graph is either an Octahedron,
a Kite, or a Saucer.

4.1 Sketch of the proof

We given an overview of the proof in this section.

4.1.1 U-graphs

A U-graph is a pair (H,U) where H is a graph, and U is an ordered set of four distinct vertices. Consider
an LR graph ~H . We can construct a U-graph (H,U) from ~H as follows: H =

~H \ {L, R} and the first
vertex of U is the tail of L, the second vertex of U is the head of L, the third vertex of U is the tail of
R, and finally the fourth vertex of U is the head of R. Note, that the constructing is reversible, i.e. given
the U-graph (H,U) we can construct the LR-graph ~H . We say that ~H is the LR-graph corresponding to
the U-graph (H,U) and that (H,U) is the U-graph corresponding to the LR-graph ~H . An LR-graph ~H

arises from a signed graph (G,⌃) if ~H is obtained by unfolding (G,⌃0
) on s, t for some signature ⌃

0 and
some pair of vertices s, t of G.
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Suppose ~H is an LR-graph and let (H,U) be the corresponding U-graph. We say that (H,U) is
obtained by unfolding (G,⌃) on s, t if ~H is obtained by unfolding (G,⌃) on s, t. We also say that the
U-graph (H,U) arises from (G,⌃) if ~H arises from (G,⌃). Finally, if for some X ✓ E(H), a blocking
pair {a, b} of (G,⌃) is displayed by an LR-separator X [ {L} of ~H , then we say that {a, b} is displayed
by X in the U-graph (H,U).

Consider a U-graph (H,U) where U = (s1, t1, s2, t2). 5 We say that (H,U 0
) is equivalent to (H,U)

if either, (i) U 0
= (t1, s1, t2, s2), or (ii) U 0

= (s2, t2, s1, t1), or (iii) U 0
= (t2, t1, s2, s1). The following

remark shows that if a U-graph arises from a signed graph (G,⌃) then so does every equivalent U-graph.

Remark 22. Consider the U-graphs (H,U) and (H,U 0
) given in the previous definition. Suppose that

(H,U) is obtained by unfolding a signed graph (G,⌃) on some vertices s, t. In case (i), (H,U 0
) is

obtained by unfolding (G,⌃) on t, s. 6 Let ⌃

0
= ⌃4�G(s)4�G(t). In case (ii), (H,U 0

) is obtained by
unfolding (G,⌃0

) on s, t. In case (iii), (H,U 0
) is obtained by unfolding (G,⌃0

) on t, s,

4.1.2 Intercepting sets

Let (H,U) be a U-graph with U = (s1, t1, s2, t2). Distinct vertices a, b 2 V (H)\U form an intercepting
pair of (H,U) if H � {a, b} has no s1 � s2 path and no t1 � t2 path. Distinct vertices a, b, c, where
a 2 V (H) \ U and either {b, c} = {s1, s2} or {b, c} = {t1, t2}, form an intercepting triple of (H,U) if
H � {a, b, c} has no s1� s2 path and no t1� t2 path. An intercepting set is either an intercepting pair or
an intercepting triple.

Lemma 23. Let (H,U) be a U-graph with U = (s1, t1, s2, t2) obtained by unfolding a signed graph
(G,⌃) on s, t. Consider a blocking pair {a, b} 6= {s, t} of (G,⌃). Let A (resp. B) be the set of vertices
of H corresponding to vertex a (resp. b) of G. If {a, b} \ {s, t} = ;, then A [ B is an intercepting pair
of H; otherwise A [B is an intercepting triple of (H,U).

Proof. By hypothesis {a, b} 6= {s, t}. If (A [ B) \ U = ;, then A = {a} and B = {b}. Otherwise,
A\ U 6= ;, and we may assume, A = {a} and either b = s or b = t. In the former case B = {s1, s2}, in
the latter case B = {t1, t2}. Let C be an arbitrary s1 � t1 or s2 � t2 path of H . Then C is an odd circuit
of (G,⌃). It follows that VG(C) \ {a, b} 6= ;. Hence, VH(C) \ (A [B) 6= ;.

Let (H,U) be a U-graph and let ~H be the corresponding LR-graph. We say that an intercepting set
W of (H,U) is good if we can display the blocking pair corresponding to W in the U-graph (H,U).
Equivalently, W is good if for ~H , the LR-graph corresponding to (H,U), and for some X ✓ E(H), we
have that X [ {L} is an LR-separator and that B ~H(X [ {L}) ✓ W .

Lemma 24. Every U-graph, that arises from a relevant signed graph, has a bad intercepting set.

5We use the notation (v1, . . . , vk) to denote an ordered sequence v1, . . . , vk of vertices.
6By definition of unfolding, if ~H is obtained by unfolding (G, ⌃) on s, t and ~H 0 is obtained by unfolding (G, ⌃) on t, s,

then ~H 0 is obtained from ~H by reversing the direction of both L and R.
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Proof. Let (H,U) be a U-graph with U = (s1, t1, s2, t2) that is obtained from a relevant signed graph
(G,⌃) by unfolding on some vertices s, t. Suppose for contradiction that every intercepting set is good.
Let {a, b} be an arbitrary blocking pair of (G,⌃). By Lemma 23, either {a, b} = {s, t} or {a, b}
corresponds to an intercepting set W of (H,U). Since W is good it can be displayed in (H,U). As {a, b}
was arbitrary, (G,⌃) is not timid, contradicting (h5).

4.1.3 Templates

Let (H,U) be a U-graph and let ~H be the corresponding LR-graph. Let {a, b} be a (good) intercepting
pair of (H,U), that is displayed by a set X ✓ E(H). We say that {a, b} is skewed, if there exist edges
e, f of E(H) such that {e, f} is an edge cut of ~H separating L from R, e 2 X , f 62 X and where a is an
endpoint of e and b is an endpoint of f (or vice-versa).

Let (H,U) be a U-graph with U = (s1, t1, s2, t2). Let {a, b} be a (good) intercepting pair of (H,U),
that is displayed by a set X ✓ E(H). Let E0 be the set of edges with both ends contained in either:
{s1, t1}, {s2, t2}, or {a, b}. We say that T = (H,U , {a, b}, X) is a template if the following conditions
hold.

(T1) H[X \ E0] and H[

¯X \ E0] are both connected;

(T2) there is no vertex zi 2 {si, ti}, for both i = 1, 2, with both z1 and z2 of degree one in H;

(T3) {a, b} are not skewed.

We omit the set X in the 4-tuple T = (H,U , {a, b}, X), when it is not relevant. Let T = (H,U , {a, b})
be a template and let (H,U 0

) be equivalent to (H,U). Then observe that T0
:= (H,U 0, {a, b}) is also a

template. We say that T and T0 are equivalent. A template T = (H,U , {a, b}) arises from a signed graph
(G,⌃) if the U-graph (H,U) arises from (G,⌃).

The first key step of the proof is the following result.

Lemma 25. For every relevant signed graph (G,⌃) there is a template that arises from (G,⌃).

The proof is postponed until Section 4.3

4.1.4 Breaking the argument into different cases

Let us first classify intercepting sets.

Remark 26. Let T = (H,U , {a, b}) be a template where U = (s1, t1, s2, t2) and let W be an intercepting
set of (U,U) different from {a, b}. Then, after possibly replacing T by an equivalent template, W is of
one of the following types,

Type A. W = {x, y} and x, y /2 {a, b} [ U .

Type B. W = {x, s1, s2}, and x /2 {a, b} [ U .
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Type C. W = {x, y}, x 2 {a, b} and y /2 {a, b} [ U .

Type D. W = {x, s1, s2} and x 2 {a, b}.

The following result will be proved in Section 4.2.

Lemma 27. No template has a bad intercepting set of Type D.

Consider a template T = (H,U , {a, b}, X) where U = (s1, t1, s2, t2). We say that T has an internal
pivot if there is no s1 � t1 path in H[X] � {a, b} and no s2 � t2 path in H[

¯X] � {a, b}. We say that T
has an external pivot if there is no a� b path in H[X]� {s1, t1} and no a� b path in H[

¯X]� {s2, t2}.
Let us now classify templates.

Remark 28. Let T =

�
H,U , {a, b}

�
where U = (s1, t1, s2, t2), be a template that arises from a relevant

signed graph. Then, after possibly replacing T by an equivalent template, T is of one of the follow-
ing types,

Type 1. T has a bad intercepting set of Type A,

Type 2. T has a bad intercepting set of Type B and has an external pivot,

Type 3. T has a bad intercepting set of Type C and has an internal pivot,

Type 4. T has a bad intercepting set of Type B and has no external pivot,

Type 5. T has a bad intercepting set of Type C and has no internal pivot.

Proof. We know from Lemma 24 that there exists a bad intercepting set W of T. Remark 26 implies that
W is Type A,B,C or D. Lemma 27 implies that W is not of Type D. The result now easily follows.

Let (G,⌃) be a relevant signed graph and let T be a template that arises from (G,⌃). By the previous
remark, T is of Type i, for some i 2 [5]. We say that T is i-extremal for (G,⌃) if there is no template T0

7 arising from (G,⌃) of Type j, where j > i. In Section 4.2 we will show the following result.

Lemma 29. Let (G,⌃) be a signed graph and let T be a template arising from (G,⌃).

(1) If T is of Type 2, then there is a template T0 arising from (G,⌃) of Type 3.

(2) If T is of Type 4, then there is a template T0 arising from (G,⌃) of Type 5.

Next we state the three key lemmas of the proof.

Lemma 30. If a 1-extremal template T arises from a relevant signed graph (G,⌃), then (G,⌃) is an
Octahedron.

7where T0 is possibly equal to T, as a template can be of more than one type (depending on the intercepting set considered).
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Lemma 31. If a 3-extremal template T arises from a relevant signed graph (G,⌃), then (G,⌃) is an
Saucer.

Lemma 32. If a 5-extremal template T arises from a relevant signed graph (G,⌃), then (G,⌃) is a Kite.

Proof of Theorem 20. Let (G,⌃) be a relevant signed graph. As indicated in Remark 21 it suffices to
show that (G,⌃) is an Octahedron, a Kite, or a Saucer. Lemma 25 implies that there exists a template
that arises from (G,⌃). Hence, by Remark 28, there exists an i-extremal template T, that arises from
(G,⌃), for some i 2 [5]. Lemma 29 implies that i /2 {2, 4}. Hence, T is 1-, 3-, or 5-extremal. Now the
result follows immediately from lemmas 30, 31 and 32.

The remainder of this section is organized as follows. Section 4.2 proves Lemma 29 and Lemma 27
and establishes some definitions and results that are used throughout the rest of the paper. Section 4.3
proves Lemma 25. Lemma 30, 31, 32 are proved in Sections 4.4, 4.6, 4.5 respectively.

4.2 Preliminaries

First, we prove connectivity properties of U-graphs arising from relevant signed graphs.

Lemma 33. Let (H,U) be a U-graph with U = (s1, t1, s2, t2), that arises from a signed graph (G,⌃)

that is nearly 3-connected and has no blocking vertex. Suppose Y is a separator of H or order k. Then
k � 1. If k = 1, then Y or ¯Y consists of a single edge, say ⌦, and the end of ⌦ that is not in BH(Y ) is in
U . If k = 2 and |Y |, | ¯Y | � 2, then U \ IH(Y ), U \ IH(

¯Y ) 6= ;.

Proof. Consider the case where k = 0. Since, by (h1), (G,⌃) is nearly 3-connected, G is 2-connected.
Hence, for some i, j 2 [2], si 2 IH(Y ), s(3�i) 2 IH(

¯Y ) and tj 2 IH(Y ), t(3�j) 2 IH(

¯Y ). It follows
that (G,⌃) is bipartite, contradicting (h2).

Consider the case where k = 1 and denote by z the unique vertex in BH(Y ). Suppose first that
BG(Y ) � 3. Then, for some i, j 2 [2], si 2 IH(Y ), s(3�i) 2 IH(

¯Y ) and tj 2 IH(Y ), t(3�j) 2 IH(

¯Y ).
It follows that z is a blocking vertex of (G,⌃), contradicting (h2). Thus BG(Y )  2 and since (G,⌃) is
nearly 3-connected |BG(Y )| = 2. Suppose |Y |, | ¯Y | � 2. As (G,⌃) is nearly 3-connected, (G[Y ],⌃\Y )

and (G[

¯Y ],⌃\ ¯Y ) are non-bipartite. Then, (after possibly exchanging the role of Y and ¯Y ) we have that
s1, s2 2 VH(Y ) and t1, t2 2 VH(

¯Y ). But then BG(Y ) = 1, a contradiction. Thus Y or ¯Y consists of a
single edge ⌦. As G is 2-connected, the end of ⌦ that is not in BH(Y ) is in U .

Consider the case where k = 2 and |Y |, | ¯Y | � 2. Suppose for a contradiction that U \ IH(Y ) = ;.
Then either U \BH(Y ) is equal to one of {s1, s2}, {t1, t2} and Y is a 1-separation of G, or otherwise Y

is a 2-separation of G and (G[Y ],⌃\ Y ) is bipartite. In both cases this contradicts the fact that (G,⌃) is
nearly 3-connected. Thus U \ IH(Y ) 6= ; and similarly, U \ IH(

¯Y ) 6= ;.

Next, we establish properties of bad intercepting sets.

Lemma 34. Let (H,U) be a U-graph, with U = (s1, t1, s2, t2), obtained by unfolding a relevant signed
graph (G,⌃) on s, t and let W be a bad intercepting set of (H,U).
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(1) If W = {a, b} (a, b /2 U), then, for some i 2 [2], there exists an si � t(3�i) path in H � {a, b}.

(2) If W = {s1, s2, a} (a /2 U), then, for all i 2 [2], there exists a ti�s(3�i) path of H�{a, si, t(3�i)}.

Proof. Let ~H be the LR-graph corresponding to (H,U). (1) Let Z denote the edges in the component of
~H � {a, b} that contains s1 and t1 (s1, t1 are in the same component because of edge L). Since {a, b} is
an intercepting pair, H�{a, b} contains no s1� t1 and no s2� t2 paths. Suppose for a contradiction that
(1) does not hold. Then s2, t2 /2 V ~H(Z). Define X := Z [ {(a, z) 2 E(

~H) : z 2 V ~H(Z)} [ {(b, z) 2
E(

~H) : z 2 V ~H(Z)}. By construction ~H[X] is connected and B ~H(X) ✓ {a, b}. Moreover, the last
inclusion is not strict, for otherwise Remark 1(1) implies that (G,⌃) has a blocking vertex, contradicting
(h2). Lemma 33 implies that ~H[

¯X] is connected. Hence, X is an LR-separator displaying {a, b}, a
contradiction as W is bad. (2) We assume i = 1 as the case i = 2 is similar. Let Z denote the edges
in the component of ~H � {a, s1} that contains t1. Suppose for a contradiction H � {a, s1} has no
t1 � {s2, t2} path. Then s2, t2 /2 V ~H(Z). Define X := Z [ {(s1, z) 2 E(

~H) : z 2 V ~H(Z)} [ {(a, z) 2
E(

~H) : z 2 V ~H(Z)}. Proceeding as in case (1) we deduce that X is an LR-separator displaying {s, a}, a
contradiction as W is bad. Thus H�{a, s1} has either (i) a t1�s2 path Q or (ii) a t1�t2 path Q. Among
all paths Q satisfying (i) or (ii) pick one with minimum number of edges. If (i) occurs, then we are done.
If (ii) occurs, then Q is a path of H � {a, s1, s2}, contradicting the fact that W is an intercepting set.

Proof of Lemma 27. We may assume, after possibly exchanging the labels of a and b, that W =

{a, s1, s2}. Lemma 34(2) implies that H � {a, s1, t2} has a t1 � s2 path. In particular, there exists
a t1�b path P in H[X]�{a, s1}. Similarly, we show that there exists a t2�b path Q in H[

¯X]�{a, s2}.
But then P[Q is a t1�t2 path of H�{a, s1, s2} contradicting the fact that W in an intercepting pair.

Let
�
H, (s1, t1, s2, t2)

�
be a U-graph and let ~H be the corresponding LR-graph. Suppose that for

some X ✓ E(H), X [ {L} is an LR-separator where B(X [ {L}) = {a, b} for some a, b 2 V (H). Let
H1 denote the subgraph of H with edges ¯X and vertices VH(

¯X) [ {a, b}. Let H2 denote the subgraph
of H with edges X and vertices VH(X) [ {a, b}. For i = 1, 2 denote by ai (resp. bi) the vertex of
Hi corresponding to a (resp. b). Let H 0 be obtained from H1 and H2 by identifying vertices s1 with s2

(calling the resulting vertex s) and by identifying t1 with t2 (calling the resulting vertex t). We say that
the U-graph

�
H 0, (a1, b1, a2, b2)

�
is obtained from

�
H, (s1, t1, s2, t2)

�
by shifting X , see Figure 6. Note,

a, b need not be disjoint from s1, t1, s2, t2. (For instance if for i 2 [2], si = a in H then a(3�i) = s

in H 0.)

Remark 35. Suppose that a U-graph (H 0,U 0
) is obtained by shifting a U-graph (H,U). Then (H,U)

and (H 0,U 0
) arise from the same signed graph.

Proof. Assume that H,H 0,U ,U 0, a, b, X are as in the definition of shifting. Suppose that (H,U) is
obtained by unfolding a signed graph (G,⌃) on some vertices s, t. We only consider the case where
a, b are disjoint from s1, s2, t1, t2 as the other cases are similar. Let ⌃

0
:= ⌃4�G(X)4�G(s)4�G(t).

Note, ⌃

0 is a signature of (G,⌃). It can be readily checked that (H 0,U 0
) is obtained by unfolding (G,⌃0

)

on a, b.
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Figure 6: Shift

Given a path P of a graph G and vertices u, v 2 V (P ) we denote by P [u, v] the subpath of P with
ends u, v.

Proof of Lemma 29. Let T =

�
H,U , {a, b}, X

�
be a template where U = (s1, t1, s2, t2). Let

�
H 0,U 0

)

where U 0
= (a1, b1, a2, b2) be the U-graph obtained from (H,U) by shifting X . By Remark 35, (H 0,U 0

)

also arises from (G,⌃).

Claim 1. T0
=

�
H 0,U 0, {s, t}, ¯X

�
is a template.

Proof. The sets E0 are the same for both T and T0 hence, property (T1) for T implies (T1) for T0. Property
(T2) for T implies property (T3) for T0 and property (T3) for T implies property (T2) for T0. 3

Since T is of Type 2 or of Type 4 there exists a bad intercepting pair W of (H,U) of Type B, i.e.
W = {x, s1, s2}, x 62 {a, b} [ U and there is no s1 � s2 and no t1 � t2 path of H � {x, s1, s2}.

Claim 2. W 0
:= {x, s} is a bad intercepting pair of (H 0,U 0

).

Proof. We claim that W 0 is an intercepting pair of (H 0,U 0
). Let P be an arbitrary a1 � a2 path of H 0. If

P uses s in H 0, then P is an s1 � s2 path of H . 8 If P uses t in H 0, then P is a t1 � t2 path of H . In
either cases, VH(P ) \W 6= ;, and hence, VH0

(P ) \W 0 6= ;. Hence, H 0 �W 0 has no a1 � a2 path and
similarly, H 0 �W 0 has no b1 � b2 path. Therefore, W 0 is an intercepting pair of T0 of Type C.

It remains to show that W 0 is bad. Since W is bad, Lemma 34 implies that there exists a t1 � s2

path P1 of H � {s1, x, t2} and a t2 � s1 path P2 of H � {s2, x, t1}. Consider first the case where P1

uses a and P2 uses b. Let Q be the set of edges of H in P1[t1, a] [ P2[b, t2]. Then Q is a b1 � a2 path
of H 0 � {x, s}. In particular, x, s is not a good intercepting set of (H 0,U 0

). Otherwise we may assume,
after possibly interchanging the labels of a, b, that both P1 and P2 use a. But then P1[t1, a] [ P2[a, t2] is
a path of H � {s1, s2, x}, contradicting the fact that W is an intercepting set of (H,U). 3

Finally, note that T has an external pivot, if and only if T0 has an internal pivot. Hence, if T is of Type 2
then T0 is of Type 3 and if T is of Type 4 then T0 is of Type 5.

We will also require the following connectivity result,
8We identify paths with their set of edges.
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Lemma 36. Let (G,⌃) be nearly 3-connected. Let Y be a separator of G with B(Y ) = {v1, v2, v3}.
Suppose that (G[Y ],⌃ \ Y ) is bipartite and that for all distinct i, j, k 2 [3] there exists a vi � vj path in
G[Y ]� vk. Then Y is either solid or a triad.

Proof. If G[Y ] has a circuit C then, as (G[Y ],⌃\Y ) is bipartite and since (G,⌃) is nearly 3-connected,
there exist three, vertex disjoint, V (C) � {v1, v2, v3} paths of G[Y ]. Hence, Y is solid. Thus, we may
assume that I(Y ) 6= ; (for otherwise Y is a triangle), and that G[Y ] is acyclic. As (G,⌃) is nearly
3-connected, I(Y ) consists of a single vertex z and Y is the triad (z, v1), (z, v2), (z, v3).

4.3 Proof of Lemma 4.3

The goal of this section is to show that a template arises from every relevant signed graph. Before we
prove this result we shall require some preliminaries.

Let (G,⌃) be a signed graph. We say that a pair {x1, y1} and {x2, y2} of blocking pairs are twins if
there exist edges e, f of G such that {e, f} is a signature of (G,⌃), and for all i 2 [2], exactly one of
xi, yi is an end of e and exactly one of xi, yi is an end of f . Note that, in this definition we do not require
{x1, y1} and {x2, y2} to be disjoint

Lemma 37. A relevant signed graph (G,⌃) has a pair of disjoint blocking pairs that are not twins.

Proof. We will assume, for a contradiction, that any two pairs of blocking pairs are twins. By (h3) there
exist disjoint blocking pairs, say {a1, b1} and {a2, b2}. Hence, (after possibly exchanging the labels of
a1 and b1) there exist edges e = (a1, a2) and f = (b1, b2) such that {e, f} is a signature.

Claim 1. We may assume, after possibly relabeling a1, a2, b1, b2, that there exists a blocking pair {a2, y}
where y /2 {a1, a2, b1, b2}.

Proof. There exists a blocking pair {x, y} distinct from {ai, bj} for all i, j 2 [2], for otherwise the LR-
graph ~H obtained by unfolding (G, {e, f}) on a1, b1 displays all blocking pairs, contradicting (h5). Let
k := |{x, y} \ {a1, a2, b1, b2}|. Note, if k = 1 we are done. Suppose k = 2, then {x, y} = {a1, a2} or
{x, y} = {b1, b2} and (G,⌃) has a blocking triple, contradicting (h4). Thus k = 0. Since {a1, a2} and
{x, y} are twins, it follows that {a2, x} or {a2, y} is a blocking pair. 3

Since {a1, b2} and {a2, y} are twins, either,

(a) there exist edges g1 = (a1, a2) and g2 = (b2, y) such that {g1, g2} is a signature, or

(b) there exist edges g3 = (a1, y) and g4 = (a2, b2) such that {g3, g4} is a signature.

Since {a1, b1} and {a2, y} are twins, either,

(c) there exist edges g5 = (a1, a2) and g6 = (b1, y) such that {g5, g6} is a signature, or

(d) there exist edges g7 = (a1, y) and g8 = (a2, b1) such that {g7, g8} is a signature.
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Claim 2. In (a) g1 6= e and in (c) g5 6= e.

Proof. Suppose for a contradiction that g1 = e. Since {e, f} and {g1, g2} are both signatures, {e, f}4
{g1, g2} = {f, g2} is a cut. Hence, either deg(b2) = 2 or b2 is a cut vertex, a contradiction to (h1). The
case g5 = e is similar. 3

Suppose (a) and (c) occur. By Claim 2, g1 and g5 are distinct from e. Since {e, f} is a signature of (G,⌃)

edges g1 and g5 have the same parity. It follows from (h1) that g1 = g5. Since {g1, g2} and {g5, g6}
are signatures, {g2, g6} is a cut. Hence, either deg(y) = 2 or y is a cut vertex, a contradiction to (h1).
Suppose (a) and (d) occur. Since no two parallel edges of (G,⌃) have the same parity (and by Claim 2,
e 6= g1) {e, g1} is an odd circuit, a contradiction as {g7, g8} is a signature. The case where (b) and (c)
occurs, is symmetric to the previous one, so it does not occur either. Suppose (b) and (d) occur. Consider
first the case where g3 = g7. Since {g3, g4} and {g7, g8} are signatures, {g4, g8} is a cut. Hence, either
deg(a2) = 2 or a2 is a cut vertex, a contradiction to (h1). Consider now the case where g3 6= g7. Since
no two parallel edges of (G,⌃) have the same parity {g3, g7} is an odd circuit, a contradiction as {e, f}
is a signature.

Remark 38. If a U-graph
�
H, (s1, t1, s2, t2)

�
arises from a signed graph (G,⌃) then so does the U-

graph (H,U 0
) where either (i) U 0

= (s2, t1, s1, t2), or (ii) U 0
= (H, (s1, t2, s2, t1).

Proof.
�
H, (s1, t1, s2, t2)

�
is obtained by unfolding (G,⌃0

) on some vertices s, t where ⌃

0 is a signature
of (G,⌃). In case (i), (H,U 0

) is obtained by unfolding (G,�) where � = ⌃

04�G(s). In case (ii), (H,U 0
)

is obtained by unfolding (G,�) where � = ⌃

04�G(t).

Lemma 39. If {a, b} is a bad intercepting pair of the U-graph
�
H, (s1, t1, s2, t2)

�
then, {a, b} is a good

intercepting pair of the U-graph
�
H, (s2, t1, s1, t2)

�
.

Proof. Lemma 34(1) implies that for some i 2 [2], there is an si� t(3�i) path in H�{a, b}. If there is an
s1� t1 path Q in H�{a, b}, then P [Q contains an s1�s2 or a t1� t2 path in H�{a, b}, contradicting
the fact that {a, b} is an intercepting pair. Hence, there is no s1 � t1 and (by a similar argument) no
s2 � t2 path in H � {a, b}. This implies that {a, b} is not a bad intercepting pair of

�
H, (s2, t1, s1, t2)

�

for otherwise Lemma 34(1) would imply that there exists a path Q in H�{a, b} with ends corresponding
to either the first and fourth element of (s2, t1, s1, t2) or the second and third element of (s2, t1, s1, t2),
i.e. that Q is an s2 � t2 path or an s1 � t1 path, a contradiction.

Consider a graph H with V (H) = {s1, t1, s2, t2, a, a0, b, b0} and

E(H) := {(s1, t1), (a
0, b), (a, b0), (s1, a

0
), (a0, a), (a, s2), (t1, b), (b, b

0
), (b0, t2)}.

We say that a U-graph equivalent to (H,U), where U = (s1, t1, s2, t2) or U = (s1, t1, t2, s2), is a Ladder.
(See Figure 7.) We say that a signed graph (G,⌃) is a Ladder if it is obtained by folding a U-graph (H,U)

that is a Ladder. It can be readily checked that (H,U) displays all the blocking pairs of (G,⌃). Hence,
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Figure 7: Ladder

Remark 40. If a signed graph is a Ladder, then it is not timid.

Consider a graph H with a set of distinct vertices s1, t1, s2, t2, a, a0, b and for which we can partition
E(H) into edges, (a0, b), (s1, a

0
), (a0, a), (t1, b), (b, t2) and a set B where B(B) = {a, t2}, s2 2 I(B).

We say that the U-graph equivalent to (H,U), where U = (s1, t1, s2, t2) or U = (s1, t1, t2, s2), is a
Widget. (See Figure 8.) We say that a signed graph is a Widget if it is obtained by folding a U-graph that
is a Widget.

s1 s2

t1
t2

a�

B

b

a

Figure 8: Widget

Lemma 41. If a signed graph (G,⌃) is a relevant Widget, then there is a template that arises from (G,⌃).

Proof. Suppose H is as in the definition of Widget. Consider first the case where U = (s1, t1, t2, s2).
Denote by x (resp. y) the vertex of G obtained by identifying vertices t1 and s2 (resp. t2 and s1)
of H . Then {a0, b, y} is a blocking triple of (G,⌃) contradicting (h3). Thus we may assume that
U = (s1, t1, s2, t2). Let s (resp. t) denote the vertex of G obtained by identifying vertices s1 and
s2 (resp. t1 and t2) of H . All of the following blocking pairs are displayed in the U-graph (H,U):
{s, t}, {a0, b}, {a, t}, {s, b}, {a0, t}, {a, b}. Because of (h5), there exists another blocking pair {x, y}.
Since (G,⌃) has a pair of odd and even edges in between vertices b, t, we may assume that y 2 {b, t}
and x /2 {a, a0, s}, hence x 2 IG(B). Note, however that if {b, x} is a blocking pair, then so is {t, x}.
H � {t2, x} has no s1 � s2 path, for otherwise {t1, t2, x} is not an intercepting set of H , contradicting
Remark 23. It follows that there is a partition B1, B2 of B such that VH(B1) \ VH(B2) = {t2, x},
a 2 IH(B1) and s2 2 IH(B2). Among all such partition B1, B2 of B, pick one where B1 is inclusion-
wise minimal. Let (H 0,U 0

) be obtained from (H,U) by shifting {(s1, a
0
), (t1, b)}. Let t denote the
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vertex of H 0 corresponding to vertices t1 and t2 of H . By Remark 35 (H 0,U 0
) arises from (G,⌃). Then

T := (H 0,U 0, {t, x}, {(a0, b), (a0, a), (b, t2)} [B1) is the required template.

Proof of Lemma 25. Let T be a 4-tuple (H,U , {a, b}, X) where (H,U) is a U-graph, a, b are vertices of
H , and X ✓ E(H). Let ~H be the LR-graph corresponding to (H,U). We identify the following possible
properties for such a 4-tuple T.

(P1) (H,U) arises from (G,⌃);

(P2) B ~H(X [ {L}) = {a, b};

(P3) {a, b} \ U = ;;

Properties (P4), (P5), (P6), (P7) state that there does not exist a U-graph (H,U 0
), where U 0

= (s01, t
0
1, s

0
2, t

0
2),

that is equivalent to (H,U) and which has

(P4) edges e = (s01, a) and f = (t01, b) that form a cut of ~H separating L and R.

(P5) edges e = (s01, a) and f = (b, t02) that form a cut of ~H separating L and R.

(P6) edges e = (s01, a) and f = (b, t02) where degH(s01) = degH(t02) = 1.

(P7) degH(s01) = degH(t02) = 1.

Moreover,

(P8) {a, b} is not skewed;

Claim 1. There exists 4-tuple T satisfying (P1)-(P6).

Proof. We may assume from Lemma 37 that there exists disjoint blocking pairs {s, t} and {a, b} of
(G,⌃) that are not twins. Since {s, t} is a blocking pair there exists a signature ⌃

0 of (G,⌃) where
⌃

0 ✓ �G(s) [ �G(t). Let (H,U) be obtained by unfolding (G,⌃0
) on s, t. Remark 23 implies that {a, b}

is an intercepting pair of (H,U). Because of Remark 38 and Lemma 39 we may assume, after possibly
redefining (H,U), that {a, b} is a good intercepting pair of (H,U). Hence, {a, b} is displayed in the
U-graph (H,U) by some set X ✓ E(H). Then T := (H,U , {a, b}, X) satisfies (P1)-(P3). For each of
(P4), (P5) and (P6), edges e and f form a signature of (G,⌃). It follows in each cases that {s, t} and
{a, b} are twins, a contradiction. 3

By Claim 1 there exists a 4-tuple T = (H,U , {a, b}, X) satisfying (P1)-(P6). Suppose that T does
not satisfy (P8), i.e. there exists edges (a0, a) and (b, b0) of H , for some vertices a0, b0 of H , such that
{(a0, a), (b, b0)} form a cut of H separating L and R, and (a0, a) 2 X , (b, b0) /2 X . Consider the following
4-tuples:

T1 :=

�
H,U , {a, b0}, X [ {(b, b0)}

�
T2 :=

�
H,U , {a0, b}, X \ {(a, a0)}

�
.
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Claim 2. For i = 1, 2, Ti satisfy properties (P1), (P2), (P5), (P6) and (P8).

Proof. Let i 2 [2]. Since the U-graph corresponding to the first two components of T and Ti is the same,
(P1) holds for Ti. Property (P2) is easy to verify for Ti. We leave it as an exercise to check that (P8) holds
for Ti. Denote by (s1, t1, s2, t2) the elements of U . Suppose (P5) does not hold for T1. (P3) implies that
b /2 {s1, t1}. Thus e = (a0, a) and a0 2 {s1, t1}. We may assume a0 = s1 as the case a0 = t1 is similar
(interchange s and t in the proof). Then f = (b0, t2). Since {e, f} and {(a0, a), (b, b0)} are cuts of H , so is
{(a0, a), (b0, t2)}4{(a0, a), (b, b0)} = {(b, b0), (b0, t2)}. Hence, degH(b0) = 2 or b0 is a cut vertex of H , a
contradiction to Lemma 33. Hence, (P5) holds for T1. The proof to show that (P5) holds for T2 is similar,
hence we omit it. Suppose (P6) does not hold for T1. (P3) implies that b /2 {s1, t1}. Thus e = (a0, a)

and a0 2 {s1, t1}. We may assume a0 = s1 as the case a0 = t1 is similar. Then f = (b0, t2). Since
1 = degH(s1) = degH(a0) and since {(a0, a), (b, b0)} is a cut of H separating a0, b and a, b0, Lemma 33
implies that degH(b) = 1. But then b = t1 a contradiction. Hence, (P6) holds for T1. The proof to show
that (P6) holds for T2 is similar, hence we omit it. 3

Claim 3. For some i 2 [2], Ti satisfies (P3) and (P4).

Proof. If (P3) does not hold for T1 then b0 2 {s2, t2}. If (P3) does not hold for T2 then a0 2 {s1, t1}.
Note, {a0, b0} is an intercepting pair since {(a, a0), (b, b0)} is a cut of ~H separating L and R. If b0 = s02
and a0 = s01 then H � {s1, s2} has no s1 � s2 and no t1 � t2 paths, hence, the vertex s (corresponding
to s1, s2) is a blocking vertex of (G,⌃), contradicting (h2). Similarly, b0 = t2 and a0 = t1 is not possible
either. Thus, for i 2 [2], a0 = si, b0 = t(3�i), contradicting (P5). Because of Remark 40 and Lemma 41
we may assume that (H,U) is not a Ladder or a Widget. If (P4) does not hold for T1 and (P4) does not
hold for T2 then (H,U) is a ladder, a contradiction. Thus we may assume, up to equivalence that (P3)
does not hold for T1 and that (P4) does not hold for T2. But then (H,U) is a Widget, a contradiction. 3

Claim 4. There exists a 4-tuple T satisfying (P1)-(P8).

Proof. By Claim 2 and Claim 3 for some i 2 [2], Ti satisfies all of (P1)-(P6) and (P8). Moreover, observe
that if T satisfies (P7) then so does Ti. It follows that it is sufficient to construct a 4-tuple T0 that satisfies
(P1)-(P7). Because of Ti we may assume that T = (H,U , {a, b}, X) satisfies (P1)-(P6) and (P8). Let
(H 0,U 0

) be obtained from (H,U) by shifting X . Recall, U = (s1, t1, s2, t2) and let s (resp. t) denote
the vertices of G corresponding to s1, s2 (resp. t1, t2). Then let T0

:= (H 0,U 0, {s, t}, ¯X). Remark 35
implies that (P1) holds for T0. It is easy to check that (P2) holds for T0. Properties (P3), (P4), (P5), (P6),
(P8) for T imply respectively properties (P3), (P4), (P6), (P5), (P7) for T0. 3

Let T = (H,U , {a, b}, X) be obtained from Claim 4. We claim that T is the required template. First
{a, b} is a good intercepting pair because of (P2) and (P3). Suppose (T2) does not hold. Then up to
equivalence we either have, degH(s1) = degH(t2) = 1 or degH(s1) = degH(s2) = 1. In the former
case we contradict (P7) in the latter case, s has degree 2 in G, contradicting (h1). Condition (T3) holds
by (P8). Suppose, for a contradiction, that (T1) does not hold. Then we may assume, up to equivalence,
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that H[X \E0] is not connected. Lemma 33 implies that H[X \E0] consists of independent edges (s1, a)

and (t1, b) (after possibly interchanging the labels of a and b), contradicting (P4).

4.4 Proof of Lemma 30

The goal of this section is to show that if a 1-extremal template arises from a relevant signed graph then
that signed graph is an Octahedron. Before we prove this result we shall require some preliminaries.

We say that a template T =

�
H,U , {a, b}, X

�
, with U = (s1, t1, s2, t2), is a flower template (see

Figure 9) if there exists vertices c, d 62 U [ {a, b}, a partition A, B of X , and a partition C, D of ¯X such
that the following conditions hold.

(F1) s1 2 I(A), t1 2 I(B), s2 2 I(C), t2 2 I(D);

(F2) B(A) = {a, c}, B(B) = {b, c}, B(C) = {b, d}, B(D) = {a, d};

(F3) H[A], H[B], H[C], H[D] are connected.

A

B C

Da

b

s1

s2t1

t2

c d

Figure 9: Flower template

Lemma 42. Let T =

�
H,U , {a, b}, X

�
be a template, with U = (s1, t1, s2, t2), that arises from a relevant

signed graph (G,⌃). Suppose T has a bad intercepting pair {c, d} of Type A. Then, up to equivalence, T
is a flower template.

Proof.

Claim 1. We may assume (up to equivalence), that there exists Z ✓ E(H) where:

(1) s1, t2 2 I(Z), s2, t1 2 I(

¯Z),

(2) B(Z) = {c, d},

(3) there exists an s1 � t2 path P in H[Z]� {c, d}.

Proof. Since {c, d} is a bad intercepting pair, Lemma 34 implies that there exists an si� t(3�i) path P in
H � {c, d}, for some i 2 [2]. We may assume (up to equivalence) that i = 1. Let Z0 be the edges in the
component of H � {c, d} that contains s1, t2. Define, Z := Z0 [ {(v, c) : v 2 V (Z0)} [ {(v, d) : v 2
V (Z0)}. Since {c, d} is an intercepting pair s2, t1 62 V (Z). By construction B(Z) ✓ {c, d}. Lemma 33
implies that B(Z) = {c, d}. 3
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Claim 2. After possibly exchanging the role of a and b we have a 2 I(Z), b 2 I(

¯Z).

Proof. We claim that there exists a t1�s2 path Q of H[

¯Z]. For otherwise H[

¯Z] has edge sets Z1, Z2, cor-
responding to components of H[

¯Z] with t1 2 V (Z1) and s2 2 V (Z2). Since H is connected (Lemma 33),
we may assume that c 2 V (Z1) and d 2 V (Z2). Lemma 33 then implies that |Z1| = |Z2| = 1, con-
tradicting property (T2) of templates. Thus we have vertex disjoint {s1, t1} � {s2, t2} paths P,Q of H

(where P is given in Claim 1). As {a, b} is a good intercepting pair we may assume that a 2 V (P ) and
b 2 V (Q). 3

Claim 3. After possibly exchanging the role of c and d we have c 2 I(X), d 2 I(

¯X).

Proof. Otherwise we may assume (up to equivalence) that c, d 2 I(

¯X). Because of Claim 1 parts (1),(2),
every s1 � t1 path intersects one of {c, d}. In particular, there exists no s1 � t1 path in H[X]. Hence,
H[X] is not connected, contradicting property (T1). 3

Now define,
A := X \ Z B := X \ ¯Z C :=

¯X \ ¯Z D :=

¯X \ Z.

Claim 1, Claim 2 and Claim 3 imply that properties (F1) and (F2) of flower templates hold. Suppose (F3)
does not hold. Up to symmetry it suffices to consider the case where A can be partitioned into A1, A2

where V (A1) \ V (A2) = ;. Then we may assume that a 2 V (A1) and c 2 V (A2). Then s1 62 V (A1)

or s1 /2 V (A2). In the former case A1 contradicts Lemma 33, in the latter case A2 does.

Proof of Lemma 30. Suppose T is of the form (H,U , {a, b}, X), with U = (s1, t1, s2, t2). Since T is of
Type 1, there is a bad intercepting set W = {c, d} of (H,U). By Lemma 42, T is a flower template. It
remains to show that A, B,C, D are solid separations of G.

Claim. Each of A, B,C, D is either solid or a triad.

Proof. As we can consider equivalent templates, it suffices to show the result for A. Because of Lemma 36
we only need to verify the following statements,

(1) there exists an s1 � c path of H[A]� a,

(2) there exists an s1 � a path of H[A]� c,

(3) there exists an a� c path of H[A]� s1.

Suppose (1) does not hold. Then Lemma 33 implies that A consists of edges (s1, a) and (c, a). Observe
that H � {a, d} has no s1 � s2 path and no t1 � t2 path. Hence, {a, d} is an intercepting pair. By (T2),
degH(s2) � 2. It follows, by Lemma 33, that there exists a b � s2 path of H[C] � d. Since H[B] is
connected, there exists a t1�s2 path of H�{a, d}. Hence, {a, d} is a bad intercepting pair. In particular,
{a, d} is a bad intercepting set of Type C, contradicting the fact that T is a 1-extremal.

Suppose (2) does not hold. Consider first the case where s1 and t1 do not both have degree 1 in H .
By Remark 35, (H,U 0

) with U 0
= (s1, t2, s2, t1) also arises from (G,⌃). Observe, now that T0

:=
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(H,U 0, {c, d}, A[D) is a Flower template. Moreover, paths s1�a of H[A]� c play the same role in the
template T0 as paths s1� c of H[A]�a in the template T. Hence, following the argument in the previous
case, we deduce again that T is not 1-extremal, a contradiction. If both s1 and t1 have degree 1 in H , we
first construct a new U-graph (

ˆH, ˆU) from (H,U) by shifting the unique edge of H with end in t1. Then
we proceed with (

ˆH, ˆU) as previously. (The shift operation is required for otherwise T0 is not a template
as it will violate condition (T2).)

Suppose (3) does not hold. Then H � {s1, s2, d} has no s1 � s2 and t1 � t2 path. Hence, {s1, s2, d}
is an intercepting set. Moreover, there exists a t1 � s2 path in H � {s1, d} and a t1 � t2 path in H �
{s2, d}. This implies that {s1, s2, d} is a bad intercepting set of Type B, contradicting the fact that T is
1-extremal. 3

It follows from the Claim that in order to complete the proof we need to show that none of A, B,C, D

are triads. As we can consider equivalent templates, it suffices to show the result for A. Suppose for
a contradiction that A is a triad (z, s1), (z, a), (z, c) of H . Note that B is not a triad for otherwise
degG(c) = 2. Thus B is solid in G. It follows that T0

:= (H,U , {z, b}) is a template. Observe that {z, d}
is an intercepting pair. Because B is solid and C is either a triad or solid, there exists a t1 � s2 path of
H�{z, d}. It follows that {z, d} is a bad intercepting pair. Then {z, d} is a bad intercepting pair of Type
C for T0. We deduce that T is not 1-extremal, a contradiction.

4.5 Proof of Lemma 32

The goal of this section is to show that if a 5-extremal template arises from a relevant signed graph then
that signed graph is a Kite. Before we prove this result we shall require some preliminaries.

We say that a template T =

�
H,U , {a, b}, X

�
, with U = (s1, t1, s2, t2), is a strip template (see

Figure 10) if there exist vertex c /2 U [ {a, b}, an edge ⌦ = (t1, a), a partition A, {⌦} of X and a
partition B,C of ¯X such that the following conditions hold.

(S1) s1 2 I(A), s2 2 I(C), t2 2 I(B),

(S2) B(A) = {a, b}, {b, c} ✓ B(B) ✓ {a, b, c},B(C) = {a, c}.

Note that, we get two types of strip templates depending on whether BH(B) = {b, c} or BH(B) =

{a, b, c}.

Lemma 43. Let T =

�
H,U , {a, b}, X

�
be a template, with U = (s1, t1, s2, t2), that arises from a relevant

signed graph (G,⌃). Suppose T has a bad intercepting pair {a, c} of Type C. Then, up to equivalence,
T is a strip template.

Proof. We may assume, up to equivalence, that c 2 IH(

¯X). Since {a, c} is a bad intercepting pair,
Lemma 34 implies that there exists an si� t(3�i) path in H � {a, c} for some i 2 [2]. Up to equivalence,
we may assume that there exists an s1 � t2 path in H � {a, c}. In particular there exists an s1 � b path
P of H[X]� a and a b� t2 path Q of H[

¯X]� {a, c}.
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Figure 10: Two types of strip template

Because of Q and the fact that {a, c} is an intercepting pair, there is no t1 � b path of H[X] � a.
Thus there exists a partition ⌦, A of X such that P ✓ A, t1 2 I(⌦), and V (⌦) \ V (A) ✓ {a}, in
particular b /2 V (⌦). By Lemma 33, ⌦ consists of a single edge (t1, a). We have {b} ✓ B(A) ✓ {a, b}.
If B(A) = {b}, Lemma 33 implies that A consists of a single edge. But then H[X]�E0 is not connected,
contradicting (T1).

Because of P,Q and the fact that {a, c} is an intercepting pair, there is no {b, t2} � s2 path of
H[

¯X] � {a, c}. Hence, there exists a partition B, C of ¯X such that Q ✓ B, s2 2 I(C), and V (B) \
V (C) ✓ {a, c}. If B(C) ⇢ {a, c} then Lemma 33 implies that deg(s2) = 1, contradicting (T2). Path Q

implies that b 2 B(B). Clearly, B(B) ✓ {a, b, c}. Moreover, as c 2 B(C), c 2 B(B).

Let (H,U) be a U-graph and let X ✓ E(G). We say that a path P is an s � t|U X (or is of type
s� t|U X) if P is an s� t path of H[X] avoiding all vertices in

�
U [ B(X)

�
\ {s, t}.

Lemma 44. Let T = (H,U , {a, b}, X) be a template, with U = (s1, t1, s2, t2), that arises from a relevant
signed graph (G,⌃). Suppose T is a strip template where {a, c} is a bad intercepting pair. Then there
exist paths P1, . . . , P6 of H of the following types.

P1 : s1 � a|U A P2 : s1 � b|U A P3 : b� c|U B

P4 : t2 � b|U B P5 : s2 � a|U C P6 : s2 � c|U C

Moreover, either

(1) there exists a path of type a� t2|U B, or

(2) there exists a path of type a� b|U A [B and a path of type a� c|U B [ C.

Proof. Since T satisfies property (T1), paths P1 and P2 exist. Since {a, c} is a bad intercepting pair, by
Lemma 34(1) and the structure of strip templates, there exists an s1 � t2 path P of H � {a, c}. Then let
P4 := P [b, t2]. Since T satisfies property (T2), degH(s2) � 2. The existence of paths P5 and P6 then
follows from Lemma 33.

Claim. The following are not intercepting sets: {a, t1, t2}, {b, s1, s2} and {c, s1, s2}.
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Proof. Observe that {a, s1, s2} is an intercepting set of H . Hence, {a, s} is a blocking pair of (G,⌃).
Since {a, b}, {s, t}, {a, c} are also blocking pairs, and since by choice (h4), of (G,⌃) has no blocking
triple, {a, t}, {b, s} and {c, s} are not blocking pairs. 3

Since {a, t1, t2} is not an intercepting triple, there exists an s1 � s2 path P of H � {a, t1, t2}. Then let
P3 := P [b, c]. Hence, the first part of the statement holds.

It remains to show that either outcome (1) or (2) holds. Since {s1, s2, c} is not an intercepting pair,
there exists a t1 � t2 paths of H � {s1, s2, c}. In particular, there exists an a� t2 path Q in H[A [B]�
{s1, c}. If b /2 V (Q) then outcome (1) holds, otherwise we let Q0

:= Q[a, b]. Since {s1, s2, b} is not an
intercepting pair, there exists a t1 � t2 path of H � {s1, s2, b}. In particular, there exists an a � t2 path
R in H[B [ C]� {s2, b}. If c /2 V (R) then outcome (1) holds, otherwise we let R0

:= R[a, c]. Now, Q0

and R0 imply that outcome (2) holds.

Proof of Lemma 32. Suppose T is of the form (H,U , {a, b}, X), with U = (s1, t1, s2, t2). Since T is of
Type 5, there is a bad intercepting set W = {a, c} of (H,U). By Lemma 43, T is a strip template. Let
P1, . . . , P6 be the paths given by Lemma 44. Since there is no internal pivot, there exists an s2 � t2 path
P in H[B [ C]� {a, b}. Define P7 := P [t2, c].

Suppose outcome (1) of Lemma 44 occurs. Then let P8 denote the a� t2|U B path of H . It follows
that (G,⌃), obtained by folding (H,U), is a Kite of Type II, with P1, . . . , P8 satisfying the required
conditions. (See Section 1.3.4.) Thus we may assume outcome (1) does not occurs. Thus outcome (2)
occurs, i.e. there exists an a� b|U A [B path P8 and an a� c|U B [ C path P9 of H .

Consider first the case where a /2 BH(B). Then P8 is an a� b|U A path of H and P9 is an a� c|U C

path of H . Paths P1, P2, P8 and Lemma 36 implies that A is solid or a triad in G. Paths P5, P6, P9 and
Lemma 36 implies that C is solid or a triad of G. Paths P3, P4, P7 and Lemma 36 implies that B is solid
or a triad of G. However, (T2) implies that B and C are not a triad of G, hence they are solid. It follows
that (G,⌃), obtained by folding (H,U), is a Kite of Type I. (See Section 1.3.3.)

Consider now the case where a 2 BH(B). Since, there is no a � t2|B path of H , we can partition
B into B0 and D such that BH(B0

) = {b, c}, t2 2 IH(B0
) and BH(D) ✓ {a, b, c}. We may assume

that IG(D) 6= ; for otherwise, (h1) implies that D consists of edges with both endpoints in {a, b, c}. But
then we can redefine A (resp. B, C) so as to contain edges with ends a, b (resp. b, c and a, c), in which
case D = ; and we are in the previous case. Let z 2 IG(D). By (h1) there exists three z � {a, b, c}
paths, that only share vertex z, included in D. It follows from Lemma 36 that D is a triad or solid.
Hence, (G,⌃), obtained by folding (H,U), is a Kite of Type III, with P1, P2, P4, P5, P6, P7 satisfying
the required conditions. (See Section 1.3.5.)

4.6 Proof of Lemma 31

The goal of this section is to show that if a 3-extremal template arises from a relevant signed graph then
that signed graph is a Saucer. Before we prove this result we shall require some preliminaries.
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We say that a template T =

�
H,U , {a, b}, X

�
, with U = (s1, t1, s2, t2), is a swivel template (see

Figure 11) if there exist vertices c, d /2 U [ {a, b}, an edge ⌦ = (t1, a), a partition A1, A2, {⌦} of X and
a partition C1, C2, D of ¯X such that the following conditions hold.

(W1) s1 2 I(A1), s2 2 I(C1), t2 2 I(D).

(W2) B(A1) = {a, d},B(A2) = {a, d, b},B(C1) = {a, c},B(C2) = {a, c, b},B(D) = {a, b}.

a

b
s1

s2t1

t2

c

⌦

A1 A2

C1

C2

D

d

Figure 11: Swivel template

Lemma 45. Let T =

�
H,U , {a, b}, X

�
be a template, with U = (s1, t1, s2, t2), that arises from a

relevant signed graph (G,⌃). Suppose T is of Type 3, then it is a swivel template. Moreover, there exists
paths Q1, . . . , Q10 of H of the following types.

Q1 : s1 � a|U A1 Q2 : s1 � d|U A1 Q3 : d� b|U A2 Q4 : a� d|U A1 [A2

Q5 : s2 � a|U C1 Q6 : s2 � c|U C1 Q7 : c� b|U C2 Q8 : a� c|U C1 [ C2

Q9 : t2 � a|U D Q10 : t2 � b|U D

Proof of Lemma 31. Directly from Lemma 45 and the definition of folding.

We require a number of preliminaries before we can prove Lemma 45.

Lemma 46. Let T = (H,U , {a, b}, X) be a template, with U = (s1, t1, s2, t2), that is obtained by
unfolding a relevant signed graph (G,⌃) on vertices s, t. Then T does not have both an internal pivot
and an external pivot.

Proof. Suppose that for a contradiction that T has both an internal pivot and an external pivot.

Claim 1. I(X) = {s1, t1} and I(

¯X) = {s2, t2}.
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Proof. It suffices to prove the statement for X as the proof for ¯X is similar. Suppose for a contradiction
there exists z 2 I(X) \ {s1, t1}. Lemma 33 implies that there exist z � {s1, t1, a, b} minimal paths
P1, P2, P3 where V (Pi) \ V (Pj) = {z} for all i, j 2 [3], i 6= j. Thus for some i, j 2 [2] either: Pi is a
z � a path and Pj is a z � b path, or Pi is a z � s1 path and Pj is a z � s2 path. Let Q := Pi [ Pj . Then
Q shows in the former (resp. latter) case that T is not an external (resp. internal) pivot. 3

Properties (T1) and (T2) of templates imply that at most one vertex of U has degree 1 in H . Suppose no
vertex of U has degree 1. Then E(H) = {(si, a), (ti, a), (si, b), (ti, b) : i = 1, 2}. In that case (G,⌃)

has exactly two blocking pairs namely {a, b} and {s, t} which are displayed by H , contradicting (h5).
Suppose exactly one vertex, say s1, of U has degree 1. Then E(H) = {(s1, a), (t1, a), (t1, b), (s2, a),
(s2, b), (t2, a), (t2, b)}. In that case (G,⌃) has exactly three blocking pairs namely, {a, b}, {s, t} and
{a, t} which are displayed by H , contradicting (h5).

Lemma 47. A flower template T = (H,U , {a, b}, X), with U = (s1, t1, s2, t2), has no internal pivot.

Proof. Suppose for a contradiction that T has an internal pivot. Then there is no s1 � t1 path of H[X]�
{a, b}. Thus either there is no s1� c path of H[A]� a or there is no t1� c path of H[B]� b. Lemma 33
implies that degH(s1) = 1 in the former case and degH(t1) = 1 in the latter one. Similarly, degH(s2) =

1 or degH(t2) = 1. But this contradicts property (T2) of templates.

Proof of Lemma 45. Lemma 43 implies that T is a strip template. Denote by P1, . . . , P6 the paths
in Lemma 44. Let D0 be the edge set of the component of H[

¯X] � {a, b} that contains t2. Define
D := D0 [ {(a, v) : v 2 V (D0)} [ {(b, v) : v 2 V (D0)}. Since we have an internal pivot, s2 /2 V (D).
Because of P6, c is also not in V (D). Hence, D ✓ B. Define C 0 as ¯X \ D. Note that, C 0 ◆ C and
because of path P6, c 2 V (C 0

). Let F be edge set of the component of H[C 0
] � {a, c} that contains

s2. Let C1 := F [ {(a, v) : v 2 V (F )} [ {(c, v) : v 2 V (F )} and let C2 := C 0 \ C1. Then
V (C1) \ V (C2) = {a, c}. Let Q5 := P5, Q6 := P6, Q7 := P3, Q10 = P4. Property (T2) implies that
degH(t2) > 1. Together with Lemma 33 this implies that there exists a t2 � a path Q9 in H[D] � b.
Lemma 33 implies that degH(c) > 2. Hence, there exists an a� c path Q8 in H[C1 [ C2]� {s2, b}.

Consider first the case where degH(s1) > 1. Remark 35 implies that the U-graph (H,U 0
), with

U 0
= (s2, t1, s1, t2) also arises from (G,⌃). Since T has an internal pivot, {a, b} is a good intercepting

pair of (H,U 0
). It follows that T0

:= (H,U 0, {a, b}), X 0
) is a template where X 0

= C1 [ C2 [ {⌦}.
Lemma 24 implies that there exists a bad intercepting set W of (H,U 0

). W is not of Type A, for otherwise
Lemma 42 implies that T is a flower template, contradicting Lemma 47. Lemma 46 implies that T has
no external pivot. Because T is 3-extremal, W is not of an intercepting pair of Type B of T0. Thus,
Lemma 27 implies that W is of Type C for some template equivalent to T0. Note, that A plays the same
role in T0 as C in T. Hence W = {a, d} for some vertex d 2 V (A). By the same argument as above, we
deduce that there exist a partition A1, A2 of A and a vertex d such that s02 2 I(A1), a, b 2 V (A2) and
V (A1) \ V (A2) = {a, d}. Then Q1, Q2, Q3, Q4 play the say role for A1 [ A2 as paths Q5, Q6, Q7, Q8

for C1 [ C2. If degH(t1) = 1 have degree 1, we first construct a new U-graph (

ˆH, ˆU) from (H,U) by
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shifting the unique edge of H with end in s1. Then we proceed with (

ˆH, ˆU) as previously. (The shift
operation is required for otherwise T0 is not a template as it will violate condition (T2).)

5 Proof of Proposition 13

The goal of this section is to show that nearly 3-connected Octahedrons, Kites, Saucers, and Pinwheels
are timid.

5.1 The case of Pinwheels

Lemma 48. Pinwheels are timid.

Proof. Let (G,⌃) be a Pinwheel with hub h and let H := G � h. Then H is a maximal flower F =

(B1, . . . , Br, u1, . . . , ur). Suppose for a contradiction that (G,⌃) is not timid, i.e. for some signature ⌃

0

and vertices s, t we can obtain an LR-graph ~H by unfolding (G,⌃0
) on s, t such that every every blocking

pair can be displayed as an LR-separator. Remark 3 states that the blocking pairs of (G,⌃) are the sets�
{h, ui} : i 2 [r]

 
. Hence, may assume, up to relabeling the petals and attachments, that s = h and

t = u1. Moreover, we can assume that ⌃

0 \ E(H) = �H(u1) \ B1. Let ı̂ is the largest index i 2 [r] for
which there exists an edge (h, w) 2 ⌃

0 where w 2 VH(Bi) \ {ui, u1}. Let |̂ is the smallest index j 2 [r]

for which there exists an edge (h, w) 2 E(G) \ ⌃

0 where w 2 VH(Bj) \ {uj+1, u1}. Consider first the
case where there is no edge (h, u1) 2 ⌃

0 in G. Since (G,⌃) is not 1-degenerate (see Section 1.3.7) we
have that ı̂ > |̂. It can be readily checked now that the blocking pair {h, ui+1} is not the boundary of
any LR-separation of ~H , a contradiction. Consider now the case where there is an edge e = (h, u1) 2 ⌃

0

in G. Since (G,⌃) is not 1-degenerate, ı̂ > 1 and |̂ < r. By the definition of unfolding e has either
endpoints corresponding to the head of L and to the tail of R, or endpoints corresponding to the tail of
L and the head of R. We consider the former case only, as the proof for the other case is similar. It
can be readily checked now (as ı̂ > 1) that {h, u2} is not the boundary of any LR-separation of ~H , a
contradiction.

5.2 Outline of the proof for the remaining cases

It remains to prove that nearly 3-connected Octahedrons, Kites, and Saucers are timid. The next proposi-
tion states that if we can display all blocking pairs as LR-separators, then it can “essentially” be done by
unfolding on an arbitrary blocking pair.

Lemma 49. Let (G,⌃) be a nearly 3-connected signed graph with no blocking vertex. Suppose (G,⌃)

is not timid and let {s, t} be a blocking pair. Then there exists a signature ⌃

0 of (G,⌃) such that the
U-graph (H,U), where U = (s1, t1, s2, t2), obtained by unfolding (G,⌃0

) on s, t satisfies one of the
following,

(1) all blocking pairs of (G,⌃) are displayed by (H,U), or
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(2) up to equivalence, degH(s1) = 1 and all blocking pairs of (G,⌃) are displayed in the U-graph
obtained form (H,U) by shifting the unique edge of H incident to s1.

Let (G,⌃) be a signed graph and let {s, t} be a blocking pair. We say that {s, t} is special if there
exists a non-trivial separation X of G where B(X) = {s, t}. The next proposition indicates that there are,
up to equivalence, at most two U-graphs that can be obtained by unfolding on a non-special blocking pair.

Lemma 50. Let (G,⌃) be a nearly 3-connected signed graph with no blocking vertex and with a blocking
pair {s, t} that is not special. Let

�
H, (s1, t1, s2, t2)

�
be the U-graph obtained by unfolding (G,⌃) on

s, t. Let ⌃

0 be a signature of (G,⌃) where ⌃

0 ✓ �(s) [ �(t). Then the U-graph obtained by unfolding
(G,⌃0

) on s, t is equivalent to one of
�
H, (s1, t1, s2, t2)

�
or
�
H, (s2, t1, s1, t2)

�
.

We postpone the proof of these results until the next subsection. Using these last two lemmas we are now
ready for the main result in this section,

Proof of Proposition 13. Let (G,⌃) be a nearly 3-connected signed graph that is either an Octahedron,
a Kite, or a Saucer. Because of Lemma 48 is suffices to show that (G,⌃) is timid. If (G,⌃) is an
Octahedron (resp. Kite of Type I, a Kite of Type II, a Kite of Type III or a Saucer) let s, t and ⌃

be as defined in Section 1.3.2 (resp. 1.3.3, 1.3.4, 1.3.5, 1.3.6). Let
�
H, (s1, t1, s2, t2)

�
be the U-graph

obtained from (G,⌃) by unfolding on s, t. Then T =

�
H, (s1, t1, s2, t2), {a, b}, X

�
is a template where

X = A [ B if (G,⌃) is an Octahedron, X = A [ {⌦} if (G,⌃) is a Kite, and X = A1 [ A2 [ {⌦} if
(G,⌃) is a Saucer. If (G,⌃) is an Octahedron then T is a flower template (see Section 4.4). If (G,⌃) is
a Kite then T is a strip template (see Section 4.5). If (G,⌃) is a Saucer then T is a swivel template (see
Section 4.6).

Claim 1.
�
H, (s1, t1, s2, t2)

�
does not display all blocking pairs.

Proof. Suppose (G,⌃) is an Octahedron. Since A and D are solid, there exists an s1 � t2 path of
H � {c, d}. It follows that the intercepting pair {c, d} is bad. Suppose (G,⌃) is a Boat, a Kite or a
Saucer. We will show in each case that there exists an s1 � t2 path P of H � {a, c} which implies that
the intercepting pair {a, c} is bad. For a Kite of Type I, A is a solid separation, or a triad of G, and B is
a solid separation of G. Hence, there exists an s1 � t2 path P in H[A [ B] � {a, c} as required. For a
Kite of Type II or Type III let P := P2 [ P4. For a Saucer, let P := Q2 [Q3 [Q10. 3

Claim 2.
�
H, (s2, t1, s1, t2)

�
does not display all blocking pairs.

Proof. If (G,⌃) is a Saucer, then
�
H, (s1, t1, s2, t2)

�
and

�
H, (s2, t1, s1, t2)

�
are the same up to inter-

changing A1 and A2 with C1 and C2, respectively. Then result then follows from Claim 1. Suppose
(G,⌃) is an Octahedron, a Boat, or a Kite. We will show in each case that there exists an s2 � t2 path
P of H � {a, b}. Since P has endpoints that are the first and fourth element of (s2, t1, s1, t2), this will
imply that {a, b} is not displayed in

�
H, (s2, t1, s1, t2)

�
. For an Octahedron the existence of P follows

from the fact that C and D are solid. For a Kite of Type I, the existence of P follows from the fact that B

and C are solid. For a Kite of Type II or of Type III, let P := P6 [ P7. 3
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Suppose for a contradiction that (G,⌃) is not timid. Then by Lemma 49, for some signature ⌃

0 of (G,⌃)

the U-graph (H 0,U 0
), where U = (s1, t1, s2, t2) obtained by unfolding (G,⌃0

) on s, t satisfies one of the
following,

(1) all blocking pairs of (G,⌃) are displayed by (H 0,U 0
), or

(2) up to equivalence, degH(s1) = 1 and all blocking pairs of (G,⌃) are displayed in the U-graph
obtained form (H 0,U 0

) by shifting the unique edge of H 0 incident to s1.

Suppose (1) occurs. It can be readily checked in each case (Octahedron, Kite, and Saucer) that {s, t} is not
special. It follows from Lemma 50 that (H 0,U 0

) is equivalent to one of the U-graphs
�
H, (s1, t1, s2, t2)

�

or
�
H, (s2, t1, s1, t2)

�
. Because of Claim 1 and Claim 2 neither of these U-graphs display all blocking

pairs. It follows that (H 0,U 0
) does not display all blocking pairs either, a contradiction. Suppose case (2)

occurs. We showed (H 0,U 0
) does not display all blocking pairs. It can be readily checked now that any

U-graph obtained from (H 0,U 0
) by shifting a edge as in (2) does not display all blocking pairs either, a

contradiction.

5.3 The proof of lemmas 49 and 50

Let ~H be an LR-graph and let X1 and X2 be LR-separators. We say that X1 and X2 cross if X1 \X2 and
X2 \ X1 are both non-empty. (Note that, L 2 X1 \X2 and R /2 X1 [X2.)

Lemma 51. Let (G,⌃) be a nearly 3-connected signed graph with no blocking vertex. Let ~H be an LR-
graph arising from (G,⌃). Let X1 and X2 be crossing LR-separators. Then there exist edges e1 and e2 of
E(

~H) such that {e1, e2} is an edge cut of ~H separating L from R and, for i = 1, 2, Xi = (X1\X2)[{ei}.
In particular, the intercepting pair B ~H(Xi) is skewed.

Proof. Remark 1 implies that,

Claim. There is no set Y ✓ E(

~H) with L 2 Y , R /2 Y and |B(Y )|  1.

Let a1, a2, b1, b2 denote the vertices of ~H where, for i = 1, 2, B ~H(Xi) = {a3�i, bi}. Define,

W\
:= B ~H(X1 \X2) and W[

:= B ~H(X1 [X2).

The Claim implies that |W\|, |W[| � 2 and we may assume that W\
= {a1, b1} and W[

= {a2, b2}.
Let

�
H, (s1, t1, s2, t2)

�
be the U-graph corresponding to ~H . By the Claim and Menger’s theorem, there

exist vertex disjoint {s1, t1} � {a1, b1} paths P1 and P2 where P1 has end a1 and P2 end b1. Similarly,
there exists vertex disjoint {s2, t2}� {a2, b2} paths Q1 and Q2 where Q1 has end a2 and Q2 has end b2.
Define Z := X14X2. Note that, for i = 1, 2 there is no a1� b2 path F in H[Z]�{a2, b1} for otherwise,
the {s1, t1}� {s2, t2} walk P1 [F [Q2 avoids a2, b1, a contradiction as B ~H(X1) = {a2, b1}. Similarly,
there is no a2 � b1 path F in H[Z]� {a1, b2}. The Claim implies that there exists an a1 � a2 path F1 in
H[Z]. The component of H[Z] containing F1 does not contain either of b1, b2. Hence, by Lemma 33 it
consists of a single edge e1 = (a1, a2). Similarly, there exists a b1 � b2 path F2 of H[Z] that consists of
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a single edge e2 = (b1, b2) and the component of H[Z] that contains e2 does not contain a1, a2. Hence,
Z = {e1, e2} and the result follows.

Proof of Lemma 49. Since (G,⌃) is not timid, there exists a U-graph (H 0,U 0
) that arises from (G,⌃)

and that displays all blocking pairs. Let ~H 0 be the LR-graph corresponding to that U-graph. Thus there
exists X ✓ E(H), such that B ~H0(X [ L) = {ŝ, ˆt}, where s and t are the vertices of G corresponding to
ŝ and ˆt respectively. (See definition of “corresponding vertex” in Section 1.2.)

Consider first the case where ŝ, ˆt are not skewed in ~H 0. Let (H,U) be the U-graph obtained from
(H 0,U 0

) by shifting X . The proof of Remark 35 implies that (H,U) is obtained by unfolding (G,⌃0
)

on s, t where ⌃

0 ✓ �G(s) [ �G(t) is a signature of (G,⌃). We claim that every blocking pair of (G,⌃)

is displayed by the U-graph (H,U). Consider an arbitrary blocking pair {c, d} of (G,⌃). Then for
some Y ✓ E(H), B ~H0(Y [ {L}) = {ĉ, ˆd}, where c and d are the vertices of G corresponding to ĉ and
ˆd respectively. Note, that X and Y do not cross in H 0, for otherwise, Lemma 51 implies that ŝ, ˆt are
skewed in ~H 0, a contradiction. Thus either Y ✓ X or Y ✓ ¯X . In the former case, ¯X [ Y displays the
blocking pair c, d in (H,U). In the latter case, Y \ X displays the blocking pair c, d in (H,U).

Consider now the case where ŝ, ˆt are skewed in ~H 0, i.e., after possibly interchanging the labels of ŝ

and ˆt, there exist edges e, f of E(H 0
) such that {e, f} is an edge cut of ~H 0 separating L from R, e 2 X ,

f 62 X and where ŝ is an endpoint of e and ˆt is an endpoint of f . Denote by ŝ0 the end of edge e in H 0

that is distinct from ŝ. Note, that ŝ0 and ˆt are not skewed, for otherwise, either e or f is in series with
another edge of H , contradicting Lemma 33. Note, B ~H0

�
(X \ {e}) [ L

�
= {ŝ0, ˆt}. Let (H 00,U 00

) be
the U-graph obtained from (H 0,U 0

) by shifting X \ {e}. By the same argument as above the U-graph
(H 00,U 00

) displays all blocking pairs of (G,⌃). Finally, observe that (H,U) is obtained from (H 00,U 00
)

by shifting E(G) \ {e}, or equivalently, up to equivalence, by shifting the edge e.

Lemma 52. Let (G,⌃) be a nearly 3-connected signed graph with no blocking vertex. Let {s, t} be a
blocking pair that is not special. For i = 1, 2, let �i ✓ �(s) [ �(t) be a signature of (G,⌃). If �14�2 is
non-empty it is equal to one of �(s), �(t), or �(s)4�(t).

Proof. Since �1 and �2 are signatures, �14�2 = �(U) for some U ✓ V (G). We may assume that �(U)

is distinct from ;, �(s), �(t) and �(s)4�(t). We may assume that s /2 U for otherwise we can replace
U by U \ {s} as �(U)4�(s) = �(U4{s}) = �(U \ {s}). Similarly, we may assume that t /2 U . Let
X := E(U) [ {(s, u) 2 E(G) : u 2 U} [ {(t, u) 2 E(G) : u 2 U}. Then B(X) ✓ {s, t} and
I(X), I(

¯X) are both non-empty. Moreover, since (G,⌃) is nearly 3-connected, B(X) = {s, t}. Hence,
X is special, a contradiction.

Proof of Lemma 50. Let (H 0,U 0
) be the U-graph obtained by unfolding (G,⌃0

) on s, t. It follows from
Lemma 52 that ⌃4⌃

0 is equal to one of (a) �G(s), (b) �G(t) or (c) �G(s)4�G(t). In all cases H = H 0.
For (a) U 0

= (s2, t1, s1, t2). For (b) U 0
= (s1, t2, s2, t1) and (H,U 0

) is equivalent to
�
H, (s2, t1, s1, t2)

�
.

For (c) U 0
= (s2, t2, s1, t1) and (H,U 0

) is equivalent to
�
H, (s1, t1, s2, t2)

�
.
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