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Abstract

We prove that for all positive integers k, there exists an integer N = N(k) such that the
following holds. Let G be a graph and let Γ an abelian group with no element of order two. Let
γ : E(G)→ Γ be a function mapping elements of Γ to the edges of G. A non-zero cycle is a cycle
C such that

∑
e∈E(C) γ(e) 6= 0 where 0 is the identity element of Γ. Then G either contains k

vertex disjoint non-zero cycles or there exists a set X ⊆ V (G) with |X| ≤ N(k) such that G−X
contains no non-zero cycle.

An immediate consequence is that for all positive odd integers m, a graph G either contains
k vertex disjoint cycles of length not congruent to 0 mod m, or there exists a set X of vertices
with |X| ≤ N(k) such that every cycle of G−X has length congruent to 0 mod m. No such value
N(k) exists when m is allowed to be even, as examples due to Reed and Thomassen show.
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1 Introduction

Erdős and Pósa proved in [3] that there exists a function f(k) such that for all positive integers k,
either a graph contains k vertex disjoint cycles or there exists a set X of f(k) vertices such that every
cycle contains some vertex of X. We now say that a family of graphs F has the Erdős-Pósa property
if there exists a function f(k) such that every graph G either has k vertex disjoint subgraphs in F
or there exists a set X of at most f(k) vertices such that every subgraph of G isomorphic to a graph
in F contains a vertex in X. Such a function f will be referred to as an Erdős-Pósa function for the
family F , and such a set X of vertices intersecting every subgraph in F is a hitting set.

An example of a family of graphs for which the Erdős-Pósa property does not hold is the class
Codd, the set of cycles of odd length. This was first observed by Thomassen in [16]. Consider the
graph constructed as follows. Start with the k × k grid for k odd with the vertices labeled vi,j for
1 ≤ i ≤ k, 1 ≤ j ≤ k, in the natural way. Add the edges v1,ivk,k−i+1 for 1 ≤ i ≤ k to form a
projective planar graph Gk. The graph Gk does not contain two disjoint odd cycles, but there do
not exist bk/2c vertices intersecting every odd cycle. Reed [13] gave a related construction called
Escher walls. Furthermore, Reed [13] gives a partial characterization of when a graph has neither
many disjoint odd cycles nor a small hitting set for the set of odd cycles by showing that such graphs
∗paul.wollan@gmail.com
†This work partially supported by a fellowship from the Alexander von Humboldt Foundation

1



must contain in a specific sense a large Escher wall. An immediate consequence of this result is that
the Erdős-Pósa property holds for odd cycles in graphs embedded in any fixed orientable surface.
Kawarabayashi and Nakamoto also independently showed that the Erdős-Pósa property holds for
odd cycles in graphs embedded in any fixed orientable surface in [7]. In an alternate approach to
the Erdős-Pósa property for odd cycles, Thomassen [17] showed that there exists a function f(k)
such that every f(k)-connected graph either contains k disjoint odd cycles, or there exists a set X of
at most 2k − 2 vertices hitting all odd cycles. Rautenbach and Reed proved that the function f(k)
can be chosen to be linear in k in [12]. See [8] and [9] for further improvements on the connectivity
bound.

In [2], Djeter and Neumann-lara give infinitely many pairs l and m such that the Erdős-Pósa
property does not hold for the set of cycles of length l mod m. They propose the question of
classifying for which values l and m does the family of cycles of length l mod m have the Erdős-Pósa
property. The projective planar graph Gk defined in the previous paragraph can be modified to show
that the Erdős-Pósa does not hold for the class of cycles of length l mod m for all fixed even m and
0 < l < m such that l is odd. To see this, fix such m and l and subdivide every edge of the grid to
form a path of length m and subdivide every edge of the form v1,ivk,k−i+1 to form a path of length l.
In the subdivided graph, every cycle of length l mod m must use an odd number of the subpaths of
length l. It follows that there do not exist even two disjoint cycles of length l mod m, and yet, there
do not exist bk/2c vertices intersecting every cycle of length l mod m. Thomassen showed that for
all positive integers m, the class of cycles of length 0 (mod m) does have the Erdős-Pósa property
in [16]. We give the following theorem.

Theorem 1.1 There exists a function f(k) such that the following holds. For all positive integers
k and all positive odd integers m, a graph G either has k disjoint cycles of non-zero length mod m,
or there exists a set X ⊆ V (G) of size at most f(k) hitting all such cycles.

As above, the example Gk can be modified to show that the family of cycles of non-zero length mod
m for a fixed even integer m does not have the Erdős-Pósa property. To see this, we subdivide each
edge of the grid to be a path of length m and we subdivide the edges of the form v1,ivk,k−i+1 to form
a path of length m/2. Such a graph does not contain two disjoint cycles of non-zero length mod m,
nor does it contain a small hitting set for all such cycles.

One might object that the construction is only 2-connected and has many vertices of degree
two. However, adding a single vertex v adjacent to every other vertex of the subdivided Gk yields
a 3-connected graph that again serves as a counter-example to the Erdős-Pósa property holding for
both the family of non-zero cycles mod m when m is even and the family of cycles of length l mod
m for m even and 0 < l < m, l odd.

To prove Theorem 1.1, we will actually prove a more general statement concerning group labeled
graphs. Let Γ be an abelian group. As we will be considering abelian groups in this article, we will
use the addition notation for groups with 0 indicating the identity element of a group. A Γ-labeling
of a graph G is a function γ : E(G) → Γ. For any subgraph H of G, we let γ(H) =

∑
e∈E(H) γ(e).

A non-zero cycle in a Γ-labeled graph is a cycle C such that γ(C) 6= 0. Recall that the order of any
element α 6= 0 of a group Γ is the minimum n such that nα = 0. We prove the following.

Theorem 1.2 There exist constants c and c′ such that the following holds. Let G be a Γ-labeled
graph where Γ does not have any elements of order two. Then for all positive integers k, either G
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contains k disjoint non-zero cycles, or there exists a set X ⊆ V (G) with |X| ≤ ckc′
such that G−X

does not contain any non-zero cycles.

Theorem 1.1 is an immediate consequence of Theorem 1.2 as we can consider cycles of non-zero
length mod m to be non-zero cycles in the graph labeled by the group Zm with every edge having
weight one.

We observe that the condition that Γ be an abelian group is necessary; otherwise the idea of
non-zero cycles is not well defined. Consider a graph labeled with elements from a non-abelian group
Γ. Let C be a 3-cycle with edges e1, e2, and e3 labeled α, β, and α−1β−1, respectively. If we calculate
the weight of the subgraph traversing the edges e1, e3, e2 in that order, then the weight of the cycle
would be equal to the identity. However, if we calculate the weight of the cycle traversing the edges
e1, e2, e3, the weight would be αβα−1β−1 which need not be equal to the identity.

We will need the following basic definitions. A linkage is a graph where every component is a
path, and we say that a path links its endpoints. If A is a subset of the vertices of a graph G, then a
non-trivial path intersecting A in exactly its endpoints is an A-path. If P is a path with endpoints x
and y, the interior of the path, denoted int(P ), is the vertex set V (P )−{x, y}. Given two vertices a
and b in a path P , the subpath of P linking a and b is denoted aPb. If G and H are two graphs, we
denote the graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H) by G ∪H. Similarly, we
denote by G∩H the graph with vertex set V (G)∩ V (H) and edge set E(G)∩E(H). For any graph
G of minimum degree two, the branch vertices of G is the set of vertices of degree at least three. A
segment of G is a non-trivial path P in G such that P intersects the branch vertices exactly in its
endpoints.

As a technicality, we extend the definition of the Erdős-Pósa property to group labeled graphs
in the natural way. If F is a family of Γ-labeled graphs, then F has the Erdős-Pósa property with
Erdős-Pósa function f if for all k ≥ 1, every Γ-labeled graph G either has k disjoint subgraphs
isomorphic to a graph in F , or there exists a set X ⊆ V (G) such that G−X contains no subgraph
isomorphic to a graph in F . Here the isomorphism must respect the group values assigned to the
edges.

The proof of Theorem 1.2 proceeds as follows. By choosing a huge function as a potential
Erdős-Pósa function, we can ensure that a minimal group labeled counterexample G must contain
a subgraph H isomorphic to a subdivision of a large grid-like graph called a wall. Moreover, the
subgraph H is highly linked to every non-zero cycle of G. That is, if we let X be the vertices of
H of degH at least three, there does not exist a small cut separating X from any non-zero cycle
C. This argument is laid out in Section 2. A result of [18] implies that there exists a collection
of disjoint paths P1, . . . , Pm for some large integer m, such that each Pi intersects X exactly in
its endpoints, and, moreover, every path Pi has non-zero weight. The remainder of the argument
consists in proving the claim, stated as Theorem 3.1, that if m is sufficiently large with respect to
k, then the wall along with the non-zero paths P1, . . . , Pm must contain k disjoint non-zero cycles.
The proof of Theorem 1.2 (assuming Theorem 3.1) is given in Section 3. The proof of Theorem 3.1
comprises the main difficulties of the argument. After some preliminary lemmas presented in Section
4, the proof of Theorem 3.1 is given in Section 5.

2 Tangles and the Erdős-Pósa property

The proof of Theorem 1.2 relies heavily on the idea of a tangle, introduced in [14]. A separation of
a graph G is a pair of subgraphs (A,B) such that A ∪ B = G. The order of a separation (A,B) is
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|A ∩ B|. If t ≥ 1 is a positive integer, a tangle of order t in a graph G is a set T of ordered pairs
such that

1. if (A,B) is a separation of G of order < t, then T contains one of (A,B), (B,A),

2. if (A1, B1), (A2, B2), and (A3, B3) ∈ T , then A1 ∪A2 ∪A3 6= G,

3. and if (A,B) ∈ T then V (A) 6= V (G).

Tangles arise in a natural way when considering the Erdős-Pósa property for a given family of
connected graphs.

Let F be a family of graphs, possibly group labeled, and let f be a function. The pair (G, k)
forms a counterexample to f being an Erdős-Pósa function for F if the graph G neither contains k
disjoint subgraphs each isomorphic to some graph in F nor contains a hitting set X ⊆ V (G) for the
family F with |X| ≤ f(k). If F is a family of Γ-labeled graphs for some group Γ, then G must also
be a Γ-labeled graph.

Lemma 2.1 Let F be a family of connected graphs, possibly group labeled. Let f be a positive
function that is not an Erdős-Pósa function for F , and let (G, k) be a counter-example to f being an
Erdős-Pósa function for F with k chosen minimal over all such counter-examples. Let t be a positive
integer such that t ≤ f(k)−2f(k−1) and t ≤ f(k)/3, and let T be the set of all ordered pairs (A,B)
where (A,B) is a separation of order at most t such that B contains a subgraph in F . Then T forms
a tangle in G of order t.

Proof. We first claim that for any separation (A,B) of order less than t in G, at most one of A
and B can contain a subgraph contained in F . Assume, to reach a contradiction, that both A and
B contain a subgraph in F . Lest G contain k disjoint subgraphs in F , there do not exist k − 1
disjoint subgraphs in F in either the graph A − V (B) or the graph B − V (A). It follows by our
choice of (G, k) to minimize k that there exists a set XA ⊆ V (A) with |XA| ≤ f(k − 1) and a set
XB ⊆ V (B) with |XB| ≤ f(k − 1) such that every subgraph of F contained in G intersects the set
X := XA ∪XB ∪ (V (A) ∩ V (B)). Moreover, |X| ≤ f(k), a contradiction to our choice of k and G.
We conclude that if (A,B) ∈ T , then (B,A) /∈ T . Note that this argument relies on our choice of
F to only contain connected graphs. Also, if (A,B) is a separation of order at most t, then at least
one of A and B must contain a subgraph of F by our choice of (G, k) to form a counter-example.
Thus 1. is satisfied in the definition of tangle.

Property 2. and 3. in the definition of tangle are satisfied by our assumption that t ≤ f(k)/3
and the fact that A cannot contain any subgraph of F for any separation (A,B) in T .

We say that G contains a g × g grid minor if there exist pairwise disjoint sets {Xi,j : 1 ≤ i ≤
g, 1 ≤ j ≤ g} and edges {erighti,j ∈ E(G) : 1 ≤ i ≤ g, 1 ≤ j ≤ g−1}∪{edowni,j : 1 ≤ i ≤ g−1, 1 ≤ j ≤ g}
such that G[Xi,j ] is connected, the edge erighti,j has one end in Xi,j and one end in Xi,j+1, and the
edge edowni,j has one end in Xi,j and one end in Xi+1,j . Let H be the subgraph of G comprising a
g × g grid minor. The ith row of H is the set of edges {erighti,j : 1 ≤ j ≤ g − 1} for some fixed i. Let
TH be the set of all separations (A,B) of order < g such that E(B) includes a row of H. It follows
from a result of [14] (Theorem 7.3) that TH is a tangle in G of order g. A tangle T dominates H if
TH ⊆ T .

The following theorem of Robertson, Seymour, and Thomas [15] gives an improved explicit bound
to a similar qualitative result appearing in [14].
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Theorem 2.2 Let g ≥ 2 and let T be a tangle in G of order ≥ 20g
4(2g−1). Then T dominates a

g × g grid minor.

Combining Theorem 2.2 with Lemma 2.1, we will see that if we are looking for an Erdős-Pósa function
for a particular family F of graphs, then an appropriately minimal counter-example G will not only
have a large grid minor, but that grid minor will be well connected to every subgraph of F contained
in G. We make this idea explicit below as Theorem 2.3.

For the proofs to come, we will work with a variation of a grid minor that will allow us to consider
a subdivision instead of a minor. We define the graph Wl,m the l ×m wall . Let V (Wl,m) = {vi,j :
1 ≤ i ≤ l, 1 ≤ j ≤ m} and

E(Wl,m) ={vi,jvi,j+1 : 1 ≤ i ≤ l, 1 ≤ j ≤ m− 1}
∪ {v2i−1,2j−1v2i,2j−1 : 1 ≤ i ≤ l/2, 1 ≤ j ≤ dm/2e}
∪ {v2i,2jv2i+1,2j : 1 ≤ i ≤ l − 1/2, 1 ≤ j ≤ m/2}

Equivalently, Wl,m consists of l disjoint paths P1, . . . , Pl each containing m vertices such that for odd
i, the odd vertices of Pi and Pi+1 are adjacent, and for even i, the even vertices of Pi and Pi+1 are
adjacent. It is easy to see that if a graph G contains a g× g grid minor, then G contains a subgraph
isomorphic to a subdivision of the g × g wall. Moreover, the subdivision contains every row of the
grid minor.

Theorem 2.3 Let F be a family of connected, possibly group labeled, graphs. For all positive integers
k, let l = l(k), m = m(k), and t = t(k) be positive integers satisfying l(k) ≥ t(k) and m(k) ≥ t(k).
For all k, let α(k) = max{m(k), t(k) + 1, l(k)}. Define the function

f(k) = 4k20α(k)4(2α(k)−1).

Assume f is not an Erdős-Pósa function for F , and let (G, k) be a counter-example with k chosen
minimal among all such counter-examples. Then there exists a subgraph H of G isomorphic to a
subdivision of the l×m wall such that for every graph F of G isomorphic to a graph of F , there exist
t vertex disjoint paths linking the branch vertices of H and V (F ) in G.

Proof. Let F , l, m, t, α, and f be given. Let (G, k) be a counter-example to f being an Erdős-Pósa
function for the family F , and assume it is chosen from all such counter-examples to minimize k.
Let T be all the separations (A,B) of order at most 20α(k)4(2α(k)−1) such that B contains a subgraph
in F . Lemma 2.1 implies that T is a tangle of order 20α(k)4(2α(k)−1). Theorem 2.2 implies that
there exists an α× α grid minor H such that T dominates H. As we observed above, H contains a
subgraph H ′ isomorphic to a subdivision of the l×m wall. Let the branch vertices of H ′ be labeled
vi,j in the natural way. We may assume that the path in H ′ linking vi,j and vi,j+1 that corresponds
to the edge vi,jvi,j+1 in the l × m wall contains exactly one edge of the ith row of the α × α grid
minor.

Let X be the vertices of H ′ of degH′ at least three. Observe that if we let Xi,j be as in the
definition of the α×α grid minor, then every vertex vi,j of X is contained in Xi,j . It follows that for
any row of H, if we let Y be the endpoints of the edges comprising the row, then there exist at least
t+ 1 disjoint paths linking Y to X. Assume the theorem is false and that there exists a subgraph D
of G contained in F , but that there do not exist t disjoint paths linking D and X. Then there exists
a separation (A,B) of order at most t− 1 with X ⊆ V (A) and D ⊆ V (B). The separation (A,B) is
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contained in T , and consequently, in TH . It follows that there exists an index i such that the ith a
row of the α×α grid minor contained in B. But this is a contradiction, as we saw above, since there
exist t+ 1 disjoint paths linking the row and the set X. This completes the proof of the theorem.

3 Proof of Theorem 1.2

In the proof of Theorem 1.2, we utilize Theorem 2.3 to ensure that a potential counter-example to
Theorem 1.2 has a subdivided wall which we can make as large as we need by choosing a sufficiently
large Erdős-Pósa function. The next theorem allows us to find many non-zero cycles if we can find
many non-zero paths attaching to the branch vertices of the wall.

Theorem 3.1 There exists a constant c such that for all integers k ≥ 1 the following is true. Let
nk = ck87 and let l ≥ nk, m ≥ nk be positive integers such that l is congruent to 0 mod 4 and m is
congruent to 7 mod 8. Let Γ be an abelian group not containing any elements of order two, and let
G be a Γ-labeled graph with weight function γ. Let H be a subgraph of G isomorphic to a subdivision
of Wl,m and let X be the vertices of H of degree at least three. If G contains nk disjoint X-paths
P1, . . . , Pnk

such that γ(Pi) 6= 0 for 1 ≤ i ≤ nk, then G contains k vertex disjoint cycles of non-zero
weight.

The proof of Theorem 3.1 is somewhat technical, and we leave the proof for Section 5. Note that if
l is even and m is odd, the l ×m wall has minimum degree two. Throughout the proofs, assuming
that a given wall has minimum degree two will simplify the notation and avoid the technicality of
repeatedly deleting vertices of degree one. Thus, our choice of l and m to satisfy the given modularity
constraints is merely a convenience, and not of fundamental importance to the results.

In order to find many such non-zero paths attaching to the branch vertices, we need the following
result from [18].

Theorem 3.2 There exists a constant c such that the following holds. Let Γ be an abelian group and
let γ be a Γ-labeling of a graph G. Let A ⊆ V (G) be a fixed set of vertices of G. Then either there
exist disjoint A-paths P1, P2, . . . , Pk with γ(Pi) 6= 0, or there exists a set X ⊆ V (G) with |X| ≤ ck4

such that G−X has no non-zero A path.

We are now reach to give the proof of Theorem 1.2.
Proof. (Theorem 1.2, assuming Theorem 3.1) Let c1 be the constant in the statement of
Theorem 3.2. Let c2 be the constant in Theorem 3.1. We set t(k) := c1(c2k87)4 + 3, l(k) = 4dt(k)/4e
and m(k) = 8dt(k)/8e+ 7. We set α(k) = max{l(k),m(k), t(k) + 1}. Fix c and c′ such that

ck
c′ ≥ 4k20α(k)4(2α(k)−1).

We claim c and c′ satisfy the statement of Theorem 1.2. Assume not. Then there exists a group Γ
with no element of order two, a graph G, a positive integer k, and a Γ-labeling γ of G such that
G neither has k disjoint non-zero cycles, nor does there exist a covering set X of size at most ck

c′
.

Assume that we chose G, Γ, and k to minimize the value of k. By Theorem 2.3, there exists a
subgraph H of G isomorphic to a subdivision of the l ×m wall such that there exist t(k) disjoint
paths linking the branch vertices of H to any non-zero cycle in G. Let X be the branch vertices of
H. By Theorem 3.1, there do not exist c2k87 disjoint non-zero X-paths. Consequently, by Theorem
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3.2, there exists a set Z of vertices with |Z| ≤ c1(c2k87)4 such that G − Z does not contain any
non-zero X-path.

We claim the set Z intersects every non-zero cycle in G. This will contradict our choice of G
to be a counter-example, as |Z| ≤ ck

c′
. If Z is not a hitting set, then there exists a non-zero cycle

C disjoint from Z. There exist t(k) disjoint paths linking X to C. It follows that there exist three
disjoint paths from C to X avoiding Z, call them P1, P2, and P3. We claim that P1 ∪ P2 ∪ P3 ∪ C
contains a non-zero X-path, contrary to the fact that Z intersects every such non-zero X-path. To
see this, for i = 1, 2, 3, let Qi be the subpath in C linking the endpoints of Pi and Pi+1 avoiding Pi+2

where all the index notation is taken mod 3. Let ai = γ(Pi) for i = 1, 2, 3. Lest Pi∪Qi∪Pi+1 contain
a non-zero X-path, we see γ(Qi) = −ai−ai+1 for i = 1, 2, 3. Adding the terms together, we get that
γ(C) = −2a1 − 2a2 − 2a3. Similarly, lest Pi ∪Qi−1 ∪Qi+1 ∪ Pi+1 contain a non-zero X-path, we see
that γ(Qi−1) + γ(Qi+1) = γ(Qi) = −ai− ai+1 for i = 1, 2, 3. This implies that γ(C) = −2ai− 2ai+1.
Merging the equations, we see that −2ai − 2ai+1 = −2a1 − 2a2 − 2a3 for i = 1, 2, 3. It follows that
2ai = 0 for i = 1, 2, 3. Consequently, γ(C) = −2a1 − 2a2 − 2a3 = 0, a contradiction. We conclude
that P1 ∪ P2 ∪ P3 ∪C in fact does contain a non-zero X-path. This final contradiction to our choice
of Z completes the proof of the theorem.

4 Non-zero paths attaching to ladders and grids

We begin with several preliminary results before proceeding with the proof of Theorem 3.1 in the
next section. Let G be a Γ-labeled graph with weight function γ for some group Γ. A non-zero theta
is a subgraph of G consisting of three internally disjoint paths P1, P2, P3 each with endpoints equal
to x and y for some pair of vertices x, y and furthermore, such that there exists an index i ∈ {1, 2, 3}
such that γ(Pi) 6= 0.

Observation 1 Let G be a Γ-labeled graph with weight function γ. If Γ does not contain an element
of order two, then every non-zero theta contains a non-zero cycle.

Proof. Let P1, P2, P3, G and Γ be as in the statement. Without loss of generality, assume
γ(P1) = α, an element of Γ which has order not equal to two. Lest P1∪P2 (P1∪P3) form a non-zero
cycle, we see that γ(P2) = γ(P3) = −α. By our choice of α, the graph P2 ∪ P3 is a non-zero cycle,
proving the observation.

We will need the following classic result of Erdős and Szekeres.

Theorem 4.1 [3] Let a = (a1, a2, . . . , an) be a sequence of positive, distinct integers. If n ≥ k2, then
a either contains a strictly increasing subsequence of length k or a strictly decreasing subsequence of
length k.

From Theorem 4.1, we conclude the following lemma.

Lemma 4.2 Let P1 and P2 be two vertex disjoint paths in a Γ-labeled graph G with weight function
γ. Assume that Γ does not contain any elements of order two. Let Q1, . . . , Ql be vertex disjoint paths
in G such that γ(Qi) is non-zero and each Qi has one endpoint in P1 and one endpoint in P2 for
i = 1, . . . , l. If

l ≥ 9k2,
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then G contains k vertex disjoint non-zero cycles.

Proof. Let G, P1, P2, Γ, and Q1, . . . , Ql be as in the statement. We will prove that G contains
k disjoint non-zero cycles by proving that G in fact contains k disjoint non-zero thetas. Label the
vertices of P1∩(

⋃
i V (Qi)) by 1, 2, . . . , n so that they occur on the path P1 in that order, and similarly,

let the vertices of P2 ∩ (
⋃
i V (Qi)) be labeled 1′, 2′, . . . , n′ so that they occur in that order on the

path P2. We define a sequence a(1), a(2), . . . , a(n) such that for all i, 1 ≤ i ≤ n, there exists an index
j such that Qj has endpoints i in P1 and a(i)′ in P2. By Theorem 4.1, there exists values 1 ≤ π1 <
π2 < · · · < π3k ≤ n such that the subsequence a(π1), a(π2), . . . , a(π3k) is either monotone increasing
or decreasing. Let σ1, σ2, . . . , σ3k be such that Qσi has endpoints πi and a(πi)′ for 1 ≤ i ≤ 3k. Then
for all t, 2 ≤ t ≤ 3k − 1, the subgraph πt−1P1πt+1 ∪ a(πt−1)′P2a(πt+1)′ ∪Qσt−1 ∪Qσt ∪Qσt+1 forms
a non-zero theta. Thus we have constructed k distinct non-zero thetas and they will be disjoint by
the fact that the subsequence a(π1), a(π2), . . . , a(π3k) is monotone.

The following related lemma is an immediate consequence of a theorem of Rado [11] concerning
sets of intervals.

Lemma 4.3 [11] Let I1, I2, . . . , Ik2 be subintervals of [0, 1]. Then either there exists a subcollection
of k pairwise disjoint intervals or k pairwise intersecting intervals.

Lemma 4.4 follows easily from Lemma 4.3. We omit the proof here.

Lemma 4.4 Let P be a path and let Q1, . . . , Qn be disjoint V (P )-paths. If n ≥ k2, then one of the
following outcomes holds.

1. There exists a subset I ⊆ {1, 2, . . . , n} with |I| ≥ k and an edge e ∈ V (P ) such that for every
i ∈ I, the path Qi has one endpoint in each of the two components of P − e, or

2. there exists a subset I ⊆ {1, 2, . . . , n} with |I| ≥ k such that for every distinct i, j ∈ I, the
subpath of P linking the ends of Qi is disjoint from the subpath of P linking the ends of Qj.

Before proceeding to analyze the situation when we have many non-zero paths attaching to a
subdivision of a grid, we first consider a simpler graph. The k ladder, denoted Lk is the graph with
vertex set {v1, v2, . . . , vk, u1, u2, . . . , uk} and edges {vivi+1 : 1 ≤ i ≤ k − 1} ∪ {uiui+1 : 1 ≤ i ≤
k − 1} ∪ {uivi : 1 ≤ i ≤ k}. In other words, the k ladder is formed by taking two paths of length
k − 1 and joining the corresponding vertices on the paths with an edge.

Lemma 4.5 Let G be a Γ-labeled graph with weight function γ. Assume Γ does not contain any
elements of order two. Let H be a subgraph of G isomorphic to a subdivision of an l-ladder for l ≥ 3.
Let X be the branch vertices of H. Let P1, . . . , Pn be non-zero V (H)-paths such that no Pi has both
endpoints contained in a segment of H. For all positive integers k, if

n ≥ 27816k6 ≥
[
3(9k2)2 + (3k + 2)

] (
6(18k2 + 2)

)
,

then G contains k vertex disjoint non-zero cycles.

Proof. Let G, H, Γ, γ, and P1, . . . , Pn be as in the statement. Let X be the branch vertices of H.
Assume the lemma is false, and let G be a counter-example.
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First, assume there exists a segment P of H such that P contains the endpoints of 18k2 + 2
distinct paths Pi. Let Z be the internal vertices of P . There are then 18k2 distinct paths Pi with
one endpoint in the set Z. Observe that there exist two (not necessarily disjoint) paths in H − Z
covering the vertices of H −Z. It follows from Lemma 4.2 that there exists a path P ′ in H −Z such
for at least 9k2 distinct indices i, the path Pi has one endpoint in P and one endpoint in P ′. Lemma
4.2 implies that G contains k vertex disjoint cycles, a contradiction to our choice of G.

We conclude that there exists a subset I ⊆ {1, 2, . . . , n} such that for any i, j ∈ I, there does not
exist a segment of H containing endpoints of both Pi and Pj . Since for every path Pi there are at
most six distinct segments of H containing an endpoint of Pi, and combined with the arguments of
the previous paragraph, we see that |I| ≥ n/(6(18k2 + 2)) ≥

[
3(9k2)2 + (3k + 2)

]
.

For the remainder of the proof, we will need to refer more specifically to the segments and branch
vertices of X. The vertices of the l-ladder are labeled {u1, u2, . . . , ul, v1, v2, . . . , vl}. We naturally
label the branch vertices X of H with {u2, u3, . . . , ul−1, v2, . . . , vl−1}. We label the segments of H
as follows. Let the segments Q2, Q3, . . . , Ql−2 be defined where Qi has endpoints ui and ui+1 for all
2 ≤ i ≤ l − 2. Let the segments R2, R3, . . . , Rl−2 be defined where Ri has endpoints vi and vi+1

for 2 ≤ i ≤ l − 2. Let S1, S2, . . . , Sl be defined where Si has endpoints ui and vi for 2 ≤ i ≤ l − 1,
S1 has endpoints u2 and v2, and Sl has endpoints ul−1 and vl−1. Let the paths Q =

⋃l−2
2 Qi and

R =
⋃l−2

2 Ri.
For every i ∈ I, we want to define a non-zero path Pi extending Pi such that the endpoints of

Pi are contained in R ∪ Q. Towards this end, for every i ∈ I, let xi and yi be the endpoints of Pi.
If xi, yi ∈ R ∪ Q, let Pi = Pi. Lest G contain k disjoint non-zero thetas, there exists a set of at
most 3k indices j, 2 ≤ j ≤ l − 1, such that Sj is a non-zero path. Let J ⊆ {2, 3, . . . , l − 1} such
that Sj has weight zero for all j ∈ J . We have excluded 1 and l from the set J to ensure that the
paths Pi that we construct will be pairwise disjoint. If at least one endpoint of Pi is contained in
a path Sj for some j ∈ J , then we construct Pi as follows. Without loss of generality, assume xi
is contained in Sj for some j ∈ J . Since γ(Sj) = 0, one of the paths ujSjxiPiyi or vjSjxiPiyi has
non-zero weight. To see this, if both have weight zero, then γ(ujSjxi) = γ(vjSjxi) = −γ(Pi). But
given that Γ does not contain elements of order two, this implies that γ(Sj) 6= 0 and contradicts our
assumption that j ∈ J . If yi ∈ R∪Q, we let let Pi = ujSjxiPiyi if γ(ujSjxiPiyi) 6= 0 and otherwise,
let Pi = vjSjxiPiyi. If yi is contained in Sj′ for some j′ ∈ J , then by the same argument as above, at
least one of the four paths ujSjxiPiyiSj′uj′ , ujSjxiPiyiSj′vj′ , vjSjxiPiyiSj′uj′ , or vjSjxiPiyiSj′vj′
is a non-zero path. We set Pi to such a non-zero path, arbitrarily choosing one if there is more than
one such non-zero path. Let I1 ⊆ I be the set of indices for which Pi is defined. By construction,
|I1| ≥ |I| − (3k + 2) ≥ 3(9k2)2. Also, by construction, Pi and Pj are disjoint for every distinct
i, j ∈ I1.

By Lemma 4.2, the path Pi has one endpoint in Q and one endpoint in R for at most 9k2 distinct
indices i ∈ I1. Thus without loss of generality, we may assume that there exists a set I2 ⊆ I1 with
|I2| ≥ (|I1| − 9k2)/2 ≥ (9k2)2 such that for every index i ∈ I2, the path Pi has both endpoints in
R. Let xi and yi be the endpoints of Pi for all i ∈ I2. Consider the subpaths of xiRyi for all i ∈ I2.
By Lemma 4.4, either there exists an edge of R intersecting at least 9k2 of the subpaths xiRyi or
there exists 9k2 disjoint such subpaths. In the first case, say the edge e intersects at least 9k2 of
the subpaths xiRyi. There exist 9k2 disjoint non-zero paths, each with one endpoint in each of two
paths of R− e. Lemma 4.2 then contradicts our choice of G to not contain k vertex disjoint non-zero
cycles.
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In the other possible outcome of the application of Lemma 4.4, there exist 9k2 distinct indices
i ∈ I2 such that the subpaths xiRyi are pairwise disjoint. In fact, we will only need 2k such paths
to derive a contradiction. For each such i, without loss of generality, assume that the vertices v2, xi,
yi, vl−1 occur on the path R in that order. Let πL(i) be the index in {2, . . . , l− 1} such that vπL(i) is
as close to xi as possible on the subpath v2Rxi. Similarly, let πR(i) be the index such that vπR(i) is
as close as possible to yi on the subpath yiRvl−1. Note that vπL(i) may in fact be equal to xi, and,
symmetrically, vπR(i) may be equal to yi. Given 2k indices such that the subpaths xiRyi are pairwise
disjoint, there exists a subset I3 ⊆ I2 of k indices i such that vπR(i) 6= vπL(j) for all distinct i, j ∈ I3.
Equivalently, we see that the subpath vπL(i)RvπR(i) is disjoint from vπL(j)RvπR(j) for all i 6= j. For
all i ∈ I3, by the construction of the path Pi, the path Pi has both endpoints contained in the cycle
Ci := vπL(i)SπL(i)uπL(i)QuπR(i)SπR(i)vπR(i)RvπL(i). We conclude that Pi ∪ Ci forms a non-zero theta
for each i ∈ I3, and consequently, G contains k vertex disjoint non-zero thetas. The observation then
implies G contains k vertex disjoint non-zero cycles, contradicting our choice of G. This completes
the proof of the lemma.

Throughout the following lemmas, we will often consider a graph G isomorphic to a subdivision
of Wl,m the l ×m wall. We will include the assumption that l is even and m is odd to ensure that
the graph has minimum degree two. Every branch vertex corresponds naturally to a vertex of the
wall Wl,m. We will refer to the labeling of the set X of branch vertices so that

X ={vi,j : 2 ≤ i ≤ l − 1, 2 ≤ j ≤ m− 1} ∪ {v1,i : 2 ≤ i ≤ m− 1, i odd}∪
∪ {vl,i : 2 ≤ i ≤ m− 1, i odd}

as the canonical labeling of the branch vertices X. Let P be a segment of G with end points vi,j and
vi′,j′ for some i, i′, j, j′. If i = i′, we say P is a horizontal segment and otherwise say P is a vertical
segment.

Lemma 4.6 Let G be a Γ-labeled graph with weight function γ. Assume G is isomorphic to a
subdivision of Wl,m with l even and m odd. Also assume that Γ does not contain any elements of
order two. If G has at least 24k2 non-zero segments, then G contains k disjoint non-zero cycles.

Proof. Let G, Γ, and γ be as in the statement. Let X be the set of branch vertices and have the
canonical labeling. Let the path Si, 1 ≤ i ≤ l, be the union of every horizontal segment with end
points vi,j and vi,j+1 for some index j.

First, we will see that the lemma holds if G has at least 12k2 vertical non-zero segments. If there
exists an index i such that there exist 3k non-zero vertical segments with one endpoint in each of
the paths Si and Si+1, then G contains k vertex disjoint non-zero thetas. Observation 1 implies
that G then contains k vertex disjoint non-zero cycles. Notice that for any index i, 1 ≤ i ≤ l − 1,
any non-zero vertical segment with endpoints in Si and Si+1 is contained in a non-zero theta using
vertices of Si−1, Si, Si+1, and Si+2 as well as vertical segments with their endpoints contained in
Si−1, Si, Si+1, and Si+2. Note that the paths Si−1 and Si+2 may be necessary for to find a non-zero
theta containing the first or last vertical segment on the outside boundary of H. It follows that if
there exist 4k distinct indices i with 1 ≤ i ≤ l− 1, such that there exists a non-zero vertical segment
attaching to Si and Si+1, then G contains k vertex disjoint non-zero thetas. We conclude that if
there exist at least (3k)(4k) = 12k2 non-zero vertical segments, then the conclusion of the lemma is
satisfied.
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We will now show that if G has at least 12k2 non-zero horizontal segments, then the lemma holds
as well. For any index i, 1 ≤ i ≤ l, we can naturally order the horizontal segments on Si by the order
in which they occur when traversing the path Si. Any non-zero horizontal segment is contained in a
non-zero theta that intersects Si in at most the previous and the next segments on Si. By choosing
such non-zero thetas to contain as few vertices as possible, it follows that if Si contains at least
4k non-zero segments, then G contains k disjoint non-zero thetas and the lemma holds. For all i,
2 ≤ i ≤ l − 1, every non-zero horizontal segment on Si is contained in a non-zero theta using only
vertices of Si−1, Si, and Si+1 as well as vertical segments attaching to Si−1, Si, and Si+1. Similarly,
when i ∈ {1, l} and there exists a non-zero segment on Si then there exists a non-zero theta contained
in S1, S2, S3 or Sl, Sl−1, Sl−2 as well as the vertical segments attaching to them. We conclude that
if there exist at least 3k distinct indices such that Si contains a non-zero horizontal segment, then
G contains k vertex disjoint non-zero cycles. It follows that if G contains at least (3k)(4k) ≤ 12k2

non-zero horizontal segments, then G contains k disjoint non-zero cycles.
It follows that if G contains at least 24k2 non-zero segments, then G contains k disjoint non-zero

cycles and the lemma is proven.

Lemma 4.7 Let G be a Γ-labeled graph with weight function γ. Let l and m be integers, l ≥ 4,
m ≥ 5, with l even and m odd. Let H be a subgraph of G isomorphic to a subdivision of Wl,m.
Assume that Γ does not contain any elements of order two. Let k and n be integers with

n ≥ 9, 320, 850k8 ≥ 6(54k2 + 2)
(
27816k6 + (4k + 2)(81k4) + 24k2

)
.

Let P1, . . . , Pn be disjoint non-zero V (H)-paths in G such that for all 1 ≤ i ≤ n, the path Pi does
not have both endpoints contained in a segment of H. Then G contains k disjoint non-zero cycles.

Proof. Let G, H, Γ, γ, and P1, . . . , Pn be as in the statement. Let X be the branch vertices of H,
and let X have the canonical labeling.

We first observe that if there exists a segment P of H and at least 54k2 + 2 distinct indices i
such that Pi has an endpoint in P , then G contains k disjoint non-zero cycles. Observe that there
exists a path in H containing every horizontal segment. The vertical segments can be covered by
two (not necessarily disjoint) paths. If we let Y be the internal vertices of P , we see that there exists
six paths covering the vertices of H − Y . It follows that there exists a subpath Q in H and at least
9k2 distinct indices i such that Pi has one endpoint on P and one endpoint in Q. By Lemma 4.2, G
contains k disjoint non-zero cycles.

For every index i, the path Pi has an endpoint in at most six distinct segments of H, three at
each endpoint. We conclude that we may assume there exists a set I ⊆ {1, 2, . . . , n} of at least
n/6(54k2 + 2) ≥ 27816k6 + (4k + 2)(81k4) + 24k2 distinct indices such that Pi and Pj do not have
endpoints contained in a common segment of H for all distinct i, j ∈ I. For all i, 2 ≤ i ≤ l − 1,
we let Si be the union of every horizontal segment with endpoints equal to vi,j and vi,j+1 for some
index j. We let S1 be formed from the “upper left” vertical segment with endpoints v2,2 and v1,3, the
“upper right” vertical segment with endpoints v1,m−2 and v2,m−1, and every horizontal segment with
endpoints v1,j and v1,j+2 for some index j. Symmetrically, we let Sl be the union of the “lower left”
vertical segment with endpoints vl−1,2 and vl,3, the “lower right” vertical segment with endpoints
vl−1,m−1 and vl,m−2, and every horizontal segment with endpoints vl,j and vl,j+2. We let Q be
the union of the vertical segments with endpoints vi,2 and vi+1,2 for some index i, 2 ≤ i ≤ l − 2.
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Symmetrically, we let R be the union of the vertical segments with endpoints vi,m−1 and vi+1,m−1

for i, 2 ≤ i ≤ l − 2.
We would like to convert the set of disjoint V (H)-paths {Pi : i ∈ I} to a set of disjoint non-zero

paths Pi attaching to the subdivided ladder on the vertex set Z := V (Q) ∪ V (R) ∪
(⋃l

1 V (Si)
)

. If

Pi has both endpoints in Z, then let Pi = Pi. For paths Pi such that exactly one endpoint of Pi is
contained in a vertical segment T of H of weight zero with T * Z, observe that T has endpoints x
and y in Z. Let z be the endpoint of Pi in Z and z′ be the endpoint in T . Given that the segment
T was assumed to have zero weight and the fact that Γ does not contain an element of order two,
either the path zPiz

′Tx or zPiz′Ty is a non-zero Z-path. We let Pi = zPiz
′Tx if γ(zPiz′Tx) 6= 0

and set Pi = zPiz
′Ty otherwise. For i ∈ I such that the endpoints of Pi are contained in exactly

two vertical segments T1 and T2 with γ(T1) = γ(T2) = 0 and T1, T2 * Z, we let the endpoints of T1

be x1 and y1, and we let the endpoints of T2 be x2 and y2. At least one of the paths x1T1zPiz
′T2x2,

x1T1zPiz
′T2y2, y1T1zPiz

′T2x2, or y1T1zPiz
′T2y2 must be a non-zero path. We choose one such

non-zero path arbitrarily and assign it to be Pi.
By Lemma 4.6, we may assume H has at most 24k2 non-zero segments. We conclude that there

exists a set I1 ⊆ I such that Pi is defined for all i ∈ I1 with |I1| ≥ |I|−24k2 ≥ 27816k6+(4k+2)(81k4).
Observe that for all distinct i, j ∈ I1, V (Pi) ∩ V (Pj) = ∅ by construction.

We would like to apply Lemma 4.5. In order to do so, we need to find a large subset of I2 ⊆ I1
such that for any index i ∈ I2, there does not exist an index j, 1 ≤ j ≤ l, such that the path Pi
has both endpoints contained in Sj . This will suffice to ensure that no path P i has both endpoints
in a single segment of the subdivided ladder on the vertex set Z, since by the construction no path
P i has both endpoints contained in a segment in Q or R. Thus if P i has both endpoints contained
in a single segment of the subdivided ladder, that segment must be equal to Sj for some index j by
construction.

Assume there exists an index j, 1 ≤ j ≤ l, and a subset I ′ ⊆ I1 such that |I ′| ≥ (9k2)2 and
the path Pi has both endpoints in Sj for all i ∈ I ′. Let the endpoints of Pi be xi and yi. By
Lemma 4.4, either there exists an edge e on Sj such that at least 9k2 distinct Pi have one endpoint
in each component of Sj − e, or there exists 9k2 disjoint subpaths of the form xiPiyi. In the first
case, Lemma 4.2 implies G would contain k disjoint non-zero cycles. Thus we may assume that
there exist 9k2 disjoint subpaths of the form xiPiyi. We will in fact only need 6k such paths to
construct k disjoint non-zero cycles. Without loss of generality, we assume that P1, P2, . . . , P6k are
such that x1, y1, x2, y2, . . . , x6k, y6k occur on Sj in that order. If j 6= l, for all i, 1 ≤ i ≤ k, there
exists two vertical segments linking Sj to Sj+1 with endpoints contained in the subpath of Sj linking
y6i and x6(i+1). Moreover, these vertical segments can be chosen to be disjoint from the subpath
x6i+3Sjy6i+3. If j = l, we find two such vertical segments linking to Sl−1. It follows that G contains
k vertex disjoint non-zero theta subgraphs, and consequently, k vertex disjoint non-zero cycles.

We may assume, then, that for every index j, there exist at most (9k2)2 distinct indices i such
Pi has both endpoints contained in Sj . We now show that we may also assume that at most 4k + 2
distinct indices j such that there exists an index i where Sj contains both endpoints of the path
Pi. Let J ⊆ {2, . . . , l − 1} be a subset of at least 4k indices such that for every j ∈ J , the path Sj
contains both endpoints of Pi for some index i. Fix j ∈ J and i ∈ I1 such that Pi has both endpoints
in Sj . Let the endpoints of Pi be xi and yi, and let W be the set of internal vertices of the subpath
xiSjyi. Given that Γ does not contain an element of order two, either Pi ∪ xiSjyi forms a non-zero
cycle, or one of the paths Sj and (Sj −W ) ∪ Pi forms a non-zero path. Given that |J | ≥ 4k, we
either find k vertex disjoint non-zero cycles, or 3k disjoint non-zero paths from Q to R containing k
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disjoint non-zero thetas. Either case implies that G contains k disjoint non-zero cycles.
We conclude that there exists a set I2 ⊆ I1 with |I2| ≥ |I1| − (4k + 2)(81k4) ≥ 27816k6 such

that for every i ∈ I2 and for every j, 1 ≤ j ≤ l, the path Pi has at most one endpoint in Sj . By
the construction of the Pi, it follows that each Pi has endpoints in distinct segments of the graph
formed by Q ∪ R ∪

(⋃l
1 Si

)
. Lemma 4.5 implies that G contains k vertex disjoint non-zero cycles,

completing the proof of the lemma.

5 Proof of Theorem 3.1

In this section, we give the proof of Theorem 3.1. We will prove the theorem for the bound 1086k87

for the value of nk. These constants are certainly far from optimal. The choice of constants was
determined by two goals. First, we wanted to obtain a bound for nk that is a polynomial in k, and,
second, we attempt to make the proof as simple as possible while still keeping such a polynomial
bound.

We begin by formalizing what we mean by a minimal counter-example to Theorem 3.1.

Definition Let k be a positive integer. We say the pair (H, {Pi : 1 ≤ i ≤ n}) is a k-counter-example
if the following conditions hold.

1. The integer n satisfies n ≥ 1086k87.

2. There exists an integer l ≥ n congruent to 0 mod 4 and an integer m ≥ n congruent to 7 mod
8, such that H is isomorphic to a subdivision of the l ×m wall.

3. The paths P1, . . . , Pn are vertex disjoint X-paths where X is the set of branch vertices of H.

4. There exists a group Γ which does not have any elements of order two and a Γ-labeling of
G := H ∪ (

⋃n
1 Pi) such that each Pi is a non-zero path and the graph G does not contain k

vertex disjoint non-zero cycles. Such a labeling γ will be referred to as a testifying Γ-labeling.

The pair (H, {Pi : 1 ≤ i ≤ n}) is k-minimal if it is a k-counter-example and there does not exist a
k-counter-example containing fewer edges.

The proof of Theorem 3.1 will proceed by showing that no such k-minimal pair (H, {Pi : 1 ≤ i ≤
n}) exists. If the paths P1, . . . , Pn were disjoint from H except for their endpoints, then the proof of
Theorem 3.1 would follow from a relatively straight forward application of Lemma 4.6 and Lemma
4.7. The majority of the proof will be concerned with controlling how the individual Pi intersect
with the subgraph H. Towards that end, we give the following definitions. A leg of Pi for some i is
a subpath of Pi − E(H) forming a V (H)-path. A foot of Pi is a component of Pi ∩H.

We begin with a series of lemmas.

Lemma 5.1 Let (H, {Pi : 1 ≤ i ≤ n}) form a k-minimal pair. Then for all 1 ≤ i ≤ n, no leg of Pi
has both endpoints contained in the same segment of H.

Proof. Let P be a segment of H, and assume there exists a leg Q of some path Pi such that
the endpoints x and y of Q are both contained in P . We define the subgraph H ′ to be equal to
H − int(xPy) ∪Q when xPy has length at least two, and set H ′ equal to H − xy ∪Q otherwise. In
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either case, the subgraph H ′ is isomorphic to a subdivision of an l ×m wall with the same branch
vertices as H. It follows that (H ′, {Pi : 1 ≤ i ≤ n}) contradicts the fact that (H, {Pi : 1 ≤ i ≤ n}) is
k-minimal.

Lemma 5.2 Let (H, {Pi : 1 ≤ i ≤ n}) form a k-minimal pair. Let γ be a testifying Γ-labeling of
H ∪ (

⋃n
1 Pi). There exists a subset I ⊆ {1, 2, . . . , n} with |I| ≥ n − 107k8 such that for every i ∈ I,

every leg of Pi has weight zero in the testifying labeling.

Proof. The claim follows immediately from Lemma 4.7. If there exists a set of at least 107k8 distinct
indices i such that Pi contains a non-zero leg, then since no leg has both endpoints contained in a
segment of H, Lemma 4.7 implies that G contains k vertex disjoint non-zero cycles, a contradiction.

For any index i such that the corresponding Pi in a k-minimal pair has only legs of weight zero,
there must exist some foot of Pi that has non-zero weight.

Lemma 5.3 Let (H, {Pi : 1 ≤ i ≤ n}) be a k-minimal pair with testifying Γ-labeling γ. Let I be the
indices such that Pi has no non-zero leg for all i ∈ I. Let P be a segment of H and let J ⊆ I be the
set of indices such that Pi has a non-zero foot on P . Then |J | ≤ 1065k77.

Proof. Let (H, {Pi : 1 ≤ i ≤ n}), I, Γ and γ be as in the statement. Let G = H ∪ (
⋃n

1 Pi). Fix P
to be a segment of H, and let

J := {i ∈ I : Pi has a non-zero foot in P}.

We assume that

|J | ≥ 1065k77 ≥
[
(4k)

[
12(107(k + 1)8)

] (
192(9k2 + 1)4

)
+ 4k + 2

]4 108(k + 1)8 + 107(k + 1)8,

and we will show that in this case G contains k vertex disjoint non-zero cycles. This contradiction
implies the statement of the lemma.

The proof proceeds by repeatedly refining the set J . We will need the following constants.

n1 =
[
(4k)

[
12(107(k + 1)8)

] (
192(9k2 + 1)4

)
+ 4k + 2

]4
n2 =

√
n1

n3 =
√
n2 − k − 2

n4 =n3 − 3k

n5 =n4/192(9k2 + 1)4 ≥ (4k)12(107(k + 1)8)

For every i ∈ J , let Fi be a non-zero foot of Pi contained in the segment P . Let the endpoints
of Fi be xi and yi for all i ∈ J . Let F ′i be the union of Fi and the two legs of Pi intersecting Fi.
Observe that for all i ∈ J , the path F ′i is a non-zero path with both endpoints in V (H)− int(P ).

Claim 5.4 There exists a subset J1 ⊆ J and a segment Q of H such that for all i ∈ J1, every path
F ′i has both endpoints contained in Q. Moreover, |J1| ≥ n1.
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Proof. Lemma 4.7 implies that the path F ′i has endpoints in distinct segments of H for at most
107(k+ 1)8 distinct indices. To see this, assume there exist 107(k+ 1)8 such indices. Let e be a new
edge with endpoints equal to the endpoints of P . The graph (H − int(P )) ∪ e ∪ {F ′i : i ∈ J} would
contain k+ 1 non-zero cycles by Lemma 4.7. Conseqently, (H − int(P ))∪{F ′i : i ∈ J} would contain
k disjoint non-zero cycles, a contradiction.

We now fix a subset J ′ ⊆ J and distinct segments Qi of H such that for all i ∈ J ′, the path F ′i
has both endpoints contained in Qi, and furthermore, for all distinct i, j ∈ J ′, Qi 6= Qj . Assume we
can choose J ′ such that |J ′| ≥ 108(k + 1)8 ≥ 5 · 107(k + 1)8. Observe that for any distinct indices
i, j ∈ J ′, there exists a non-zero path R with one endpoint in Qi and the second endpoint in Qj where
R ⊆ F ′i ∪ F ′j ∪ xiPxj . As a slight technicality, in order to ensure that the path R has endpoints on
distinct segments of H, we require Qi and Qj to not have a common endpoint. Since every segment
of H has a common endpoint with at most four other segments, we conclude that there exists a
subset J ′′ ⊆ J ′ with |J ′′| ≥ |J ′|/5 such that for all i, j ∈ J ′′, Qi and Qj are disjoint. We conclude
that there exist 107(k + 1)8 disjoint non-zero paths attaching to H − int(P ). As in the previous
paragraph, G contains k disjoint non-zero cycles.

We conclude that there exists a segment Q of H such that at least n1 ≥ (|J |−107(k+1)8)/108(k+
1)8 indices i, the path F ′i has both endpoints in the segment Q, and the claim is proven.

For the remainder of the proof of Lemma 5.3, we fix J1 and the segment Q to be as in the
statement of Claim 5.4. We fix the labels x′i and y′i to be the endpoints of F ′i in Q.

Claim 5.5 There exists a subset J2 ⊆ J1 with |J2| ≥ n2 such that for all distinct i, j ∈ J2, the
subpaths x′jQy

′
j and x′iQy

′
i are disjoint.

Proof. We apply Lemma 4.4 to either find an edge e in Q intersecting at least n2 ≥ 9k2 of the paths
x′iQy

′
i, or a subset of n2 distinct indices i such that the paths x′iQy

′
i are pairwise disjoint. In the first

case, there exist 9k2 disjoint non-zero paths attaching to the two components of Q− e. Lemma 4.2
implies that G would then contain k vertex disjoint non-zero cycles. We conclude that there exists
a subset J2 ⊆ J1 with |J2| ≥

√
|J1| ≥ n2 such that the subpaths x′iQy

′
i are pairwise disjoint for all

i ∈ J2.

Let the endpoints of P be u1 and v1 and let the endpoints of Q be u2 and v2. There is a natural
ordering, denoted by �P , of the vertices of P where for any two vertices z, z′ on P , z �P z′ if z is
closer to u1 on the path P . Similarly, for any two vertices of z and z′ on Q, z �Q z′ if z is closer to
u2 on Q. In a slight abuse of notation, we will use �P to order the feet laying on P where Fi �P Fj
if Fi is closer to the vertex u1 on the path P . Similarly, we use �Q to order the subpaths x′iQy

′
i on

Q.

Claim 5.6 By possibly swapping the labels v1 and u1 on P , there exists a set J3 ⊆ J2 such that
|J3| = n3 and the following hold:

i. for all i, j ∈ J3, if Fi �P Fj, then x′iQy
′
i �Q x′jQy′j,

ii. for all i ∈ J3, the subpath Fi does not intersect the endpoints of P and similarly, the subpath
x′iQy

′
i does not intersect the endpoints of Q, and

iii. for all i ∈ J3, γ(x′iQy
′
i) = −γ(Fi).
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Proof. By the same argument as in the proof of Lemma 4.2, there exists a subset J ′ ⊆ J2

with |J ′| ≥ b
√
|J2|c such that one of the following holds. For all i, j ∈ J ′, if Fi �P Fj , then

x′iQy
′
i �Q x′jQy

′
j , or, for all i, j ∈ J ′, if Fi �P Fj , then x′jQy

′
j �Q x′iQy

′
i. By possibly swapping

the labels u1 and v1 on P , we may assume the former holds and that J ′ satisfies i. By possibly
discarding the indices corresponding to the first and last feet on P , we may assume that for all
i ∈ J ′, the subpath Fi does not intersect the endpoints of P and similarly, the subpath x′iQy

′
i does

not intersect the endpoints of Q. Thus J ′ satisfies ii. Finally, observe that if there exist k distinct
indices i such that γ(x′iQy

′
i) 6= −γ(Fi), then G would contain k disjoint non-zero cycles. By discarding

all such indices in J ′, we may assume J ′ satisfies iii. as well. We conclude that we have constructed
the set J3 with |J3| = b

√
|J2|c − k − 2 = n3, and the claim is proven.

We re-number the paths Fi with i ∈ J3 so that J3 = {1, 2, . . . , n3}. For all i ∈ J3, we fix the
labels xi, yi, x′i, y

′
i of F ′i such that the vertices x1, y1, x2, y2, . . . , xn3 , yn3 occur on P in that order

when traversing from u1 to v1, and and the vertices x′1, y
′
1, x
′
2, y
′
2, . . . , x

′
n3
, y′n3

occur on Q in that
order when traversing Q from u2 to v2. Throughout the remainder of the proof, as we continue to
further refine the set J3 we will re-number the indices to be the set {1, 2, . . . , n′} for some integer n′.
When we do so, we do so such that the paths F1 �P F2 �P F3 �P · · · �P Fn′ .

Observe that for each i ∈ J3 the two legs contained in F ′i either link xi to x′i and link yi to y′i, or
vice versa and link xi to y′i and yi to x′i. In the latter case, we say that the path F ′i twists.

Claim 5.7 There are at most 3k distinct indices i ∈ J3 for which the path F ′i twists.

Proof. Let i, i, 2 ≤ i ≤ |J3| − 1, be a fixed index such that the path F ′i twists. There exists two
internally disjoint paths linking the endpoints xi and yi of the non-zero foot Fi avoiding any internal
vertex of Fi. Moreover, these paths can be chosen to use only the vertices of F ′i−1 and F ′i+1 as well
as the subpaths xi−1Pyi+1 and xi−1Qyi+1. To see this, one such path linking xi and yi is formed by
the leg xiF ′iy

′
i and a subpath of F ′i+1 linking yiPxi+1 and y′iQx

′
i+1. The second path is obtained from

the leg yiF ′ix
′
i and a subpath of F ′i−1 linking y′i−1Qx

′
i and yi−1Pxi. It follows that if there existed

at least 3k distinct indices i ∈ J3 such that F ′i were twisted, then G would contain k vertex disjoint
non-zero thetas, and consequently, k disjoint non-zero cycles.

We conclude, by discarding all indices i such that F ′i twists and by possibly renumbering the
remaining feet Fi, that F ′i is not twisted for every i ∈ J4 where J4 = {1, 2, . . . , n4}.

For each i ∈ J4, we now want to follow the path Pi starting at each of the vertices x′i and y′i to
their attachments in H − (int(P ) ∪ int(Q)). For all i ∈ J4, let Fi be the subpath of Pi that forms a
V (H − (int(P ) ∪ int(Q)))-path containing Fi.

We will use the Fi to find many non-zero paths attaching to distinct segments in either H−int(Q)
or in H − int(P ). Applying Lemma 4.7 will then imply that G contains many non-zero cycles. If
each F i consisted of F ′i as well as two legs linking x′i and y′i to H−(int(P )∪int(Q)), then it would be
relatively easy to find k disjoint non-zero cycles. The difficulty remaining in the proof of the lemma
is that each F i may contain arbitrarily many legs passing between P and Q before leaving P ∪Q to
terminate in H − (int(P ) ∪ int(Q)).

We define the subpaths Di and D′i for 0 ≤ i ≤ n4 as follows. For i such that 1 ≤ i ≤ n4 − 1, let
Di be the path xiPxi+1 − {xi+1} and let D′i be the path x′iQx

′
i+1 − {x′i+1}. We let D0 be the path

u1Px1 − {x1} and let D′0 be the path u2Qx
′
1 − {x′1}. Let Dn4 be the path xn4Pv1 and let D′n4

be
the path x′n4

Qv2. A leg S of a path Fi for some i, 1 ≤ i ≤ n4 is long if S has one endpoint in Dj

and one endpoint in D′l for indices j and l with |l − j| ≥ 2.
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We now show that there are a bounded number of indices i ∈ {0, 1, . . . , n4} such that the subpath
Di or D′i contains an endpoint of a long leg.

Claim 5.8 There are at most 192(9k2 +1)4 distinct indices i such that Di∪D′i contains the endpoint
of a long leg.

Proof. To prove this, there are two distinct cases to eliminate: first, when there many distinct
pairs (a, b) such that there exists a long leg with one endpoint in Da and one endpoint in D′b, and,
secondly, when there exists a fixed index a and many distinct indices b such that there exists a long
leg with one endpoint in Da ∪D′a and one endpoint in D′b ∪Db.

Case 1: There exist (9k2 + 1)2 disjoint pairs {a, b} such that some long leg has one end in
Da∪D′a and one end in Db∪D′b. Let

{
{a(i), b(i)} : 1 ≤ i ≤ (9k2 + 1)2

}
be a collection of (9k2+1)2

such disjoint pairs. Assume the pairs are ordered such that a(i) < b(i) for all 1 ≤ i ≤ (9k2 + 1)2.
By applying Lemma 4.3, there exists a subset of L ⊆ {1, 2, . . . , (9k2 + 1)2} of distinct indices i with
|L| ≥ 9k2 + 1 such that one of the following holds.

1. There exists an index j such that for every pair {a(i), b(i)} for i ∈ L a(i) < j and b(i) > j.

2. Alternatively, for all distinct i, i′ ∈ L either a(i) ≥ b(i′) or b(i) ≤ a(i′).

Assume the first possibility holds, and there exists an index j such that for every i ∈ L, a(i) <
j < b(i). For all i ∈ L, let Ri be a long leg with endpoints in Da(i) ∪ D′a(i) ∪ Db(i) ∪ D′b(i). As
a technicality, we assume that a(i) 6= 0 for all i ∈ L. Observe that the union of the subgraph
Da(i) ∪ F ′a(i) ∪Db(i) ∪ F ′b(i) ∪Ri contains a non-zero path with one end in D′a(i) and one endpoint in
D′b(i). It follows that G contains 9k2 disjoint non-zero paths with one endpoint in each of the two
components of Q−D′j . Lemma 4.2 contradicts our choice of G.

We consider the second possibility when for every distinct i, i′ ∈ L either a(i) ≥ b(i′) or b(i) ≤
a(i′). Equivalently, we see that for every distinct i, i′ ∈ L, the subpaths of P given by xa(i)Pxb(i)+1−
{xb(i)+1} and xa(i′)Pxb(i′)+1 − {xb(i′)+1} are disjoint. Again, for all i ∈ L, let Ri be a long leg
with one endpoint in Da(i) ∪D′a(i) and the other endpoint in Db(i) ∪D′b(i). By the fact that we are
considering long leaps, for every i ∈ L, there exists an index c(i) such that a(i) < c(i) < b(i). It now
suffices to show that for any index i ∈ L, there exists a non-zero cycle contained in the subgraph
Si := xa(i)Pxb(i)+1 − {xb(i)+1} ∪ x′a(i)Qx

′
b(i)+1 − {x

′
b(i)+1} ∪ F

′
a(i) ∪ F

′
b(i) ∪ Ri ∪ F

′
c(i). Again, as a

technicality, we assume that a(i) 6= 0. Then such a non-zero cycle exists since there exists a path
linking xc(i) and yc(i) in Si avoiding F ′c(i) ∪ x

′
c(i)Qy

′
c(i) except at its endpoints by using the path Ri.

Consequently, the subgraph Si contains a non-zero theta, and therefore, a non-zero cycle. Given that
|L| ≥ k + 1, we see that G contains k vertex disjoint non-zero cycles. This contradiction completes
the analysis of the first case.

Case 2: There exists an index a and 6[4(9k2) + 1]2 distinct indices b such that some long
leg has one end in Da ∪D′a and one end in Db ∪D′b. Fix a to be such an index and define the
set
{
{a, b(i)} : 1 ≤ i ≤ 6[4(9k2) + 1]2

}
of pairs be such that there exists a long leg with one endpoint

in Da∪D′a and a second endpoint in Db(i)∪D′b(i). We partition the long legs into those that have an
endpoint in Da and those that have an endpoint in D′a. We assume that for at least 3[4(9k2) + 1]2

of the pairs {a, b(i)} there exists a long leg with one endpoint in Da and one endpoint in D′b(i). The
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analysis would follow similarly when 3[4(9k2) + 1]2 of the pairs {a, b(i)} correspond to a long leg
with an endpoint in D′a. For any three such long legs with an endpoint in Da, we can define a path
T with endpoints in D′j and D′j′ for some indices j and j′ with |j − j′| ≥ 2. Thus, we can define
paths T1, T2, . . . , Tm where for all indices i, 1 ≤ i ≤ m, the path Ti has endpoints in D′j and D′j′

for some j and j′ with |j − j′| ≥ 2 where m ≥ [4(9k2) + 1]2. We construct the paths T1, . . . , Tm to
be internally disjoint from Q ∪ (P −Da) ∪

(⋃
i 6=a F

′
i

)
. Notice, for all 1 ≤ i ≤ m, the subpath of Q

linking the endpoints of Ti contains the path x′jQy
′
j for some index j. Also, by construction, for all

i, j, 1 ≤ i, j ≤ m, the path Ti and Tj do not have endpoints in a common D′j′ for any index j′. It
follows that if there exist k+1 distinct paths Ti such that the subpath of Q defined by the endpoints
of Ti are pairwise disjoint, then G would contain k disjoint non-zero thetas, a contradiction. We
would need k + 1 such non-overlapping paths, as one such path may contain D′a.

We conclude from Lemma 4.3 that there exists an index a′ such that at least 4(9k2) + 1 such Ti
have an endpoint in each component of Q−D′a′ . For every 1 ≤ i ≤ m, if the path Ti has endpoints in
D′j and D′j′ , for some indices j and j′, j, j′ 6= m, then there exists a non-zero path T ′i with endpoints
in P such that T ′i ⊆ Ti ∪D′j ∪D′j′ ∪D′j′+1 ∪ F ′j ∪ Fj′+1. To see this, the subgraph Ti ∪D′j ∪ F ′j ∪D′j′
contains a path from P ∩Dj to the vertex x′j′+1. Then the subgraph F ′j′+1 ∪ x′j′+1Qy

′
j′+1 contains

two distinctly weighted paths from x′j′+1 to P ∩Dj′+1 ensuring that the desired non-zero path exists.
Each such non-zero T ′i may intersect at most one other T ′i′ by construction, so we conclude that there
are at least 2(9k2) disjoint non-zero paths having one endpoint in each of the two components of
P −e for some edge e ⊆ Da′ . One component of P −e contains the subpath Da. It follows that there
exist two components of P − {Da ∪Da′} and a set of 9k2 disjoint non-zero paths with one endpoint
in each component. Lemma 4.2 implies G contains k disjoint non-zero cycles, a contradiction.

We have completed the analysis of the two cases. In order to get a general bound on the number
of distinct pairs of indices containing a long leg, we consider the following bipartite auxiliary graph.
Let the vertex set be {u0, u1, . . . , un4 , v0, v1, . . . , vn4} and for all indices i, j, two vertices ui and vj
adjacent if there exists a long leg with endpoints in Di and D′j . From the first case, we see that the
auxiliary graph has at most (9k2 + 1)2 disjoint edges. By König’s theorem on matchings in bipartite
graphs, we see that the auxiliary graph has subset of the vertices of size at most (9k2 + 1)2 incident
every edge of the auxiliary graph. In the analysis of the second case, we saw that each vertex of the
auxiliary graph has degree at most 6[4(9k2) + 1]2. It follows that the auxiliary graph has at most
(9k2 + 1)26[4(9k2) + 1]2 ≤ 96(9k2 + 1)4 edges, and, consequently, there are at most 96(9k2 + 1)4

distinct pairs of indices i, j such that there is a long leg with one endpoint in Di ∪ D′i and one
endpoint in Dj ∪ D′j . It follows that there are at most 192(9k2 + 1)4 indices i such that Di ∪ D′i
contains an endpoint of a long leg. This completes the proof of the claim.

An immediate consequence of Claim 5.8 is that there exists an index a ∈ J4 such that for all i,
1 ≤ i ≤ n5 = n4/192(9k2 + 1)4, there does not exist a long leg with an endpoint in Da+i ∪D′a+i. We
now fix such an index a for the remainder of the proof of Lemma 5.3. For any index i, 1 ≤ i ≤ n5,
we say that Da+i ∪D′a+i is criss-crossed if there exist distinct indices j, j′ ∈ {1, 2, . . . , n4} − {a+ i},
and subpaths Ej and Ej′ of Fj and Fj′ , respectively, such that the following holds:

1. Ej and Ej′ each have one endpoint in Da+i+1 ∪D′a+i+1 and one endpoint in Da+i−1 ∪D′a+i−1,

2. every leg of Ej and Ej′ has both endpoints in the set Da+i ∪ D′a+i, Da+i−1 ∪ D′a+i−1, and
Da+i+1 ∪D′a+i+1, and
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3. there do not exist subpaths of Ej and Ej′ satisfying 1. and 2.

We now see that there are at most a bounded number of indices i where Da+i ∪ D′a+i is criss-
crossed.

Claim 5.9 There are at most 4k distinct indices i, 1 ≤ i ≤ n5 such that Da+i∪D′a+i is criss-crossed.

Proof. Let i be an index such thatDa+i∪D′a+i is criss-crossed. Let j and j′ be indices and Ej and Ej′
be the two paths as in the definition of criss-crossed. We define the subgraph H ′ to be the subgraph
formed by xa+i−1Pxa+i+2∪x′a+i−1Qx

′
a+i+2∪F ′a+i−1∪F ′a+i∪F ′a+i+1∪F ′a+i+2∪Ej ∪Ej′ To prove the

claim, it suffices to show that H ′ contains a non-zero cycle. We do this by showing that H ′ contains
a non-zero theta. Define the cycles C and C ′ such that C = xa+i−1F

′
a+i−1x

′
a+i−1 ∪ x′a+i−1Qx

′
a+i ∪

x′a+iF
′
a+ixa+i∪xa+iPxa+i−1 and C ′ = ya+iF

′
a+iy

′
a+i∪y′a+iQx′a+i+2∪x′a+i+2F

′
a+ixa+i+2∪xa+i+2Pya+i.

Observe that Da+i−1 ∪D′a+i−1 ⊆ V (C) and Da+i+1 ∪D′a+i+1 ⊆ V (C ′). Consequently, there exists
two vertex disjoint subpaths of Ej and Ej′ each with one endpoint in C and one endpoint in C ′. It
follows that H ′ contains two internally disjoint paths linking xa+i and ya+i avoiding the non-zero
path Fa+i. We conclude that H ′ contains a non-zero theta, and the claim is proven.

Given that n5 ≥ (4k)12(107(k+ 1)8), an immediate consequence of Claim 5.9 is that there exists
an index b ∈ {a+1, a+2, . . . , a+n5} such that for all 1 ≤ i ≤ 12(107(k+1)8), Db+i∪D′b+i is not criss-
crossed. We are now able to complete the lemma. For i, 4 ≤ i ≤ 12(107(k+1)8)−3, one of the paths
F b+i−1, F b+i, or F b+i+1 must contain a leg with one endpoint in the set

⋃
i−2≤i′≤i+2(Db+i′ ∪D′b+i′)

and one endpoint in H − (P ∪Q). This follows from our choice of b to avoid indices that are criss-
crossed and long leaps. If none of the paths F b+i−1, F b+i, nor F b+i+1 has such a leg, then each
must intersect either the set Db+i−3 ∪D′b+i−3 or the set Db+i+3 ∪D′b+i+3 since there is no long leg
attaching to any of the sets Db+i−2 ∪ D′b+i−2, . . . , Db+i+2 ∪ D′b+i+2. It follows that either the set
Db+i+2 ∪D′b+i+2 or the set Db+i−2 ∪D′b+i−2 is criss-crossed, a contradiction.

We conclude that there exist 2(107(k+1)8) distinct legs L1, L2, . . . , L2(107(k+1)8) with one endpoint
in P ∪ Q and one endpoint in H − (P ∪ Q). Moreover, if we let the endpoint of Li in P ∪ Q be
contained in Dπ(i) ∪ D′π(i) for some π(i), then for all distinct i and i′, the sets Dπ(i) ∪ D′π(i) and
Dπ(i′) ∪D′π(i′) are disjoint by construction. For each i, 1 ≤ i ≤ 2(107(k+ 1)8), consider the subgraph
Li ∪Dπ(i) ∪D′π(i) ∪ F

′
π(i)′ . If Li has one endpoint in P , then the subgraph Li ∪Dπ(i) ∪D′π(i) ∪ F

′
π(i)′

contains a non-zero path with one endpoint in Q and one endpoint in H − (P ∪ Q) and otherwise
disjoint from Q. Symmetrically, if Li has one endpoint in Q, there exists a non-zero path with one
endpoint in P and one endpoint in H−(P ∪Q) and otherwise disjoint from P . We conclude, without
loss of generality, that there exist 107(k + 1)8 disjoint non-zero paths, each with one endpoint in P
and one endpoint in H − (P ∪Q) and otherwise disjoint from H − (P ∪Q). Lemma 4.7 implies that
G contains k disjoint non-zero cycles, a contradiction. This completes the proof of Lemma 5.3.

One final step remains before we give the proof of Theorem 3.1. Consider a k-minimal pair
(H, {P1, . . . , Pn}). Let G = H ∪ (

⋃n
1 Pi), and let γ be a testifying Γ-labeling of G. Lemma 5.3

implies that there exist many disjoint segments containing a non-zero foot of some path Pi. For each
such index, we will define a “breaking path”. The final step of the proof of Theorem 3.1 will be to
show that many breaking paths imply the existence of k disjoint non-zero cycles.

A segment S of H with endpoints x and y is substantially split by a vertex z, z 6= x, y, if the
paths xSz and ySz have distinct weights, i.e. γ(xSz) 6= γ(ySz). A breaking path is a V (H)-path Q
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with endpoints in distinct segments S1 and S2 of H such that at least one of the segments S1 or S2 is
substantially split by an endpoint of Q. A splitting vertex of P ′i is an endpoint P ′i that substantially
splits a segment of H.

Consider a segment S of H containing a non-zero foot of some path Pi. If γ(S) = 0, then one
of the legs attaching to such a foot must be a breaking path. Thus Lemma 5.3 implies that a k-
minimal pair must contain many breaking paths such that their respective splitting vertices will lay
on distinct segments of H. The final lemmas in this section will show how to convert such breaking
paths into many disjoint non-zero cycles.

Lemma 5.10 Let H be isomorphic to a subdivision of the l×m grid with l ≥ 8 congruent to 0 mod
4 and m ≥ 23 congruent to 7 mod 8. Let {Pi : i ∈ I} be a collection of disjoint V (H)-paths such
that no Pi has endpoints contained in a single segment of H. Let G = H ∪ (

⋃
i Pi) and let γ be a

Γ-labeling of G by a group Γ which does not contain any elements of order two. Assume γ(Pi) = 0
for all i ∈ I. For all i ∈ I, let zi be an endpoint of Pi such that

1. zi is a splitting vertex of some segment of H, and

2. zi and zj are not contained in the same segment for all distinct i, j ∈ I.

If |I| ≥ 1020k10, then G contains k vertex disjoint non-zero cycles.

Proof. Let G, H, I, {Pi : i ∈ I}, {zi : i ∈ I}, Γ and γ be as in the statement. Let

|I| ≥ 1020k10 ≥ 16(20)2 · 4
[(

(16 · 5227k2)(16 · 152)(107k8)
)

+ 24k2
]

+ 16(265)2k

For all i ∈ I, let wi be the endpoint of Pi not equal to zi. Let {vi,j : 1 ≤ i ≤ l, 1 ≤ j ≤ m} be vertices
of H corresponding to the vertices of the wall. Specifically, if X is the branch vertices of H, then X
has the canonical labeling. We let Z =

⋃
i∈I zi. Assume, to reach a contradiction, that G does not

contain k disjoint non-zero cycles.
First, we observe that many of the paths Pi have endpoints that are “distant” in the subgraph

H. We define the function λ(x, y) for any two vertices x, y ∈ V (H) to be the the minimum number
of branch vertices in X contained in a subpath of H linking x and y. If Y ⊆ V (H) is a subset of
vertices, then λ(x, Y ) is miny∈Y λ(x, y). Note that the function λ satisfies the triangle inequality.
For all integers t ≥ 5 and vertices v ∈ V (H), the set of vertices x with λ(x, v) ≤ t is contained in a
subgraph of H isomorphic to a subdivision of the (2t+ 3)× (4t+ 1) wall. It follows that there exist
at most (2t+ 3)(4t) + (2t+ 2)(2t+ 1) ≤ 12t2 + 18t+ 3 ≤ 16t2 distinct segments containing a vertex
x with λ(x, v) ≤ t.

We claim that there exists a set I1 ⊆ I such that

1. for all i ∈ I1, λ(zi, wi) > 32, and,

2. for all i, j ∈ I1, i 6= j, λ(zi, zj) > 20.

Furthermore, the set I1 may be chosen so that |I1| ≥ (|I| − 16(265)2k)/(16 · 202). To see this, let
I ′ ⊆ I be a set of indices such that λ(zi, wi) ≤ 32 for all i ∈ I ′. Assume, to reach a contradiction,
that |I ′| ≥ 16(265)2k.

Let i ∈ I ′ and let S be the segment of H such that zi ∈ V (S). Let the endpoints of S be va,b and
va′,b′ . Let Xi be defined to be {vi,j : |a− i| ≤ 66, |b− j| ≤ 33}. This set contains every branch vertex
vi,j with λ(vi,j , va,b) ≤ 33. Note that we must consider indices at distance 66 to cover the case when
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a = 1 and the branch vertices are of the form v1,2j+1 for j ≥ 0. Let Wi be the subgraph consisting
of every segment of W with both endpoints in Xi. Then Wi is a subdivision of a wall of height at
most 67 and width at most 122. Moreover, by construction, both wi and zi are contained in Wi.
The subgraph Wi ∪ Pi must then contain a non-zero theta, and consequently, a non-zero cycle.

We now show that the subgraphs Wi are pair-wise disjoint for at least k of the indices of I ′.
Observe that for every vertex of x ∈ V (Wi), λ(x, zi) ≤ 66 + 66 = 132. It follows that for all i, j ∈ I ′,
if zi and zj satisfy λ(zi, zj) ≥ 265, then Wi and Wj are disjoint. There are less than 16(265)2 distinct
segments S such that x ∈ V (S) satisfies λ(x, zi) ≤ 265. It follows that for at least |I ′|/

(
16(265)2

)
≥ k

distinct indices in I ′, the subgraphs Wi are pairwise disjoint. This implies that G contains k disjoint
non-zero cycles, a contradiction.

We conclude that no such set I ′ of indices exists. It follows that for at least |I|−16(265)2k indices i
in I, λ(zi, wi) > 32. Moreover, for every index i ∈ I, there exist at most 16(20)2 distinct indices j such
that λ(zj , zi) ≤ 20. It follows that the desired set I1 exists with |I1| ≥

(
|I| − 16(265)2k

)
/(16 · 202).

We now define a subgraph H ′ of H isomorphic to a subdivision of a smaller wall such that H ′

does not contain many of the breaking vertices zi. In a slight abuse of notation, if x and y are two
vertices of H, we use xHy to refer to the unique path P of H linking x and y where every internal
vertex of P has degree two in H, whenever such a unique path exists. Let Si, 1 ≤ i ≤ l, be the
path

⋃m−1
j=1 vi,jHvi,j+1. We define Ri, 1 ≤ i ≤ (m− 3)/2, to be the path

⋃l/2
j=1 v2j−1,2i−1Hv2j,2i−1 ∪⋃l/2−1

j=1 v2j,2iHv2j+1,2i ∪
⋃
j=2l−1 vj,2i−1Hvj,2i.

Intuitively speaking, we will select half of the paths Si to form the horizontal paths of our new
wall, and half of the paths Ri to form the vertical paths of our new wall. Moreover, we will do so
to ensure that at least a quarter of all the vertices of Z are not contained in the new wall. Towards
that end, for each pair of horizontal paths Si, we keep the one with fewer vertices zj . Explicitly, we
define the set J1 of indices as follows. For every i, 1 ≤ i ≤ l/2, if |V (S2i−1)∩Z| ≤ |V (S2i)∩Z|, then
2i−1 ∈ J1. Otherwise 2i ∈ J1. If we let Z ′ = {z ∈ Z : z /∈ V (Sj) ∀j ∈ J1}, we see that |Z ′| ≥ |Z|/2.
Similarly, we define J2 as follows. For every i, 1 ≤ (m−3)/4, if |V (R2i−1)∩Z ′| ≤ |V (R2i)∩Z ′|, then
2i− 1 ∈ J2. Otherwise, 2i ∈ J2. The set

⋃
i∈J1

Si ∪
⋃
i∈J2

Ri contains a subgraph H ′ isomorphic to
a l/2 × (m − 3)/4 wall. Observe that every segment of H ′ consists of at most 17 distinct segments
of H. The remainder of the proof will show that we have many non-zero paths attaching to distinct
segments of the subgraph H ′.

We begin with several easy observations concerning the subgraph H ′. By the construction of H ′,
there exists a set I2 ⊆ I1 with |I2| ≥ |I1|/4 such that zi /∈ V (H ′) for all i ∈ I2. Also, observe that for
every index i ∈ J1, the path vi,4Sivi,m−3 is contained in the subgraph H ′. It follows that for every
index i ∈ I2, λ(zi, V (H ′)) ≤ 5.

For every i ∈ I2, we define two paths T 1
i and T 2

i as follows. Let T 1
i be a path in H linking zi and

V (H ′) intersecting as few branch vertices of H as possible. If the segment of H containing Zi is Q,
let C be a cycle of H containing Q and at most six branch vertices of H. The cycle C corresponds
to a facial cycle in the natural embedding of the l × m wall in the plane. Then let T 2

i be a path
linking zi and V (H ′) in T 1

i 4 C the symmetric difference of T 1
i and C. Note that T 1

i contains at
most five branch vertices of H, and T 2

i contains at most 10 such branch vertices. Also, if Q has
endpoints equal to u and v, then T 1

i contains exactly one of the two subpaths ziQu and ziQv, say
ziQu, and T 2

i then contains the subpath ziQv. By our choice of zi to be a splitting vertex, then either
γ(T 1

i ) 6= γ(T 2
i ) and one of the paths T 1

i or T 2
i is a non-zero path, or one of the T 1

i and T 2
i contains

a non-zero segment of H. Also, for all i, j ∈ I2, i 6= j, it follows that T 1
i ∩ T 1

j = ∅, T 1
i ∩ T 2

j = ∅ by
the fact that λ(zi, zj) > 20.
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Lemma 4.6 implies that H has at most 24k2 distinct segments of non-zero weight. It follows that
there exists a subset I3 ⊆ I2 with |I3| ≥ |I2| − 24k2 such that for all i ∈ I3, γ(T 1

i ) 6= γ(T 2
i ).

Assume that there exists a segment Q of H that is internally disjoint from V (H ′) and a subset
I ′′ ⊆ I3 with |I ′′| ≥ 27k2 such that wi ∈ int(Q) for all i ∈ I ′′. Then either T 1

i or T 2
i is a non-zero

path with exactly one endpoint in int(Q) and one endpoint in H ′ and otherwise is disjoint from the
two. Since there exists three paths, not necessarily disjoint, in H ′ covering every vertex of H ′, we
see that there exists a path Q′ contained in H ′ and 9k2 distinct indices i such that T 1

i is a non-zero
path with one endpoint in Q and one endpoint in Q′. Lemma 4.2 implies that G contains k disjoint
non-zero cycles, a contradiction.

Recall that for any i ∈ I3 there are at most 16·t2 segments containing vertices x with λ(x,wi) < t.
It follows that for any i ∈ I3, there are at most 16 · 152 distinct indices j with λ(wi, zj) ≤ 15. Also,
by the above argument, there are at most

(
16 · 52

)
27k2 distinct indices j where wj is contained in a

segment Q′ of H not contained in H ′ with the property λ(wi, wj) ≤ 5. we conclude that there exists
a subset I4 ⊆ I3 with |I4| ≥ |I3|/

(
(16 · 5227k2)(16 · 152)

)
such that if i ∈ I4, then for all j ∈ I4,

1. λ(wi, zj) > 15, and

2. if wj is contained in a segment Q′ not contained in W ′, then λ(wi, wj) > 5.

For every i ∈ I4, let T ′i be a path linking wi and V (H ′) in H containing a minimal number of
branch vertices of H. Then by our construction of I4, the either T ′i ∪ Pi ∪ T 1

i or T ′i ∪ Pi ∪ T 2
i is

non-zero path with both endpoints in H ′. Moreover, it is a non-zero path with endpoints in distinct
segments of H ′. This follows from the fact that every segment of H ′ contains at most 17 segments
of H, the paths T 1

i and T 2
i each contain at most 10 branch vertices of H, the path T ′i contains at

most five branch vertices of H, and yet λ(wi, zi) > 32. Given that |I4| ≥ 107k8, we conclude from
Lemma 4.7 that G contains k disjoint non-zero cycles. This final contradiction completes the proof
of the lemma.

We now give the proof of Theorem 3.1.
Proof. [Theorem 3.1]

We prove Theorem 3.1 with the constant c = 1086. Let k ≥ 1 be given and let

n = 1086k87 ≥
(
2(1020k10) + 24k2

)
1065k77 + 107k8.

We assume the theorem is false. It suffices to consider a minimal k-counter-example (H, {Pi : 1 ≤
i ≤ n}) with testifying Γ-labeling γ, and we will show that such a graph indeed does contain k
disjoint non-zero cycles. This contradiction would then imply the theorem. Let l and m be as in the
definition of k-counter-example. Let G = H ∪ (

⋃n
1 Pi).

We first observe that there exists a set I ⊆ {1, 2, . . . , n} with |I| ≥ n − 107k8 such that for all
i ∈ I, the path Pi does not contain a non-zero leg. This follows from Lemma 5.2. For every i ∈ I,
the path Pi must have a non-zero foot contained in some segment of H. Lemma 5.3 implies that
for every segment S of H, the path Pi has a non-zero foot in S for at most 1065k77 distinct indices
i ∈ I. Thus there exists an integer m, m ≥ |I|/(1065k77) = 2(1020k10) and segments Si, 1 ≤ i ≤ m
such that for all indices i there exists some index j ∈ I such that Si contains a non-zero foot of the
path Pj .

We consider the segments Si for 1 ≤ i ≤ m. For every i such that γ(Si) = 0, it follows that there
exists a breaking path Qi attaching to a splitting vertex on the segment Si. By construction, for all
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1 ≤ i ≤ j ≤ m, the path Qi is disjoint from Qj unless Qi = Qj and each endpoint of Qi is a breaking
vertex on Si and Sj , respectively. We conclude that there exists 1020k10 disjoint breaking paths
attaching to H. Lemma 5.10 implies that G contains k disjoint non-zero cycles. This contradicts
our choice of G to be a minimal k-counter-example, completing the proof of Theorem 3.1.
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