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Abstract

Let Γ be an abelian group, and let γ : E(G) → Γ be be a function assigning values in Γ to
every edge of a graph G. For a subgraph H of G, let γ(H) =

∑
e∈E(H) γ(e). For a set A of vertices

of G, an A-path is a path with both endpoints in A and otherwise disjoint from A. In this article,
we show that either there exist k vertex disjoint A-paths P1, P2, . . . , Pk such that γ(Pi) 6= 0 for
all 1 ≤ i ≤ k, or there exists a set X of vertices such that G − X does not contain a non-zero
A-path with |X| ≤ 50k4.
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1 Introduction

Given a graph G and a set A ⊆ V (G), an A-path is a path with both endpoints laying in A and
no internal vertex in A. Much work has gone into determining when a given graph contains many
disjoint A-paths satisfying some specified property. Gallai proved in [2] that a given graph G with a
specified set A of vertices either has k disjoint A-paths or there exists a set of at most 2k−2 vertices
hitting every A-path. Mader [4] generalized this result as follows. Let G be a graph with a specified
set A of vertices and let S be a partition of the set A. Mader showed that either there exist k disjoint
A-paths P1, . . . , Pk such that Pi has endpoints in distinct sets of the partition S, or there exists a
set of 2k − 2 vertices hitting all such A-paths. See [5] for a short proof of this result. In each case,
the bound on the hitting set is the best possible and actually comes from an exact min-max theorem
for the number of such paths. Kriesell [3] proved that a similar min-max result holds for directed
A-paths in digraphs.

In this article, we will utilize two distinct models of group labeled graphs. The first introduced
here will be our primary focus.

Definition Let Γ be an abelian group and G a graph. An undirected Γ-labeling of G is a function
γ : E(G)→ Γ. For a subgraph H of G, let γ(H) =

∑
e∈E(H) γ(e) be the weight of the subgraph H.
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We will see that either a given undirected Γ- labeled graph contains many disjoint non-zero A-
paths or there exists a set of vertices of bounded size hitting all such A-paths. The following theorem
is the main result of this article.

Theorem 1.1 Let Γ be an abelian group and let γ be an undirected Γ-labeling of a graph G. Let
A ⊆ V (G) be a set of vertices of G. Then for all integers k ≥ 1, either G contains k pair-wise vertex
disjoint A-paths P1, . . . , Pk such that γ(Pi) 6= 0 for all i = 1, . . . , k, or there exists a set X ⊆ V (G)
with |X| ≤ 50k4 such that every A-path P in G−X has γ(P ) = 0.

An immediate corollary of Theorem 1.1 is the following.

Corollary 1.2 Let G be a graph and let m be a positive integer. Let A be a fixed set of vertices.
Then for all integers k ≥ 1, either there exists k disjoint A-paths P1, . . . , Pk such that the length of
Pi is not congruent to 0 mod m, or there exists a set X of vertices with |X| ≤ 50k4 such that in
G−X every A-path has length congruent to zero mod m.

In recent work, Chudnovsky, Geelen, Gerards, Goddyn, Lohman, and Seymour [1] generalize the
results of Gallai and Mader by considering a different definition of group labeled graphs. In this
model of group labeled graphs, the edges are assigned an orientation as well as a group value. When
calculating the weight of a path, the weight will be added if the edge is traversed in the same direction
as the orientation, and subtracted if it is traversed contrary to the orientation. Explicitly, we give
the following definition. In this group labeling of the graph, the group need not be abelian and we
use multiplicative notation.

Definition Let Γ be an arbitrary group and G a graph. A oriented Γ-labeling of G is a pair of
functions (γ, dir) satisfying the following. The function γ : E(G)→ Γ maps E(G) to Γ. The function
dir is an orientation of the edges defined dir : {(x, y) ∈ V (G)× V (G) : xy ∈ E(G)} → {1,−1} such
that dir(u, v) = −dir(v, u) for all edges uv in E(G). Let P be a path in G and let the vertices of
the path be v1, v2, . . . , vk with vi adjacent vi+1 for 1 ≤ i ≤ k − 1. Then P is a non-zero path if∏k−1

i=1 γ(vivi+1)dir(vi,vi+1) is not equal to the identity in Γ.

Observe when calculating
∏k−1

i=1 γ(vivi+1)dir(vi,vi+1) for a a given path P in an oriented group labeled
graph, the exact value will typically depend on which end of the path is labeled to be v1. However,
whether or not γ(P ) is equal to the identity is independent of the direction in which the vertices of
the path are traversed, and so non-zero paths are in fact well defined.

We recall that a non-identity element α of a group Γ is of order two if α = −α. If Γ is an abelian
group such that every element of Γ is of order two, then the two different models of group labeled
graphs coincide since whether an edge is traversed according to the orientation or contrary to it, the
same value α will be added. We will make use of the following observation formalizing this idea.

Observation 1 Let G be a graph and Γ an abelian group. Let γ : E(G) → Γ be any function. Let
A ⊆ V (G) and P be an A-path in G. If for every edge e of P , γ(e) is either equal to zero or an
element of Γ of order two, then for all orientations dir of the edges of G, the weight of P in in the
oriented Γ-labeling (γ, dir) is equal to the weight in the undirected labeling γ.

Chudnovsky et al. prove the following theorem.

Theorem 1.3 ([1]) Let Γ be a group, let G be a graph, and let γ and dir be two functions such that
(γ, dir) is an oriented Γ-labeling of G. Let A be a specified set of vertices in G. Then either
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1. there exist k vertex disjoint non-zero A-paths, or

2. there exists a set X of at most 2k − 2 vertices such that G−X contains no non-zero A-path.

In fact, the authors demonstrate an exact min-max result for the number of such non-zero paths
which immediately implies Theorem 1.3. By choosing an appropriate group labeling, Theorem 1.3
implies the min-max results of both Mader and Gallai mentioned above.

We first establish definitions to discuss paths and collections of paths contained in a larger graph.
Let P be a path with endpoints x and y and let z and z′ be two vertices of P . Then by zPz′, we
refer to the subpath of P containing z and z′.

Definition A linkage is a graph P where every connected component is a path.

A connected component of a linkage P is a composite path of the linkage. In a slight abuse of
notation, we will sometimes refer to the path P ∈ P for a linkage P to mean that P is a composite
path of P. Given a linkage P contained as a subgraph in a larger graph G, a P-bridge is either an
edge of G−E(P) with both ends contained in V (P) or a component C of G− V (P) along with any
edges with one endpoint in V (C) and one endpoint in V (P). A P-bridge is trivial if it consists of a
single edge. Given a P-bridge B, the vertices of V (B) ∩ V (P) are the attachments of B. A bridge
B is stable if it has attachments on two distinct components of P.

2 Proof of Theorem 1.1

The proof of Theorem 1.1 proceeds in two steps. We define an A-star as follows.

Definition Let G be a graph and A ⊆ V (G). Let P1, . . . , Pl be A-paths. If there exists a vertex
v ∈ V (G) − A such that V (Pi) ∩ V (Pj) = v for every 1 ≤ i < j ≤ l, then the subgraph consisting
of P1 ∪ P2 ∪ · · · ∪ Pl is an A-star. The paths P1, . . . , Pl are the composite paths of the A-star. The
vertex v shared by every path Pi is the nexus of the A-star. For each composite path Pi, if x is an
end of Pi in A, the subpath xPiv is a ray of the A-star.

Let γ be a Γ-labeling of a graph G and let A be a fixed set of vertices. An A-star S with composite
paths P1, . . . , Pn is a non-zero A-star if γ(Pi) 6= 0 for all i = 1, . . . , n. Notice that the choice of
composite paths for a given non-zero A-star is not necessarily unique. We will show that in any
group labeled graph for any set A of vertices, either there exists a non-zero A-star with l composite
paths, or there exists k disjoint non-zero A-paths, or there exists a set X of bounded size, hitting
every non-zero A-path. Rigorously, we state this as the following lemma.

Lemma 2.1 Let Γ be an abelian group G a graph. Let γ be a Γ-labeling of G, and let A ⊆ V (G).
Let the function f1 be defined as follows:

f1(k, l) : = 2(2kl + 3k)− 2 + (2k − 2)
= 4k(l + 2)− 4.

Then for all positive integers k and l, either there exists a set X of vertices with |X| ≤ f1(k, l) such
that every A-path in G−X has zero weight, or there exists a non-zero A-star with l composite paths,
or there exists k vertex disjoint A-paths P1, . . . , Pk such that γ(Pi) 6= 0 for all i = 1, . . . , k.
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Notice that Lemma 2.1 implies Theorem 1.1 when the graph is assumed to have bounded degree.

Corollary 2.2 Let Γ be an abelian group and (G, γ) a Γ-labeled graph with ∆(G) = d. Let A be a
subset of vertices of G. Then either there exist k vertex disjoint A-paths each with non-zero weight,
or there exists a set X of at most f1(k, bd/2c+ 1) vertices such that every A-path in G−X has zero
weight.

In the proof of Theorem 1.1, we will in fact find k distinct A-stars where each composite path
has non-zero weight, such that, while not disjoint, at least each A-star has a unique nexus vertex.
Moreover, we will see that we can choose these A-stars to have as many composite paths as we will
need. The second step in the proof of Theorem 1.1 is to show that it is possible to “uncross” these
non-zero A-stars to find k vertex disjoint non-zero A-stars, at the expense of sacrificing some of the
composite paths of the original A-stars.

Lemma 2.3 Let Γ be an abelian group and G a graph. Let γ be a Γ-labeling of G. Let A be a set of
vertices of G, and let k, t, and l be positive integers. Let

n = t[f1(k, t+ 1)] + 8tl + (t+ l)

Let S1, . . . ,St be a collection of non-zero A-stars each with n composite paths. For all i = 1, . . . , t,
let P i

1, . . . , P
i
n be non-zero composite paths of Si and let vi be the nexus vertex of Si. Furthermore,

assume that vi 6= vj for all i 6= j. Then either G contains k pair-wise vertex disjoint A-paths
Q1, . . . , Qk such that γ(Qi) 6= 0 for all i = 1, . . . , k, or there exists a collection of A-stars S1, . . . ,St

such that the following hold:

1.
⋃t

i=1 V (Si) ⊆
⋃t

i=1 V (Si),

2. For all indices i = 1, . . . , t, Si has l composite paths P i
1, . . . , P

i
l, and furthermore, γ(P i

j) 6= 0
for all j = 1, . . . , l.

3. For every pair of distinct indices 1 ≤ i, j ≤ t, V (Si) ∩ V (Sj) = ∅.

We now see that Theorem 1.1 follows easily assuming the lemmas.
Proof. (Theorem 1.1, assuming Lemmas 2.1 and 2.3)

Let G be a graph and Γ an abelian group. Let γ be an undirected Γ-labeling of G. Let A be a
fixed subset of the vertices of G. The theorem is trivially true when k = 1, thus we let k ≥ 2 be a
positive integer. Set

m : = k [f1(k, k + 1)] + 9k + 1
= k(4k(k + 3)− 4) + 9k + 1

≤ 12k3.

We let

n : = k + f1(k,m)

≤ k + 4k(12k3 + 2)− 4

≤ 50k4.
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We may assume that G does not contain k disjoint non-zero A-paths. By our choice of n, we
claim that either there exists a set X of at most n vertices hitting every non-zero A-path, or there
exist non-zero A-stars S1, S2, . . . , Sk each with m composite paths. Moreover, if vi is the nexus vertex
of Si, then vi 6= vj for i 6= j. The existence of one such A-star follows immediately from Lemma
2.1. Given i such A-stars S1, . . . , Si for i < k, consider the graph G − {v1, v2, . . . , vi}. Again, by
applying Lemma 2.1, there either exists a non-zero A-star with m composite paths, or there exists
a set X of size at most f1(k,m) hitting all non-zero A-paths in G − {v1, . . . , vi}. In the first case,
we find the A-star Si+1 with nexus vertex disjoint from {v1, . . . , vi}, and in the second case, the set
X ∪ {v1, . . . , vi} intersects every non-zero A-path in G and has size at most f1(k,m) + i ≤ n.

Given such non-zero A-stars S1, . . . , Sk, by our choice of m and Lemma 2.3 there exist k vertex
disjoint non-zero A-stars each containing one composite path. In other words, we find k disjoint
non-zero A-paths and the theorem is proven.

3 Bridges in group labeled graphs

A classic theorem of Tutte [7] states that given a linkage P = P1 ∪ P2 ∪ · · · ∪ Pt contained in a
3-connected graph G, there exists a linkage P ′ = P ′1 ∪ P ′2 ∪ · · · ∪ P ′t where Pi and P ′i have the same
endpoints and furthermore every P ′-bridge is stable. We will need a similar result for group labeled
graphs. However, difficulties arise since rerouting a given linkage to ensure every bridge is stable
may destroy valuable properties concerning the weights of the paths in the linkage.

Let P be a linkage in a Γ-labeled graph and let P be a connected component of P with endpoints
u and v. Let γ be the corresponding weight function. If γ(P ) = 0, a vertex x ∈ V (P ) is a breaking
vertex if γ(vPx) = α 6= 0 and furthermore, α is not of order two in the group Γ.

We now see sufficient conditions to ensure that we can find a linkage with every non-trivial
component of weight zero has a stable bridge attaching to a breaking vertex. We recall that a
separation in a graph G is a pair (X,Y ) with X ( V (G), Y ( V (G) such that every edge xy of G
either satisfies x, y ∈ X or x, y ∈ Y . In other words, no edge xy of G has x ∈ X −Y and y ∈ Y −X.
The order of a separation (X,Y ) is |X ∩ Y |.

Lemma 3.1 Let G be a Γ- labeled graph with weight function γ. Let P be a linkage with composite
paths P1, . . . , Pk with the ends of Pi labeled xi and yi. We allow P to contain trivial paths Pi in
which case xi = yi. Let X = {x1, . . . , xk, y1, . . . , yk}. Assume that for every separation (A,B) with
X ⊆ A the order of (A,B) is at least two, and if the order of (A,B) equals two, then there exist
paths R1 and R2 in G[B] such that the endpoints of Ri lie in A∩B and furthermore γ(R1) 6= γ(R2).

If every non-trivial composite path P of P either has a breaking vertex or satisfies γ(P ) 6= 0, then
there exists a linkage P ′ with composite paths P ′1, . . . , P

′
k such that the following hold:

1. the endpoints of P ′i are xi and yi,

2. if i is such that Pi is a non-trivial path and the weight γ(Pi) 6= 0, then γ(P ′i ) 6= 0, and

3. if i is such that Pi is non-trivial and γ(P ′i ) = 0, then there exists a stable P ′-bridge B and a
breaking vertex x of P ′i such that B has x as an attachment.

Proof. The proof will proceed by carefully selecting a potential counter-example and deriving
a contradiction. We begin with three desirable properties that we will require when we choose a
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potential counter-example to the lemma. However, before we fix a counter-example and proceed
with the proof, we first present several implications for a linkage P ′ satisfying properties A, B, and
C.

A. The linkage P ′ satisfies 1. and 2. and for every non-trivial composite path P ′i with γ(P ′i ) = 0,
the path P ′i contains a breaking vertex.

B. Subject to A, the number of non-trivial composite paths violating 3. is minimized.

C. Subject to A, and B, the number of vertices contained in stable bridges is maximized.

Notice P is a linkage satisfying A, implying that such a choice of P ′ exists.
We begin with several preliminary observations.

Claim 3.2 Let P ′ be a linkage satisfying A, B, and C. with composite paths P ′1, . . . , P
′
k. For any

non-trivial composite path P ′i of P ′ that violates condition 3., there do not exist a separation (W1,W2)
of G with X ⊆W1 and W1 ∩W2 ⊆ P ′i .

Proof. Assume otherwise, and let (W1,W2) be such a separation. Let u and v be the vertices of
W1 ∩W2, and assume u is the closer to xi in P ′i . By our assumptions on G, in the subgraph G[W2],
there exist two paths R1 and R2 linking u and v with γ(R1) 6= γ(R2). For either j = 1 or 2, the
path xiP

′
iuRjvP

′
iyi must have non-zero weight. It follows that the linkage P ′ − P ′i ∪ xiP

′
iuRjvP

′
iyi

violates our choice of P ′ to minimize the number of non-trivial paths violating condition 3. for some
value of j = 1, 2.

Claim 3.3 Let P ′ be a linkage satisfying A., B. and C. with composite paths P ′1, . . . , P
′
k. Let zi be

a breaking vertex of a path P ′i violating condition 3. Let B1 be a stable bridge and B2 a non-stable
bridge attaching to P ′i . Then there do not exist distinct vertices u, s1 and s2 where u is an attachment
of B1 and s1, s2 attachments of B2 such that the vertices s1, u, s2, zi occur on P ′i in that order (with
the vertex s2 possibly equal to the vertex zi).

Proof. Assume the claim is false and let P ′, P ′i , B1, B2, s1, s2, u, and zi be as in the statement.
There exists a path R in B2 with endpoints s1 and s2 and otherwise disjoint from P ′i . Let the
endpoints of P ′i be xi and yi and assume the vertices s1 is the closer of s1 and s2 to the vertex xi

on P ′i . The linkage (P ′ − P ′i )∪ xiP
′
is1Rs2P

′
iyi contradicts our choice of P ′. To see this, observe first

that γ(xiP
′
is1Rs2P

′
iyi) = γ(P ′i ) = 0 by the fact that P ′ satisfies B. It follows that zi is a breaking

vertex of xiP
′
is2Rs1P

′
iyi. Yet the vertex u is now an internal vertex of a stable bridge, contradicting

our choice of P ′ to satisfy C. This completes the proof of the claim.

We will make several further refinements before picking a potential counter-example to Lemma
3.1. Towards that end, we define the following special vertices. Let P ′ be any linkage satisfying A,
B, and C. with components P ′1, . . . , P

′
k. Let i be an index such that P ′i is nontrivial and γ(P ′i ) = 0,

but P ′i violates condition 3. Let zi be a breaking vertex in P ′i . Let u(zi) be an attachment of a stable
bridge on the subpath xiP

′
izi chosen as close to zi as possible on the subpath xiP

′
izi. A bridge B

straddles a vertex v in a path P if B has attachments in both components of P − v. Let v(zi) be the
attachment in ziP

′
iyi of either

i. a stable bridge, or
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ii. a bridge straddling both the vertices u(zi) and zi,

with v(zi) chosen to be as close as possible to zi as possible on the subpath ziP
′
iyi.

Claim 3.4 There exists a linkage P ′ satisfying A, B, and C. with components P ′1, . . . , P
′
k such that

for every index i such that P ′i violates condition 3, there exists a breaking vertex zi such that both
u(zi) and v(zi) are defined.

Proof. Let P ′ be a linkage satisfying A, B, and C. with components P ′1, . . . , P
′
k. Let i be an index

such that P ′i fails to satisfy condition 3. By Claim 3.2, the endpoints xi and yi of P ′i do not separate
the vertices of P ′i from the remaining paths of P ′. Consequently, some stable bridge attaches to an
internal vertex of P ′i . Moreover, no stable bridge attaches to a breaking vertex of P ′i . By possibly
re-labeling the endpoints of P ′i , we may assume that there exists a breaking vertex zi on P ′i such
that u(zi) is defined.

Let P ′ satisfy A, B, and C. and let zi be a breaking vertex on P ′i for every component P ′i of P ′
that fails to satisfy condition 3. such that u(zi) is defined. The linkage P ′ is the linkage desired
by the claim. Let i be an index such that P ′i fails to satisfy condition 3. Again, by Claim 3.2, the
vertices u(zi) and yi do not form a 2-cut separating u(zi)Piy

′
i from P ′ − u(zi)P ′iyi. It follows that

there exists a bridge B attaching to an internal vertex of u(zi)P ′iyi and with a second attachment
in (P ′ − P ′i ) ∪ (ziP ′iu(zi) − {u(zi)}). If B is a stable bridge, then B cannot have an attachment in
the subpath u(zi)P ′izi by our choice of u(zi), and if B has an attachment on an internal vertex of
ziP

′
iyi, the vertex v(zi) is defined and the claim is proven. It follows that we may assume that B is

not a stable bridge. If B has as an attachment an internal vertex of ziP ′iyi, then B straddles both zi
and u(zi) and again the vertex v(zi) is defined. Thus we may assume that B has an attachment an
internal vertex s1 of the subpath u(zi)P ′izi and a vertex s2 in the subpath xiP

′
iu(zi)− {u(zi)}. This

contradicts Claim 3.3, completing the proof the claim.

We are now ready to pick a counter-example to Lemma 3.1. Let P ′ be a linkage satisfying A, B,
and C. For every index i such that P ′i violates condition 3. we fix a breaking vertex zi. Furthermore,
we assume

D. For every index i such that P ′i violates condition 3, the vertices u(zi) and v(zi) are defined.

E. Subject to A, B, C, and D. the
∑
{i:P ′i violates 3.} |V (u(zi)P ′iv(zi))| is minimized.

Fix an index i such that P ′i violates condition 3. To simplify the notation, for the remainder of the
proof we set u(zi) = ui and v(zi) = vi.

As a case, assume there exists a stable bridge attaching to vi. The vertices ui and vi do not form
a 2-cut in G, and so we see that there must exist a bridge B attaching to both uiP

′
ivi − {ui, vi} and

P ′ − uiP
′
ivi. The bridge B cannot be a stable bridge by our choice of ui and vi to be as close as

possible to the vertex zi on P ′i . There are two symmetric cases when the bridge B has an attachment
in uiP

′
izi − {ui} or alternatively an attachment in ziP

′
ivi − {vi}. Assume the former. If B straddles

the vertex ui, then there exist attachments s1 and s2 of B such that the vertices s1, ui, s2, zi occur
on the path P ′i in that order, contradicting Claim 3.3. Alternatively, the bridge B must straddle
both the vertices zi and vi. By flipping the labels xi and yi, we violate our choice of ui and vi to
satisfy E.

We conclude that there exists a non-stable bridge B′ attaching at the vertex vi straddling both
zi and ui. Note that by our choice of vi, the bridge B′ has no attachments to an internal vertex of
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the subpath ziP
′
ivi and by Claim 3.3, the bridge B′ has no attachments in uiP

′
izi − {ui}. Let s1

be an attachment of B′ in the subpath xiP
′
iui − {ui} and let R1 be a path linking s1 to vi in B′.

The vertices ui and vi do not form a 2-cut in G, so there must exist a third bridge B′′ attaching to
an internal vertex of uiP

′
ivi and attaching to a vertex of P ′ − uiP

′
ivi. The bridge B′′ cannot be a

stable bridge by our choice of ui and vi to be as close as possible to the vertex zi. There are now
essentially four cases to consider: the bridge B′′ may have one attachment in either uiP

′
izi or ziP ′ivi

and a second attachment in either xiP
′
iui − {ui} or viP

′
iyi − {vi}.

We first consider what happens when the bridge B′′ attaches to a vertex s2 of ziP ′ivi − {zi, vi}.
The bridge B′′ cannot attach to the subpath xiP

′
iui by our choice of vi to be as close to zi as possible.

Thus B′′ has an attachment s3 in the subpath viP
′
iyi−{vi}. Let R2 be a path in B′′ linking s2 and s3.

Consider the linkage (P ′ − Pi) ∪ xiP
′
is2R2s3P

′
iyi. By B., the path xiP

′
is2R2s3P

′
iyi must have weight

zero. It follows that zi is a breaking vertex of xiP
′
is2R2s3P

′
iyi. Moreover, the bridge containing

the path R1 attaches at the vertex s2 of the path xiP
′
is2R2s3P

′
iyi, contradicting our choice of P ′ to

satisfy E.
We now consider the case when B′′ has an attachment s2 in uiP

′
izi − {ui}. If B′′ attaches to a

vertex s3 of xiP
′
iui − {ui}, we contradict Claim 3.3. Thus we may assume B′′ has an attachment

s2 in uiP
′
izi − {ui} and an attachment s3 in viP

′
iyi − {vi}. Let R2 be a path linking s2 and s3 in

B′′. See Figure 1. Let Γ′ be the subgraph of Γ consisting of 0 and all elements of Γ of order two.

xi s1 ui s2 zi vi s3 yi

R1
R2

Figure 1: Rerouting the path P ′i using the paths R1 and R2 in the case when s2 lies in uiP
′
izi−{ui}

and s3 lies in viP
′
iyi − {vi}.

We first observe that γ(xiP
′
is1) and γ(viP

′
iyi) are both contained in Γ′ since both s1 and vi are an

attachment of a stable bridge of (P ′−P ′i )∪xiP
′
is1R1viP

′
iyi and we chose P ′ to satisfy B. Also by our

choice of P ′ to satisfy B, we see that γ(R1) ∈ Γ′ since γ(xiP
′
is1R1viP

′
iyi) = 0. However, by the fact

that zi is a breaking vertex, γ(ziP ′iyi) /∈ Γ′ and consequently, the weight γ(ziP ′ivi) /∈ Γ′. Therefore,
γ(ziP ′iviR1s1P

′
ixi) /∈ Γ′ and the vertex zi is a breaking vertex of the path xiP

′
is1R1viP

′
is2R2s3P

′
iyi.

If we consider the linkage P ′′ = (P ′ − P ′i ) ∪ xiP
′
is1R1viP

′
is2R2s3P

′
iyi and consider u(zi) and v(zi) in

this linkage, we see that both are contained in the subpath s2P ′ivi, contradicting our choice of P ′ to
satisfy E. This final contradiction completes the analysis of the cases and the proof of the lemma.

4 Proofs of Lemmas 2.1 and 2.3

We begin with the proof of Lemma 2.1. We will need the following corollary to Theorem 1.3.

Corollary 4.1 Let G be a graph with A ⊆ V (G) a subset of the vertices. Let Σ ⊆ E(G) be a subset
of the edges. Then either there exist k vertex disjoint A-paths each containing at least one edge of
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Σ, or there exists a set X of at most 2k − 2 vertices such that every A-path of G −X contains no
edge of Σ.

Corollary 4.1 follows by labeling the graph with the group ZE(G)
2 in the natural way so that an

A-path has non-zero weight if and only if it contains an edge of Σ.
Proof. (Lemma 2.1)

Assume the lemma is false and let Γ be an abelian group, letG be a graph, and let γ be a Γ-labeling
of G forming a counter-example to Lemma 2.1 for a subset A of the vertices of G. Furthermore,
assume that G and γ are chosen over all such counter-examples so that G has a minimal number of
vertices.

First, we establish a minimal amount of connectivity in G.

Claim 4.2 For any separation (X,Y ) of G with A ⊆ X, the order of the separation |X ∩ Y | is at
least two, and if |X ∩ Y | = 2, then in G[Y ], there exist paths R1 and R2 linking the two vertices of
X ∩ Y such that γ(R1) 6= γ(R2).

Proof. Let (X,Y ) be a separation contradicting the claim. If the separation (X,Y ) is of order
one, then by our choice of (G, γ) to form a counter-example on a minimal number of vertices, we
may assume there exists a set Z such that G[X] − Z does not contain any non-zero A-path where
|Z| ≤ f1(k, l). But then G− Z also does not contain a non-zero A-path either since no A-path uses
a vertex of Y −X, contradicting our choice of (G, γ) to be a counter-example. Assume now that the
separation (X,Y ) is of order exactly two but that every path in G[Y ] linking the vertices of X ∩ Y
has weight α ∈ Γ. Let X ∩ Y = {x1, x2} and let G′ be the graph G[X] with an edge linking x1 and
x2 if they are not connected by an edge of G. Consider the group labeled graph (G′, γ) where the
edge x1x2 has weight γ(x1x2) = α. If G′ contains either many disjoint non-zero A-paths or a large
non-zero A-star, the graph G must as well since at most one composite path can use the edge x1x2

and that edge can be replaced in G by a path linking x1 and x2 in G[Y ] of weight α. Alternatively,
if there exists a set Z of size at most f1(k, l) hitting every non-zero A-path in G′, then the set Z will
also hit every non-zero A-path in G, contradicting our choice of G to be a counter-example. This
completes the proof of the claim.

Let Γ′ be the subgroup of Γ consisting of 0 and every element of Γ of order two. Let P be a
linkage with components P1, . . . , Pn such that each non-trivial composite path Pi is either an A-path
containing edge e of weight γ(e) ∈ Γ − Γ′ or satisfies γ(Pi) 6= 0. We define an objective function
value as follows:

value(P) = 3|{i : γ(Pi) 6= 0}|+ |{i : Pi is a nontrivial path and γ(Pi) = 0}|.

Claim 4.3 Let P be a linkage with components P1, . . . , Pn such that each non-trivial composite path
Pi is either an A-path containing an edge e of weight γ(e) ∈ Γ − Γ′ or satisfies γ(Pi) 6= 0. Then
value(P) < 2lk + 3k.

Proof. Let P be a linkage with components P1, . . . , Pn as in the statement and assume, to reach
a contradiction, that value(P) ≥ 2lk + 3k. Furthermore, assume P is chosen over all such linkages
to maximize the function value. If Pi is a component of P such that γ(Pi) = 0, then Pi contains
an edge e with γ(e) ∈ Γ− Γ′. It follows that one endpoint of e is a breaking vertex for the path Pi.
Consider the linkage P = P ∪ A where we consider each additional vertex of A as a trivial path of
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length zero. By Lemma 3.1 and Claim 4.2, we may assume that every non-trivial component of P
either has non-zero weight or has a breaking vertex that is the attachment of a stable bridge.

Let Pi be a non-trivial component of P with γ(Pi) = 0. Let B be a stable bridge attaching to
the breaking vertex zi of Pi. We claim that B cannot attach to any other component P of P with
γ(P ) = 0. Assume B does attach to such a P at the vertex s. Let the ends of P be x and y (with
possibly x = y when P is trivial), and let the ends of Pi be xi and yi. There exists a path R contained
in B linking s and zi and otherwise disjoint from P. Either γ(xPsRziPixi) or γ(xPsRziPiyi) must
be non-zero since γ(ziPixi) 6= γ(ziPiyi). In either case, we contradict our choice of P to maximize
value as either the linkage P − {Pi, P} ∪ xPsRziPixi or P − {Pi, P} ∪ xPsRziPiyi would increase
value.

Let Pi and Pj be two non-trivial components of P such that γ(Pi) = γ(Pj) = 0, and let Bi and
Bj be two stable bridges attaching to a breaking vertex zi of Pi and a breaking vertex zj of Pj ,
respectively. If P is a component of P with γ(P ) 6= 0 containing attachments of both Bi and Bj ,
then there exists a vertex s of P that is the unique attachment of Bi and Bj on P . Assume otherwise,
and that there exists a non-zero path P containing distinct vertices si and sj that are attachments of
Bi and Bj , respectively. Let the endpoints of P be x and y and assume that the vertices x, s1, s2, y
occur on P in that order. Let the endpoints of Pi be xi and yi and similarly, the endpoints of Pj be
xj and yj . As in the previous paragraph, let Ri be a path linking si and zi in Bi and let Rj be defined
analogously. Either the path xPsiRiziPixi or xPsiRiziPiyi must have non-zero weight. Without
loss of generality, assume γ(xPsiRiziPixi) 6= 0. Similarly, we may assume γ(yPsjRjzjPjxj) 6= 0.
We now contradict our choice of P as the linkage P − {Pi, Pj , P} ∪ {xPsiRiziPixi, yPsjRjzjPjxj}
violates our choice of P to maximize value.

The linkage P contains at most k− 1 non-trivial components with non-zero weight by our choice
of G to be a counter-example. Given that value(P) ≥ 2lk + 3k, there exist at least 2lk non-trivial
components in P, each with weight zero. It follows that there exists a subset I of indices of size
at least 2l, a non-zero composite path P of P, and a vertex s on P such that the following holds.
For all i ∈ I, Pi is a non-trivial path with γ(Pi) = 0 containing a breaking vertex zi such that
there exists a bridge attaching to both s and zi. By our observations in the previous paragraph, we
can find internally disjoint paths Ri for all i ∈ I such that Ri links zi and s and Ri is internally
disjoint from P. We now can construct a non-zero A-star with l composite paths each of the form
xiPiziRisRi′zi′Pi′xi′ or xiPiziRisRi′zi′Pi′yi′ for some pair of indices i and i′ in I. This contradiction
implies that value(P) < 2kl+ 3k, and consequently, value(P) < 2lk+ 3k as desired by the claim.

An immediate consequence of Claim 4.3 is that there do not exist 2kl+ 3k disjoint A-paths each
containing an edge with weight equal to some element of Γ − Γ′. If we apply Corollary 4.1, we see
that there exists a set X of at most 2(2kl + 3k) − 2 vertices hitting every A-path containing an
edge of weight equal to an element of Γ − Γ′. We now fix an arbitrary orientation dir of the edges
of G −X. If the oriented labeling (γ, dir) of G −X contains k disjoint non-zero A-paths, then by
Observation 1, G−X would contain k disjoint non-zero A-paths in the unoriented labeling γ. Thus
by our choice of X, there exists a set X ′ of at most 2k− 2 vertices intersecting all non-zero A-paths
in the unoriented labeling γ in the graph G − X. We conclude that X ∪ X ′ is a set of at most
2(2kl+ 3k)− 2 + (2k− 2) vertices intersecting every non-zero A-path in G, contrary to our choice of
G as a counter-example. This completes the proof of Lemma 2.1.

We now proceed with the proof of Lemma 2.3.
Proof. (Lemma 2.3)
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Notice that the statement is vacuously true when t = 1. Assume the lemma is false, and choose
a counter-example G =

⋃
i=1,...,t Si for the minimal value of t for which the lemma fails to hold. We

first observe that if we delete the vertices v1, . . . , vt from G, the resulting graph has maximum degree
2t. Since we may assume G does not contain k disjoint non-zero A-paths, we see that there exists
a set X ⊆ V (G) − {v1, . . . , vt} with |X| ≤ f1(k, t + 1) such that every non-zero A-path of G − X
must contain at least one of the nexus vertices v1, . . . , vt. We discard any composite path containing
a vertex in X to construct non-zero A-stars S ′1, . . . ,S ′t each with at least n− f1(k, t+ 1) composite
paths. Moreover, every non-zero A-path contained in the subgraph

⋃
i=1,...,t S ′i must contain a nexus

vertex.
By our choice of counter-example to minimize t, we see that S ′1, . . . ,S ′t−1 contain t− 1 non-zero

A-stars T1, . . . , Tt−1 such that each Ti has l composite paths and moreover, for every pair of distinct
indices i and j, Ti and Tj have no vertex in common. The next claim will complete the proof.

Claim 4.4 Let R1, . . . ,Rt′ be t′ pairwise vertex disjoint non-zero A-stars, each with l composite
paths. Let Rt′+1 be a non-zero A-star with 8t′l + t′ + l composite paths. Let vi be the nexus vertex
of Ri for all i = 1, . . . , t′ + 1, and assume that for all i 6= j, vi 6= vj. Furthermore, assume every
non-zero A-path P contained in R1 ∪ · · · ∪ Rt′ ∪ Rt′+1 must contain the nexus vertex vi of at least
one of the A-stars Ri. Then there exist t′ + 1 vertex disjoint non-zero A-stars R′1, . . . ,R′t+1 with

V (R′i) ⊆
⋃

j=1,...,t′+1

V (Rj)

for all i = 1, . . . , t′ + 1.

Proof. Assume the claim is false, and let R1, . . . , Rt′+1 be a counter-example on a minimal number of
edges. At most t′ composite paths of paths of Rt′+1 contain a nexus vertex vj for some j = 1, . . . , vt′ .
By assumption, Rt′+1 does not have l composite paths that are disjoint from

⋃
j=1,...,t′ V (Rj). Also,

at most 2t′l composite paths of Rt′+1 have an endpoint contained in Rj for some index j. Thus
there exist 6t′l composite paths P1, . . . , P6t′l of Rt′+1 that satisfy the following conditions:

1. each path Pi contains a vertex in Rj for some 1 ≤ j ≤ t′,

2. no path Pi has an endpoint contained in Rj for some j = 1, . . . , t′, and

3. no path Pi contains a nexus vertex vj for some 1 ≤ j ≤ t′.

Let the ends of Pi be xi and yi, with xi chosen such that the subpath xiPivt′+1 intersects some Rj .
The union of the R1, . . . ,Rt′ contains 2t′l distinct rays. Thus there exists a ray R with and three

distinct indices i such that xiPivt′+1 intersects R in a vertex zi, and moreover, the path xiPizi is
disjoint from the union of R1, . . . ,Rt′ except for the endpoint zi. Without loss of generality, we may
assume that P1, P2, and P3 are three such composite paths of Rt′+1 and that the ray R is contained
in the composite path Q of R1. Let xr be the endpoint of R in A. By the assumption that every non-
zero A-path contains a nexus vertex, we see that γ(xiPizi) = −γ(xrRzi) for i = 1, 2, 3. If the subpath
xiPizi has weight γ(xiPizi) equal to 0 or an element of Γ of order two, then γ(xiPizi) = γ(xrRzi).
We conclude that if γ(xiPizi) has order two, then R1−Q∪xiPiziQ,R2, . . . ,Rt′1

is a counter-example
to Claim 4.4 on fewer edges.

By our choice of a minimal counter-example, we see that for i = 1, 2, 3, the weight γ(xiPizi)
must be a non-zero element Γ that is not of order two. It follows that there exist distinct indices
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i, j ∈ {1, 2, 3} such that
γ(xiPiziQzjPjxj) 6= 0

contrary to our assumptions since such a path does not contain the nexus vertex of any Rk. To see
this, assume the vertices xr, z1, z2, z3 occur on R in that order. Let α = γ(x2P2z2). Lest there exist
a non-zero path not containing a nexus vertex, both γ(x3P3zrRz2) = γ(x1P1z1Rz2) = −α. But then
γ(x1P1z1Rz3P3x3) = −2α 6= 0, as desired.

Apply Claim 4.4 to the A-stars T1, . . . , Tt−1,S ′t. We then find t pairwise vertex disjoint non-zero
A-stars each with l composite paths, proving the lemma.
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