A Simpler Algorithm and Shorter Proof for the Graph Minor Decomposition

[Extended Abstract] *

Ken-ichi Kawarabayashi
National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku
Tokyo 101-8430, Japan
k_keniti@nii.ac.jp

Paul Wollan
University of Rome, La Sapienza
Via Salaria 113
Rome, 00198 Italy
wollan@di.uniroma1.it

ABSTRACT

At the core of the Robertson-Seymour theory of graph minors lies a powerful decomposition theorem which captures, for any fixed graph H, the common structural features of all the graphs which do not contain H as a minor. Robertson and Seymour used this result to prove Wagner’s Conjecture that finite graphs are well-quasi-ordered under the graph minor relation, as well as give a polynomial time algorithm for the disjoint paths problem when the number of the terminals is fixed. The theorem has since found numerous applications, both in graph theory and theoretical computer science. The original proof runs more than 400 pages and the techniques used are highly non-trivial.

In this paper, we give a simplified algorithm for finding the decomposition based on a new constructive proof of the decomposition theorem for graphs excluding a fixed minor H. The new proof is both dramatically simpler and shorter, making these results and techniques more accessible. The algorithm runs in time $O(n^3)$, as does the original algorithm of Robertson and Seymour. Moreover, our proof gives an explicit bound on the constants in the O notation, whereas the original proof of Robertson and Seymour does not.

Categories and Subject Descriptors

G.2.2 [Discrete Mathematics]: Graph Theory—graph algorithms, path and circuit problems

*Research partly supported by Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research, by C & C Foundation, by Kayamori Foundation and by Inoue Research Award for Young Scientists.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

STOC ’11, June 6–8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0691-1/11/06 ...$10.00.
occupies the first 16 graph minor papers and is at least 400 pages long. Moreover, some of the bounds given in the proof are not explicit. The combination of the usefulness of the graph minor decomposition theorem and the difficulty of the proof have motivated the search for a more accessible proof. To quote a survey article of Lovász [19], “It would be quite important to have simpler proofs with more explicit bounds. Warning: many of us have tried, but only a few successes can be reported.”

1.1 Our contribution

Building on the methods we have developed in [16], we give a much shorter proof of the graph minor decomposition theorem. We begin by giving the necessary notation to state the decomposition theorem more precisely.

A path decomposition of a graph G consists of linearly ordered subsets B_i, $1 \leq i \leq k$ with $B_i \subseteq V(G)$ such that for every edge $uv \in E(G)$, there exists an index i such that $u, v \in B_i$ and furthermore, for all vertices x, if $x \in B_i$ and $x \in B_j$, then $x \in B_l$ for all $i \leq l \leq j$. The width of the decomposition is the maximal size of a B_i, and the path-width of a graph G, is the minimum width over all possible path decompositions of G. The adhesion of the decomposition is the maximum $\max_{1 \leq i < j \leq k} |B_i \cap B_j|$.

In this paper, an embedding refers to a 2-cell embedding, i.e. a drawing of the vertices and edges of the graph as points and arcs in a surface such that every face (region outlined by edges) is homeomorphic to a disc.

We now make explicit what we mean by “almost” embedding in a surface. Let G be a graph and Σ be a general surface. Let k be a positive integer. A k-near embedding in Σ consists of edge disjoint subgraphs H_0, H_1, \ldots, H_m for some positive integer m satisfying the following conditions:

1. $\bigcup_{i=0}^m H_i = G$.
2. For all $i, j \geq 1, i \neq j, V(H_i) \cap V(H_j) \subseteq V(H_0)$.
3. For all $i > k$, $|V(H_i) \cap V(H_0)| \leq 3$.
4. There exist pairwise disjoint open discs $\Delta_1, \ldots, \Delta_m$ and an embedding $\sigma : H_0 \hookrightarrow \Sigma - \bigcup_{i=1}^m \Delta_i$ such that the only vertices contained in the boundary of Δ_i are exactly the vertices of $H_i \cap H_0$ for $i = 1, \ldots, m$.
5. For $1 \leq i \leq k$, let the vertices of $V(H_i) \cap V(G_0)$ be u_1, u_2, \ldots, u_n for some integer n with the order given by their order on the boundary of the disc Δ_i. Then the graph H_i has a path decomposition $(B_i)_{1 \leq j \leq n}$ such that $u_j \in B_j$ for all $1 \leq j \leq n$.

The k-near embedding is a-bounded if the path decomposition of H_i in 5 has adhesion at most a for all $1 \leq i \leq k$. The k-near embedding is totally bounded if both $m \leq k$ and the path decomposition of H_i in 5 has width at most k for all $1 \leq i \leq k$. Finally, a graph G is t-close to admitting a k-near embedding if there exists a set $X \subseteq V(G)$ with $|X| \leq t$ such that $G - X$ admits a k-near embedding.

The pieces of the decomposition are combined according to “clique-sum” operations, a notion which goes back to characterizations of K_2-minor-free graphs by Wagner [33] and serves as an important tool in the theory of graph minors. Suppose G_1 and G_2 are graphs with disjoint vertex sets and let $k \geq 0$ be an integer. For $i = 1, 2$, let $W_i \subseteq V(G_i)$ form a clique of size k and let G'_i be obtained from G_i by deleting some (possibly no) edges from the induced subgraph $G_i[W_i]$. Consider a bijection $h : W_1 \rightarrow W_2$. We define a k-sum G of G_1 and G_2, denoted by $G = G_1 \oplus G_2$ or simply by $G = G_1 \oplus G_2$, to be the graph obtained from the union of G'_1 and G'_2 by identifying w with $h(w)$ for all $w \in W_1$. The images of the vertices of W_1 and W_2 in $G_1 \oplus G_2$ form the join set. Note that each vertex v of G has a corresponding vertex in G_1 or G_2 or both. It is also worth mentioning that \oplus is not a well-defined operator: it can have a set of possible results.

Now we can state a precise form of the Decomposition theorem:

Theorem 1 (Theorem 1.3 [29]). For every graph H, there exists an integer $h \geq 0$ depending only on $|V(H)|$ such that every H-minor-free graph can be obtained by at most h-sums of graphs which are h-close to admitting a totally bounded h-near embedding in some surfaces in which H cannot be embedded.

We give a much shorter and simpler proof of Theorem 1. The proof is constructive and immediately yields an $f(|H|)n^3$ time algorithm to find such a decomposition for excluding H-minor. In addition, our proof also gives an explicit bound for the value h.

The original proof of Robertson and Seymour also gives an $f'(|H|)n^3$ algorithm to find the decomposition, if one follows all the arguments very carefully (as pointed out by Reed (private communication)). Our algorithm is an improvement, in that it is far easier and more accessible, and in that it improves the bounds on the function f and provides explicit bounds for the value h. Recently, Reed, Li and the first author announced an $O(n \log n)$ algorithm to find the decomposition theorem. The proof generally follows the argument in the graph minor theory, however some of the more technical graph minor results must be strengthened. Complete details will require more than 100 pages and are not yet fully written down.

1.2 Algorithmic applications

Algorithms for H-minor-free graphs for a fixed graph H have been studied extensively; see e.g. [3, 4, 12, 17, 20]. In particular, it is generally believed that many algorithms for planar graphs can be generalized to H-minor-free graphs for any fixed H [12, 17, 20]. The decomposition theorem provides the key insight into why this might be possible: given an algorithm for planar graphs, first extend it to handle bounded-genus graphs; then extend it further to handle graphs “almost-embeddable” into bounded-genus surfaces, and finally generalize the results to resolve the problem on repeated clique sums of graphs which are almost embedded in surfaces of bounded genus. The graph minor decomposition theorem has already been used to obtain many combinatorial results and show the existence of many efficient algorithms, despite being published only recently. Grohe [11] proves the existence of PTASs for minimum vertex cover, minimum dominating set, and maximum independent set in H-minor-free graphs. However, such an approach requires an algorithm to construct the decomposition. Our simpler proof and algorithm gives a fast and more accessible algorithm for these problems.

DeVos et al. [8] used the decomposition theorem to prove that for every integer $k \geq 1$ and every fixed graph H, every H-minor-free graph has a vertex partition into parts
V_i, \ldots, V_k and edge partition E_1, \ldots, E_k such that for every $i \in \{1, \ldots, k\}$, the graphs $G - V_i$ and $G - E_i$ have bounded treewidth. It follows that given an algorithm to construct the decomposition, there is a 2-approximation algorithm for graph coloring in minor-closed class graphs, see [7]. A special case of this partitioning result restricted to planar graphs was proved by Baker [2] who used it to devise efficient approximation algorithms (and approximation schemes) for several hard approximation algorithms on planar graphs. Baker used the planar separator theorem of Lipton and Tarjan [18]. Alon, Seymour, and Thomas [1] proved a similar separator theorem for graphs excluding any fixed minor, and this result is further generalized by Kawarabayashi and Reed [15]. Eppstein [10] extended Baker’s ideas to graphs in arbitrary proper minor-closed classes of graphs. Again, these methods for finding approximation algorithms for problems in minor closed classes begin with the graph minor decomposition. Thus, our proof and algorithm yields fast and more accessible algorithms for these approximation results.

Demaine et al. [5] have been working on directly using the graph minor theorem in algorithmic applications. They obtained subexponential fixed-parameter algorithms for dominating set, vertex cover and set cover in any class of graphs excluding a fixed graph H as a minor. Specifically, the running time is $2^O(v(H))h^h$, where h is a constant depending only on H. For further applications, see the survey [6] or [7]. Our simpler proof gives not only more accessible and simpler algorithms but also faster algorithms, i.e. $h = 3$.

2. THE PROOF AND ALGORITHM

Robertson and Seymour proved several related structure theorems describing graphs which exclude a fixed minor. The decomposition theorem, Theorem 1, is the one that appears now to be best known, and which has also found the most algorithmic applications. However, Robertson and Seymour themselves [29] later dubbed it a ‘red herring’ in the search for the proof of the graph minor theorem. We begin this section by describing the “main” structure theorem in graph minor theory. Theorem 1 can then be relatively quickly shown from this main structure theorem.

This “main” structure theorem is designed to eliminate difficulties arising from small cutsets in a graph. Given a graph G, we recall that a separation of G is a pair $A, B \subseteq V(G)$ such that every edge of G has both endpoints contained in either in A or in B (or in both). The order of the separation is $|A \cap B|$. Note that set $|A \cap B|$ is a cutset in the graph if $A \not\subseteq B$ and $B \not\subseteq A$, and every cutset in the graph gives rise to a separation. The structure theorem we are going to describe allows us to restrict our attention to one portion of the graph, in effect disregarding small pieces of the graph which are separated by a small cutset. We will now make this more explicit.

A particularly simple form of this structure theorem applies when the excluded minor H is planar: in that case, the said parts of G—the parts that fit together in a tree-structure and together make up all of G—have bounded size, i.e., G has bounded treewidth.

We will not need the explicit definition of treewidth here. Of importance to us, however, is the relationship between grid minors and the treewidth of a graph. Specifically, the $k \times k$-grid has treewidth k. Moreover, Robertson and Seymour showed [21] that there exists a function $f(k)$ such that every graph with treewidth at least $f(k)$ contains the $k \times k$-grid as a minor. Thus, grid minors offer an approximate characterization of when a given graph has large treewidth. An immediate consequence of this result is the fact mentioned above: if H is a planar graph then the graphs which do not contain H as a minor all have bounded treewidth.

If H is not planar then the set of all graphs not containing H as a minor have unbounded treewidth. Therefore this set of graphs contain arbitrarily large grids as minors. For technical reasons, it will be easier to work with r-wall minors. An r-wall is a grid-like graph which has maximum degree three. Every r-wall contains the $r \times r$-grid as a minor, and the $2r \times 2r$-grid contains an r-wall as a minor. Thus, the graphs with no H-minor also contain arbitrarily large walls as a minor. Since walls have maximum degree three, if G contains an r-wall as a minor, then G contains a subdivision of the r-wall as a subgraph.

Such a wall identifies, for every low-order separation of G, one side in which most of that grid or wall lies. Specifically, given a subdivision W of the r-wall in G and a separation (A, B) of order less than r, there is exactly one of A or B which contains one entire row of the wall. This is formalized by the notion of a tangle: the larger the treewidth of G, the larger the grid or wall, the order of the separations for which this works, and (thus) the order of the tangle. The advantage of working with respect to a tangle is it allows us focus on the portion of the graph containing a large wall and disregard pieces separated by small separations from the wall. We say that an α-near embedding of a graph G in a surface Σ captures a tangle T associated to a wall subdivision W in G if for every $H_i, i \geq 1$ in the definition of an α-near embedding we have that $G - H_i$ contains at least one row of the wall W. Thus, the portion of the graph, G_0, which is embedded in the surface Σ in a sense “contains” the tangle T.

We are now ready to state the main theorem in graph minor theory describing graphs excluding a fixed H as a minor. We will refer to it as the Structure theorem.

Theorem 2 (Theorem 3.1, [29]). For every graph R there exist integers $\theta, \alpha = \alpha(|R|) \geq 0$ such that the following holds: Let G be a graph that does not contain R as a minor and T be a tangle in G of order at least θ. Then there exists a subset $A \subseteq V(G)$ with $|A| \leq \alpha$ such that $G - A$ has an α-bounded α-near embedding into a surface Σ in which R cannot be drawn. Moreover, this near embedding captures $T - A$.

Assuming Theorem 2, the decomposition theorem can be proven relatively easily. We give the proof in Section 3. Thus, the majority of the work in our proof of the decomposition theorem lies in proving Theorem 2. Our main tool in proving Theorem 2 will be several new results on embedding societies in surfaces. We discuss this in more detail in the next subsection. We then give an outline of the proof of Theorem 2 in Subsection 2.2.

2.1 Nearly embedding a society

A society is a pair (G, Ω) where G is a graph and Ω is a cyclic ordering of some of the vertices of G. Societies play a key role in the graph minor series, see [23].

In our proof, we will need to understand when a given society (G, Ω) is t-close to having a totally bounded k-near embedding in the disc Δ for given values t and k. Two
Figure 1: An example of a 4-crosscap and a 4-handle.

possible obstructions are what’s known as k-crosscaps and k-handles. A k-crosscap consists of k disjoint, pairwise crossing paths with their endpoints in Ω. A k-handle consists of 2k pairwise disjoint paths P1, . . . ,Pk, Q1, . . . ,Qk each with their endpoints in Ω which satisfy the following. For all i, j, we have that Pi and Pj do not cross and similarly, Qi and Qj do not cross, and alternatively, the paths Pi and Qj do cross. See Figure 1.

It would be convenient if these were the only obstructions. Unfortunately, we must define several patterns consisting of disjoint paths with their endpoints in Ω. We will not need their exact definition here, and we will simply refer to the pattern with k paths as Pk.

Theorem 3. Let k ≥ 1 be given. There exists a value α = α(k) such that for every society (G, Ω), one of the following holds.

1. (G, Ω) contains a k-crosscap, a k-handle, or the pattern Pk.
2. (G, Ω) is α-close to admitting a α-bounded α-near embedding in the disc Δ such that all the vertices of Ω are embedded on the boundary of Δ in the order indicated by Ω.

Theorem 3 generalizes the main theorem of [23]. Let Δ be the disc and let D1 and D2 be two disjoint, open discs in Δ which do not intersect the boundary of Δ. Let Σ1 be the surface obtained by deleting D1 and gluing a crosscap to the boundary of D1. Let Σ2 be the surface obtained by deleting D1 and D2 from Δ and gluing a handle onto the boundaries of D1 and D2. The existence of a k-crosscap or k-handle for large k in a society (G, Ω) implies that the natural surface in which we should attempt to embed (G, Ω) is Σ1, or Σ2, respectively. When we can do so is given in the following theorem.

Theorem 4. Let k ≥ 1 be given. There exists a value f = f(k) and α = α(k) satisfying the following. Let (G, Ω) be a society containing a f-crosscap (f-handle) Q but which does not contain the pattern Pk. Then there exist edge disjoint subgraphs H1 and H2 of G such that H1 ∪ H2 = G which satisfy the following.

1. H1 contains a k-crosscap (k-handle) Q′ which is a subgraph of Q.
2. Ω ⊆ V(H1) and (H1, Ω) is α-close to admitting a α-bounded α-near embedding in Σ1 (Σ2).
3. There exists a single face of the near embedding in Σ1 or Σ2 which contains all the vertices of V(H1) ∩ V(H2).

The proofs of Theorems 3 and 4 contain the main technical work in the new proof. We will see in the next subsection how these theorems come into the proof of Theorem 2.

2.2 Outline of the proof of Theorem 2

We now give an overview of our proof for the structure theorem, Theorem 2. Our starting point is so called Weak Structure theorem which is proved in Graph Minor XIII [27]. Roughly it says that, given any wall subdivision W of size f(t, k) in a given graph G, either G has a Kr-minor, or G has a vertex set Z of order at most t2 such that G − Z has a subwall W′ of W of size k which induces essentially planar embedding in G − Z. More explicitly:

Theorem 5. (Theorem 9.4 [27]). Let G be a graph.

1. If |A| ≤ t2 and G − A = H1 ∪ H2.
2. W′ is a subgraph of H1 and H1 has a 0-near embedding in the disc Δ such that at least t vertices of degree 3 in W′ are embedded in the disc and all the vertices of V(H1) ∩ V(H2) are embedding on the boundary of Δ.

Note that given the structure in Theorem 5, we have a natural society given by the subgraph H2 and the cyclic ordering of the vertices of V(H1) ∩ V(H2) given by their embedding on the boundary of the disc Δ.

We begin with a graph G not containing K3 as a minor, and now our proof adapts some ideas in [28, 29] to grow a large subgraph of G which essentially embeds on a surface with large representativity. We recall that a non-contractable curve in the surface is simply a curve that cannot be contracted continuously to a point on the surface. The representativity of an embedded graph is minimum number of times a non-contractable curve C intersects the embedded graph, with the minimum taken over all such non-contractable curves C.

We proceed inductively maintaining two subgraphs H1 and H2 of G and a subset of the vertices Z such that

1. H1 ∪ H2 = G − Z,
2. H1 essentially embeds in a surface Σ with big representativity (technically, H1 has a 0-near embedding in Σ), and
3. there is a single face F of the embedding of H1 containing the vertices of V(H1) ∩ V(H2).

We then consider the society given by H2 and the cyclic order of the vertices of V(H1) ∩ V(H2) given by the boundary of the face F (denote as Ω this cyclic order of V(H1) ∩ V(H2)). If there existed a subset Z2 ⊆ V(H2) with |Z2| ≤ α such that (H2 − Z2, Ω − Z2) admitted an α-bounded α-near embedding of (G − Z ∪ Z2) in the disc, then we could “glue” it onto the embedding of H1 in Σ and find the desired α-bounded α-near embedding of G − (Z ∪ Z2).

We apply Theorem 3 to attempt to find such a nice embedding of (H2, Ω). We can (by picking α sufficiently large), assume that we find either a large crosscap or handle, or a large pattern Pk. However, it is straightforward to show that if k is large, then H1 along with the pattern Pk yields
a large clique minor. Thus, we may assume that we always
find a large crosscap or handle. We apply Theorem 4 to the
society (H_2, Ω) along with the large crosscap or handle. We
find subgraphs J_1 and J_2 and subset X of vertices such that
(J_1, Ω) embeds in the disc plus a crosscap or handle.

Returning to our graph original graph G, we see that
$G - (Z \cup X) = H_1 \cup J_1 \cup J_2$ and that $H_1 \cup J_1$ has a 0-near
embedding in the surface Σ' obtained by adding a single
crosscap or handle to Σ. Moreover, by using the fact that
(J_1, Ω) contains a large handle or crosscap, we can ensure
that this embedding of $H_1 \cup J_1$ embeds with large repre-
sentativity (although it will be somewhat smaller than the
representativity of the embedding of H_1 in Σ). Finally, there
exists a single face of the embedding in Σ' which contains
all the vertices of $V(H_1 \cup J_1) \cap V(J_2) = V(J_1) \cap V(J_2)$.

Thus, at each inductive step we grow the genus of the sur-
face maintaining large representativity. The base case in the
induction is the weak structure theorem with the large graph
especially embedded in the sphere. The whole process must
eventually stop since there is a theorem [22] which states that
for a sufficiently large genus surface and a sufficiently
large amount of representativity, any graph embedded with
such representativity must contain K_r as a minor.

2.3 Improvements over the original

Let us clarify why our proof is much shorter than the
original proof by Robertson and Seymour.

1. We only need to introduce three parameters in our
 proof (the genus of the surface into which we embed,
 the representativity of the embedding, and the size of
 the set of vertices to be deleted). On the other hand,
 Robertson and Seymour consider seven parameters,
 see Graph Minor XVI [29]. This leads to a particu-
 larly technical and sensitive induction hypothesis in
 the Robertson-Seymour proof.

2. Our starting point is the “weak structure theorem” as
 above, while Robertson and Seymour begins with the
 grid theorem. Our initial setup immediately allows us
to focus on a single “special” face and a single “society”
because the rest of the graph is essentially embedded
into a disc. On the other hand, Robertson and Sey-
 mour need to analyze how the rest of the graph at-
taches to the grid. This requires a lot of work, as in
 Graph Minors XIV, XV and XVI [25, 28, 29].

3. We maintain one “special” face and one society, as
 above, at each inductive step. Alternatively, Robert-
 son and Seymour have to deal with many societies si-
multaneously. Thus our proof makes the genus addi-
tion step much easier. This issue is discussed in Graph
 Minor XVI [29].

4. In the inductive step, we maintain a subgraph which
 is essentially embedded in the surface with large rep-er-
sentativity. Robertson and Seymour only maintain a
 subdivision of G embedded in the surface. This dif-
 ference allows us to deal with the “connectivity” issue
 more easily. This issue is mainly discussed in Graph
 Minor XV [28].

5. In addition to a subgraph embedded in the surface,
 Robertson and Seymour maintain a set of “long” jumps
 attaching to distant faces of a graph in the surface
 (see Graph Minor XVI [29]). However, in our case, we
 simply maintain an embedding on a surface with large
 representativity.

6. The biggest advantage for our proof is that we do not
 have to worry about “distance” on a surface. More
 precisely, Robertson and Seymour have to maintain a
 subdivision embedded on a surface, but in each induc-
tive step they delete large portions of the subgraph em-
bdedded in the surface. In order to maintain the “long”
jumps mentioned above in 5, they rely on a technical
distance measure for the graph embedded in the sur-
face. This issue is actually quite troublesome in the
Graph Minors Series; both Graph Minors XI and XII
[24, 26] are devoted to this distance measure. Alterna-
tively, because we do not have to maintain such “long”
jumps, we do not rely on this distance measure.

2.4 Extracting an algorithm

Our proof is constructive and can be converted into a poly-
nomial time algorithm (in fact an $O(n^3)$ time algorithm for
fixed H) to obtain the structure given in the main structure
theorem.

As subroutines, we only need the following.

1. In the arguments, we often need to find, for some two
 vertices s, t and fixed constant k, either k disjoint paths
 between s and t, or a vertex set of order at most k that
 separates s and t.

2. We also need to find a 0-near embedding in the disc
 for a given society (G, Ω).

 Concerning the first point, we can use the result by Naga-
 mochi and Ibaraki [13] to find one of the desired outcomes
 in $O(n)$ time. Concerning the second point, there is now
 an $O(n)$ time algorithm to find such a near embedding by
 Kapadia, Li and Reed [14]. This improves the previous best
 known result by Tholey [32] who gives $O(m \alpha(m, n))$ time
 algorithm, where the function $\alpha(m, n)$ is the inverse of the
 Ackermann function (see Tarjan [31]).

 At each step of the proof of the main structure theorem,
 we may proceed by repeatedly calling the above two opera-
tions. Therefore, we obtain an $O(n^3)$ time algorithm to find
 the structure ensured by the main structure theorem. For
 the decomposition theorem, Theorem 1, in each iteration,
 we apply the algorithm of the structure theorem and then
 recurse on a smaller graph. Thus we obtain an $O(n^3)$ time
 algorithm to construct the structure in Theorem 1. How we
 extract the $O(n^3)$ time algorithm for the graph minor
decomposition from the algorithm for the graph minor
structure theorem is treated in more detail in the next section.

3. PROOF OF THEOREM 1

In this section, we prove Theorem 1 assuming Theorem 2.
For the definition of the torso, tangle, tree decomposition,
vortices, we refer the reader to Diestel’s book [9]. We recall
that a separation of a graph G is a pair (A, B) of subsets of
vertices such that $|G[A] \cup G[B]| = G$.

Theorem 6. For every graph G there exist integers n and
θ such that for every graph G that does not contain R as
a minor and every $Z \subseteq V(G)$ with $|Z| \leq 30 - 2$ there is a
rooted tree decomposition $\{V_t \mid t \in T\}$ of G with root r such
that for every \(t \in V(T) \), there is a surface \(\Sigma_t \) in which \(R \) cannot be embedded, and a subset \(A_t \subseteq V(G_t) \) of the torso \(G_t \) of \(V_t \) with \(|A_t| \leq \alpha \) such that \(G_t - A_t \) has an \(\alpha \)-bounded \(\alpha \)-near embedding into \(\Sigma_t \) with the following properties:

1. There are at most \(\alpha \) vertices.
2. All vertices have path-width at most \(\alpha \).
3. For every \(t' \in V(T) \) with \(t' \in E(T) \) and \(t \in rT \) there is a vertex set \(X \) which is either
 (a) two consecutive parts of a vortex decomposition in \(G_t \) or
 (b) a subset of \(V(G_t) \) and induces in \(G_t \) a \(K_1 \), a \(K_2 \) or a triangle face in \(\Sigma_t \).
 such that \(V_t \cap V_{t'} \subseteq X \cup A_t \).
4. For every \(t' \in T \) with \(t' \in E(T) \) and \(t \in rT \) the overlap \(V_t \cap V_{t'} \) is contained in \(A_t \).

Furthermore \(Z \subseteq A_t \). We say that the part \(V_t \) accommodates \(Z \).

Proof. Applying Theorem 2 with the given graph \(R \) yields two constants \(\alpha \) and \(\beta \). Let \(\theta := \max(\beta, 3\alpha + 1) \) and \(\alpha := 4\theta - 2 \).

The proof proceeds by induction on \(|V(G)|\). We may assume that \(|Z| = 3\theta - 2\), since if it is smaller we may arbitrarily add vertices to \(Z \). Note, we may assume that such vertices exist, as the theorem is trivially true for \(|V(G)| < \alpha \).

Claim 1. We may assume that there is no separation \((A, B)\) of order at most \(\theta \) such that both \(|Z \setminus A| \) and \(|Z \setminus B|\) are of size at least \(|A \cap B|\).

Proof. Otherwise, let \(Z_A := (A \cap Z) \cup (A \cap B) \). By assumption, \(|A \cap B| \leq |Z \setminus A| \) and therefore, \(|Z_A| \leq |Z|\).

We apply our theorem inductively to \(G[A] \) and \(Z_A \), which yields a tree decomposition of \(G[A] \) with one part \(G_A \) such that the apex set of the embedding of its torso contains \(Z_A \). Similarly, we apply the theorem to \(G[B] \) and \(Z_B := (B \cap Z) \cup (A \cap B) \). We combine these two tree decompositions by forming a new part \(Z \cup (A \cap B) \) to both \(G_A \) and \(G_B \) and obtain a tree decomposition of \(G \) with the desired properties of the theorem: The new part contains at most \(|Z| + |A \cap B| \leq 4\theta - 2\) vertices, so all these can be put into the apex set of an \(\alpha \)-near embedding. Further, the new part contains \(Z \). This proves the claim.

Let \(T \) be the set of separations \((A, B)\) of \(G \) of order less than \(\theta \) such that \(|Z \cap B| > |Z \cap A|\). With this definition, we make the following claim.

Claim 2. \(T \) is a tangle of \(G \) of order \(\theta \).

Proof. For every separation \((A, B)\) of \(G \) of order less than \(\theta \), one of the sets \(Z \setminus B \) and \(Z \setminus A \) contains at least \(\theta \) vertices, as \(|Z| = 3\theta - 2\), but not both by (1). Therefore, property (i) of the definition of a tangle holds. We deduce further, that for every \((A, B) \in T \), the small side \(A \) contains less than \(\theta \) vertices from \(Z \). Hence, the union of the three small sides cannot be \(V(G) \) as it contains at most \(3\theta - 3 \) vertices from \(Z \), which shows property (ii) and proves the claim.

From Claim 1 and the definition of \(T \), we conclude the following claim.

Claim 3. \(|(A - B) \cap Z| < |A \cap B| \) for every \((A, B) \in T \).

Theorem 2 implies that there exists a subset \(A \subseteq V(G) \) with \(|A| \leq \alpha \) such that there exists an \(\alpha \)-bounded \(\alpha \)-near embedding of \(G \) in some surface \(\Sigma \) that captures \(T \). At a high level, our plan is now to split up \(G \) at separators consisting of apex vertices, society vertices \(\Omega(H_i) \) for \(i > \alpha \) and vertices of single parts of vortex decompositions of a vortex \(H_i \) for \(i \leq \alpha \). We obtain a part that contains \(H_0 \) and which we know how to embed \(\alpha \)-nearly; this part is going to be one part of a new tree decomposition. We find tree decompositions for all subgraphs of \(G \) that we split off inductively and eventually combine these tree decompositions to a new one that satisfies our theorem.

Let us consider a small vortex \((H_i, \Omega_i)\) for \(i \in \{\alpha + 1, \ldots, m\} \). Our embedding captures \(T_i \), therefore the separation \((V(H_i) \cup A, V(G - (V(H_i) - V(H_0))) \cup A)\), whose order is smaller than \(3 + |A| \leq \theta \), lies in \(T \). By (3), \(H_i \) contains less than \(\theta \) vertices of \(Z \). Thus, \(Z_i := \Omega_i \cup A \cup (Z \cap V(H_i)) \) contains at most \(3 + i + \theta \leq 3\theta - 1 \) vertices. We apply our theorem inductively to the smaller graph \(G[V(H_i) \cup A] \) with \(Z' \). Let \(H_i^+ \) be a part of the resulting tree decomposition \((T', \mathcal{H}')\) that accommodates \(Z' \). Let \(\mathcal{V} = \{H_0, \ldots, H_m\} \).

For every vortex \((H_i, \Omega_i)\) with \(\Omega_i = \{w_{i1}, \ldots, w_{in(i)}\} \) for \(i = 1, \ldots, \alpha \), let us choose a decomposition \((X_1, \ldots, X_{n(i)})\) of depth at most \(\alpha \).

Define

\[
X_j := \begin{cases}
(X_j \cap \hat{X}_j^2) \cup \{w_j\} & \text{for } j = 1 \\
(X_j \cap (\hat{X}_{j-1} \cup \hat{X}_{j+1})) \cup \{w_j\} & \text{for } 1 < j < n(i) \\
(X_{n(i)} \cap \hat{X}_{n(i)-1}) \cup \{w_{n(i)}\} & \text{for } j = n(i)
\end{cases}
\]

By \(H_i^- \) we denote the graph on \(X_1 \cup \ldots \cup X_{n(i)}^{(i)} \) where every \(X_j^j \) induces a complete graph but no further edges are present. Now, as the depth of \((H_i, \Omega_i)\) is at most \(\alpha \), every \(X_j^i \) contains at most \(2\alpha + 1 \) vertices and thus, \((X_1, \ldots, X_{n(i)}^{(i)}) \) is a decomposition of the vortex \(V_i^- := (H_i^-, \Omega_i) \) of width at most \(2\alpha + 1 \leq \alpha \).

Let \(\mathcal{F} \) denote the set of these new vortices.

For every \(j = 1, \ldots, n(i) \), the pair

\[
(X_j \cup \hat{A}, (V(G) - (X_j \cup \hat{A}))) \cup \hat{A}
\]

is a separation of order at most \(|X_j| \cup \hat{A}| \leq 2\alpha + 1 + \alpha \leq \theta \).

Before, our embedding captures \(T \) and thus, the separation lies in \(T \). By (3), at most \(\theta - 1 \) vertices from \(Z \) lie in \(X_j \).

Let \(Z^j := X_j \cup \hat{A} \cup (Z \cap \hat{X}_j^1) \). This set contains at most \(3\theta - 1 \) vertices and, similar to before, we can apply our theorem inductively to the smaller graph \(G[X_j] \cup \hat{A} \) with \(Z' \).

We obtain a tree decomposition \((T_j, H_j')\) of this graph, with one part \(H_j' \) accommodating \(Z' \).

Now, with \(V_0 := V(H_0) \cup \hat{A} \), we can write

\[
G = G[H_0] \cup \bigcup_{i=1}^j W \cup \bigcup_{i=1}^{n(i)} \left(G[X_i] : V_i \in \mathcal{V}, 1 \leq j \leq n(i)\right).
\]

By induction, we obtained tree decompositions for all vertices in \(W \) and all the graphs \(G[X_i] \) with the required properties. We can now construct a tree decomposition of \(G \): We just add a new vertex \(v_0 \) representing \(V_0 \) to the union of all the trees \(T_i \) and \(T_j \) and add edges from \(v_0 \) to every vertex representing an \(H_i' \) or an \(H_j' \) we found in our proof.

We still have to check that the torso of the new part \(V_0 \) can be \(\alpha \)-nearly embedded as desired. But this is easy: Let \(H_0' \) be the graph resulting from \(H_0 \) if we add an edge \(xy \) for every two nonadjacent vertices \(x \) and \(y \) that lie in a common
vortex \(V \in W \). We can extend the embedding \(\sigma : G_0 \hookrightarrow \Sigma \) to an embedding \(\sigma' : G_1 \hookrightarrow \Sigma \) by mapping the new edges disjointly to the discs \(D(V) \). Then, \(G' := H_0 \bigcup \bigcup H_j \bigcup \hat{A} \) is the torso of \(V_0 \) in our new tree decomposition and we have an \(\alpha \)-bounded \(\alpha \)-near embedding of \(G' - \hat{A} \) in \(\Sigma \). This completes the proof of Theorem 6.

Observe that the above proof of Theorem 6 is constructive and consequently, it gives rise to an \(O(n^3) \) time algorithm to construct the decomposition as in Theorem 6.

To extract the algorithm, the first step is to define the tangle \(T \) of order \(\Theta \). This can be done in \(O(n) \) time given that \(|Z| \leq \Theta - 2 \) is an absolute constant and we just need the standard max-flow, minimum-cut algorithm. Then we apply the algorithm to give the structure in Theorem 2 with respect to the tangle \(T \), as in the previous section. Finally, we recursively apply this algorithm to all the graphs in \(W \) and all the graphs \(G[X] \) with the required properties. We can put these decompositions together, as in the proof of Theorem 6, to obtain a tree decomposition of \(G \) by adding a new vertex \(v_0 \) representing \(V_0 := V(H_0) \bigcup \bigcup H_j \bigcup \hat{A} \) (as in the above proof) to the union of all the trees \(T^i \) and \(T_j^i \) and add edges from \(v_0 \) to every vertex representing an \(H^i \) or an \(H_j^i \) found in our proof.

Since we only need to apply the algorithm to construct the structure in Theorem 2 recursively, we obtain an \(g(t)n^3 \) time algorithm to construct the structure as in Theorem 6 for some function \(g(t) \), as claimed.

4. REFERENCES

