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ABSTRACT

At the core of the Robertson-Seymour theory of graph mi-
nors lies a powerful decomposition theorem which captures,
for any fixed graph H , the common structural features of all
the graphs which do not contain H as a minor. Robertson
and Seymour used this result to prove Wagner’s Conjecture
that finite graphs are well-quasi-ordered under the graph
minor relation, as well as give a polynomial time algorithm
for the disjoint paths problem when the number of the ter-
minals is fixed. The theorem has since found numerous ap-
plications, both in graph theory and theoretical computer
science. The original proof runs more than 400 pages and
the techniques used are highly non-trivial.

In this paper, we give a simplified algorithm for finding
the decomposition based on a new constructive proof of the
decomposition theorem for graphs excluding a fixed minor
H . The new proof is both dramatically simpler and shorter,
making these results and techniques more accessible. The
algorithm runs in time O(n3), as does the original algorithm
of Robertson and Seymour. Moreover, our proof gives an
explicit bound on the constants in the O notation, whereas
the original proof of Robertson and Seymour does not.

Categories and Subject Descriptors

G.2.2 [Discrete Mathematics]: Graph Theory—graph al-
gorithms, path and circuit problems

∗A detailed version of this paper is available at
http://research.nii.ac.jp/~k_keniti/easystruct.pdf
†Research partly supported by Japan Society for the Pro-
motion of Science, Grant-in-Aid for Scientific Research, by
C & C Foundation, by Kayamori Foundation and by Inoue
Research Award for Young Scientists.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’11, June 6–8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0691-1/11/06 ...$10.00.

General Terms

Theory

Keywords

Disjoint paths problem, graph minors, graph algorithms

1. INTRODUCTION
A graph H is a minor of a graph G if H can be obtained

from a subgraph of G by contracting edges. The theory of
graph minors was developed by Robertson and Seymour in
a series of 23 papers published over more than twenty-five
years. The aim of the series of papers is to prove a single
result: the graph minor theorem, which says that in any in-
finite collection of finite graphs there is one that is a minor
of another. As with other deep results in mathematics, the
body of theory developed for the proof of the graph minor
theorem has also found applications elsewhere, both within
graph theory and computer science. Yet many of these appli-
cations rely not only on the general techniques developed by
Robertson and Seymour to handle graph minors, but also on
one particular auxiliary result which is central to the proof
of the graph minor theorem: a result which approximately
describes the structure of all graphs G which do not contain
some fixed graph H as a minor. At a high level, the theo-
rem says that every such a graph can be decomposed into a
collection of graphs each of which can be “almost” embed-
ded into a bounded-genus surface; the pieces can be assem-
bled in a tree structure to obtain the original graph. This
decomposition theorem is used to verify Wagner’s Conjec-
ture [30], which can be stated as follows: every minor-closed
graph property (i.e. a property preserved under taking of
minors) is characterized by a finite set of forbidden minors.
It is also used in the proof of the correctness for the sem-
inal graph minor algorithm, a polynomial-time algorithm
for testing the presence of a fixed minor [27]. When com-
bined together, the graph minor algorithm and the proof of
Wagner’s Conjecture immediately imply the existence of a
polynomial-time algorithm for deciding membership in any
minor-closed class of graphs. There have been numerous
applications of the decomposition theorem; we discuss this
more thoroughly below.

The proof of this decomposition theorem is extremely long
and technical, and utilizes much of the theory of graph mi-
nors which Robertson and Seymour developed. The proof
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occupies the first 16 graph minor papers and is at least 400
pages long. Moreover, some of the bounds given in the proof
are not explicit. The combination of the usefulness of the
graph minor decomposition theorem and the difficulty of the
proof have motivated the search for a more accessible proof.
To quote a survey article of Lovász [19], “It would be quite
important to have simpler proofs with more explicit bounds.
Warning: many of us have tried, but only a few successes
can be reported.”

1.1 Our contribution
Building on the methods we have developed in [16], we

give a much shorter proof of the graph minor decomposition
theorem. We begin by giving the necessary notation to state
the decomposition theorem more precisely.

A path decomposition of a graph G consists of linearly
ordered subsets Bi, 1 ≤ i ≤ k with Bi ⊆ V (G) such that
for every edge uv ∈ E(G), there exists an index i such that
u, v ∈ Bi and furthermore, for all vertices x, if x ∈ Bi and
x ∈ Bj , then x ∈ Bl for all i ≤ l ≤ j. The width of the
decomposition is the maximal size of a Bi, and the path-width
of a graph G, is the minimum width over all possible path
decompositions of G. The adhesion of the decomposition is
the max1≤i<j≤k Bi ∩ Bj .

In this paper, an embedding refers to a 2-cell embedding,
i.e. a drawing of the vertices and edges of the graph as points
and arcs in a surface such that every face (region outlined
by edges) is homeomorphic to a disc.

We now make explicit what we mean by “almost” embed-
ding in a surface. Let G be a graph and Σ be a general
surface. Let k be a positive integer. A k-near embedding
in Σ consists of edge disjoint subgraphs H0, H1, . . . , Hm for
some positive integer m satisfying the following conditions.

1.
Sm

i=0 Hi = G.

2. For all i, j ≥ 1, i 6= j, V (Hi) ∩ V (Hj) ⊆ V (H0).

3. For all i > k, |V (Hi) ∩ V (H0)| ≤ 3.

4. There exist pairwise disjoint open discs ∆1, . . . , ∆m

and an embedding σ : H0 →֒ Σ −
Sm

i=1 ∆i such that
the only vertices contained in the boundary of ∆i are
exactly the vertices of Hi ∩ H0 for i = 1, . . . , m.

5. for 1 ≤ i ≤ k, let the vertices of V (Hi) ∩ V (G0)
be u1, u2, . . . , un for some integer n with the order
given by their order on the boundary of the disc ∆i

in ∆. Then the graph Hi has a path decomposition
(Bj)1≤j≤n such that uj ∈ Bj for all 1 ≤ j ≤ n.

The k-near embedding is α-bounded if the path decomposi-
tion of Hi in 5 has adhesion at most α for all 1 ≤ i ≤ k.
The k-near embedding is totally bounded if both m ≤ k and
the path decomposition of Hi in 5 has width at most k for
all 1 ≤ i ≤ k. Finally, a graph G is t-close to admitting a k-
near embedding if there exists a set X ⊆ V (G) with |X| ≤ t

such that G − X admits a k-near embedding.
The pieces of the decomposition are combined according

to“clique-sum”operations, a notion which goes back to char-
acterizations of K5-minor-free graphs by Wagner [33] and
serves as an important tool in the theory of graph minors.
Suppose G1 and G2 are graphs with disjoint vertex sets and
let k ≥ 0 be an integer. For i = 1, 2, let Wi ⊆ V (Gi) form a
clique of size k and let G′

i be obtained from Gi by deleting

some (possibly no) edges from the induced subgraph Gi[Wi].
Consider a bijection h : W1 → W2. We define a k-sum G

of G1 and G2, denoted by G = G1 ⊕k G2 or simply by
G = G1 ⊕ G2, to be the graph obtained from the union of
G′

1 and G′
2 by identifying w with h(w) for all w ∈ W1. The

images of the vertices of W1 and W2 in G1 ⊕k G2 form the
join set. Note that each vertex v of G has a corresponding
vertex in G1 or G2 or both. It is also worth mentioning that
⊕ is not a well-defined operator: it can have a set of possible
results.

Now we can state a precise form of the Decomposition
theorem:

Theorem 1 (Theorem 1.3 [29]). For every graph H,
there exists an integer h ≥ 0 depending only on |V (H)| such
that every H-minor-free graph can be obtained by at most
h-sums of graphs which are h-close to admiting a totally
bounded h-near embedding in some surfaces in which H can-
not be embedded.

We give a much shorter and simpler proof of Theorem
1. The proof is constructive and immediately yields an
f(|H |)n3 time algorithm to find such a decomposition for
excluding H-minor. In addition, our proof also gives an ex-
plicit bound for the value h.

The original proof of Robertson and Seymour also gives
an f ′(|H |)n3 algorithm to find the decomposition, if one
follows all the arguments very carefully (as pointed out by
Reed (private communication)). Our algorithm is an im-
provement, in that it is far easier and more accessible, and
in that it improves the bounds on the function f and pro-
vides explicit bounds for the value h. Recently, Reed, Li and
the first author announced an O(n log n) algorithm to find
the decomposition theorem. The proof generally follows the
argument in the graph minor theory, however some of the
more technical graph minor results must be strengthened.
Complete details will require more than 100 pages and are
not yet fully written down.

1.2 Algorithmic applications
Algorithms for H-minor-free graphs for a fixed graph H

have been studied extensively; see e.g. [3, 4, 12, 17, 20].
In particular, it is generally believed that many algorithms
for planar graphs can be generalized to H-minor-free graphs
for any fixed H [12, 17, 20]. The decomposition theorem
provides the key insight into why this might be possible:
given an algorithm for planar graphs, first extend it to han-
dle bounded-genus graphs; then extend it further to handle
graphs “almost-embeddable” into bounded-genus surfaces,
and finally generalize the results to resolve the problem on
repeated clique sums of graphs which are almost embedded
in surfaces of bounded genus. The graph minor decomposi-
tion theorem has already been used to obtain many combi-
natorial results and show the existence of many efficient al-
gorithms, despite being published only recently. Grohe [11]
proves the existence of PTASs for minimum vertex cover,
minimum dominating set, and maximum independent set in
H-minor-free graphs. However, such an approach requires
an algorithm to construct the decomposition. Our simpler
proof and algorithm gives a fast and more accessible algo-
rithm for these problems.

DeVos et al. [8] used the decomposition theorem to prove
that for every integer k ≥ 1 and every fixed graph H , ev-
ery H-minor-free graph has a vertex partition into parts
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V1, . . . , Vk and edge partition E1, . . . , Ek such that for every
i ∈ {1, . . . , k}, the graphs G − Vi and G −Ei have bounded
treewidth. It follows that given an algorithm to construct
the decomposition, there is a 2-approximation algorithm for
graph coloring in minor-closed class of graphs, see [7]. A
special case of this partitioning result restricted to planar
graphs was proved by Baker [2] who used it to devise efficient
approximation algorithms (and approximation schemes) for
several hard approximation algorithms on planar graphs.
Baker used the planar separator theorem of Lipton and Tar-
jan [18]. Alon, Seymour, and Thomas [1] proved a similar
separator theorem for graphs excluding any fixed minor, and
this result is further generalized by Kawarabayashi and Reed
[15]. Eppstein [10] extended Baker’s ideas to graphs in ar-
bitrary proper minor-closed classes of graphs. Again, these
methods for finding approximation algorithms for problems
in minor closed classes begin with the graph minor decompo-
sition. Thus, our proof and algorithm yields fast and more
accessible algorithms for these approximation results.

Demaine et al. [5] have been working on directly using the
graph minor theorem in algorithmic applications. They ob-
tained subexponential fixed-parameter algorithms for domi-
nating set, vertex cover and set cover in any class of graphs
excluding a fixed graph H as a minor. Specifically, the run-

ning time is 2O(
√

k)nh, where h is a constant depending only
on H . For further applications, see the survey [6] or [7]. Our
simpler proof gives not only more accessible and simpler al-
gorithms but also faster algorithms, i.e. h = 3.

2. THE PROOF AND ALGORITHM
Robertson and Seymour proved several related structure

theorems describing graphs which exclude a fixed minor.
The decomposition theorem, Theorem 1, is the one that
appears now to be best known, and which has also found
the most algorithmic applications. However, Robertson and
Seymour themselves [29] later dubbed it a ‘red herring’ in
the search for the proof of the graph minor theorem. We be-
gin this section by describing the “main” structure theorem
in graph minor theory. Theorem 1 can then be relatively
quickly shown from this main structure theorem.

This“main”structure theorem is designed to eliminate dif-
ficulties arising from small cutsets in a graph. Given a graph
G, we recall that a separation of G is a pair A, B ⊆ V (G)
such that every edge of G has both endpoints contained ei-
ther in A or in B (or in both). The order of the separation
is |A ∩ B|. Note that set |A ∩ B| is a cutset in the graph
if A * B and B * A, and every cutset in the graph gives
rise to a separation. The structure theorem we are going to
describe allows us to restrict our attention to one portion of
the graph, in effect disregarding small pieces of the graph
which are separated by a small cutset. We will now make
this more explicit.

A particularly simple form of this structure theorem ap-
plies when the excluded minor H is planar: in that case,
the said parts of G—the parts that fit together in a tree-
structure and together make up all of G—have bounded size,
i.e., G has bounded treewidth.

We will not need the explicit definition of treewidth here.
Of importance to us, however, is the relationship between
grid minors and the treewidth of a graph. Specifically, the
k × k-grid has treewidth k. Moreover, Robertson and Sey-
mour showed [21] that there exists a function f(k) such that

every graph with treewidth at least f(k) contains the k× k-
grid as a minor. Thus, grid minors offer an approximate
characterization of when a given graph has large treewidth.
An immediate consequence of this result is the fact men-
tioned above: if H is a planar graph then the graphs which
do not contain H as a minor all have bounded treewidth.

If H is not planar then the set of all graphs not containing
H as a minor have unbounded treewidth. Therefore this set
of graphs contain arbitrarily large grids as minors. For tech-
nical reasons, it will be easier to work with r-wall minors.
An r-wall is a grid-like graph which has maximum degree
three. Every r-wall contains the r × r-grid as a minor, and
the 2r × 2r-grid contains an r-wall as a minor. Thus, the
graphs with no H-minor also contain arbitrarily large walls
as a minor. Since walls have maximum degree three, if G

contains an r-wall as a minor, then G contains a subdivision
of the r-wall as a subgraph.

Such a wall identifies, for every low-order separation of G,
one side in which most of that grid or wall lies. Specifically,
given a subdivision W of the r-wall in G and a separation
(A, B) of order less than r, there is exactly one of A or B

which contains one entire row of the wall. This is formalized
by the notion of a tangle: the larger the treewidth of G, the
larger the grid or wall, the order of the separations for which
this works, and (thus) the order of the tangle. The advan-
tage of working with respect to a tangle is it allows us focus
on the portion of the graph containing a large wall and dis-
regard pieces separated by small separations from the wall.
We say that a α-near embedding of a graph G in a surface
Σ captures a tangle T associated to a wall subdivision W

in G if for every Hi, i ≥ 1 in the definition of an α-near
embedding we have that G − Hi contains at least one row
of the wall W . Thus, the portion of the graph, G0, which is
embedded in the surface Σ in a sense “contains” the tangle
T .

We are now ready to state the main theorem in graph
minor theory describing graphs excluding a fixed H as a
minor. We will refer to it as the Structure theorem.

Theorem 2 (Theorem 3.1, [29]). For every graph R

there exist integers θ, α = α(|R|) ≥ 0 such that the following
holds: Let G be a graph that does not contain R as a minor
and T be a tangle in G of order at least θ. Then there exists
a subset A ⊆ V (G) with |A| ≤ α such that G − A has an
α-bounded α-near embedding into a surface Σ in which R

cannot be drawn. Moreover, this near embedding captures
T − A.

Assuming Theorem 2, the decomposition theorem can be
proven relatively easily. We give the proof in Section 3.
Thus, the majority of the work in our proof of the decom-
position theorem lies in proving Theorem 2. Our main tool
in proving Theorem 2 will be several new results on embed-
ding societies in surfaces. We discuss this in more detail in
the next subsection. We then give an outline of the proof of
Theorem 2 in Subsection 2.2.

2.1 Nearly embedding a society
A society is a pair (G, Ω) where G is a graph and Ω is a

cyclic ordering of some of the vertices of G. Societies play a
key role in the graph minor series, see [23].

In our proof, we will need to understand when a given
society (G, Ω) is t-close to having a totally bounded k-near
embedding in the disc ∆ for given values t and k. Two
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Figure 1: An example of a 4-crosscap and a 4-handle.

possible obstructions are what’s known as k-crosscaps and
k-handles. A k-crosscap consists of k disjoint, pairwise cross-
ing paths with their endpoints in Ω. A k-handle consists of
2k pairwise disjoint paths P1, . . . , Pk, Q1, . . . , Qk each with
their endpoints in Ω which satisfy the following. For all i, j,
we have that Pi and Pj do not cross and similarly, Qi and
Qj do not cross, and alternatively, the paths Pi and Qj do
cross. See Figure 1.

It would be convenient if these were the only obstructions.
Unfortunately, we must define several patterns consisting of
disjoint paths with their endpoints in Ω. We will not need
their exact definition here, and we will simply refer to the
pattern with k paths as Pk.

Theorem 3. Let k ≥ 1 be given. There exists a value
α = α(k) such that for every society (G, Ω), one of the fol-
lowing holds.

1. (G, Ω) contains a k-crosscap, a k-handle, or the pat-
tern Pk.

2. (G, Ω) is α-close to admitting a α-bounded α-near em-
bedding in the disc ∆ such that all the vertices of Ω are
embedding on the boundary of ∆ in the order indicated
by Ω

Theorem 3 generalizes the main theorem of [23]. Let ∆ be
the disc and let D1 and D2 be two disjoint, open discs in ∆
which do not intersect the boundary of ∆. Let Σ1 be the
surface obtained by deleting D1 and gluing a crosscap to the
boundary of D1. Let Σ2 be the surface obtained by deleting
D1 and D2 from ∆ and gluing a handle onto the boundaries
of D1 and D2. The existence of a k-crosscap or k-handle for
large k in a society (G, Ω) implies that the natural surface
in which we should attempt to embed (G, Ω) is Σ1, or Σ2,
respectively. When we can do so is given in the following
theorem.

Theorem 4. Let k ≥ 1 be given. There exists a value f =
f(k) and α = α(k) satisfying the following. Let (G, Ω) be a
society containing a f-crosscap (f-handle) Q but which does
not contain the pattern Pk. Then there exist edge disjoint
subgraphs H1 and H2 of G such that H1 ∪ H2 = G which
satisfy the following.

1. H1 contains a k-crosscap (k-handle) Q′ which is a sub-
graph of Q.

2. Ω ⊆ V (H1) and (H1, Ω) is α-close to admitting a 0-
near embedding in Σ1 (Σ2).

3. There exists a single face of the near embedding in Σ1

or Σ2 which contains all the vertices of V (H1)∩V (H2).

The proofs of Theorems 3 and 4 contain the main technical
work in the new proof. We will see in the next subsection
how these theorems come into the proof of Theorem 2.

2.2 Outline of the proof of Theorem 2
We now give an overview of our proof for the structure

theorem, Theorem 2. Our starting point is so called Weak
Structure theorem which is proved in Graph Minor XIII [27].
Roughly it says that, given any wall subdivision W of size
f(t, k) in a given graph G, either G has a Kt-minor, or G

has a vertex set Z of order at most t2 such that G−Z has a
subwall W ′ of W of size k which induces essentially planar
embedding in G − Z. More explicitly:

Theorem 5 (Theorem 9.4 [27]). Let G be a graph.
Let W be a wall in G. Either G contains a Kt minor which
cannot be separated from W by a small order separation, or
there exists a subset A ⊆ V (G), a sub-wall W ′ of W and edge
disjoint subgraphs H1 and H2 of G satisfying the following.

1. |A| ≤ t2 and G − A = H1 ∪ H2.

2. W ′ is a subgraph of H1 and H1 has a 0-near embedding
in the disc ∆ such that at least t vertices of degree 3
in W ′ are embedded in the disc and all the vertices of
V (H1) ∩ V (H2) are embedding on the boundary of ∆.

Note that given the structure in Theorem 5, we have a
natural society given by the subgraph H2 and the cyclic
ordering of the vertices of V (H1) ∩ V (H2) given by their
embedding on the boundary of the disc ∆.

We begin with a graph G not containing Kt as a mi-
nor, and now our proof adapts some ideas in [28, 29] to
grow a large subgraph of G which essentially embeds on a
surface with large representativity. We recall that a non-
contractable curve in the surface is simply a curve that can-
not be contracted continuously to a point on the surface.
The representativity of an embedded graph is minimum num-
ber of times a non-contractable curve C intersects the em-
bedded graph, with the minimum taken over all such non-
contractable curves C.

We proceed inductively maintaining two subgraphs H1

and H2 of G and a subset of the vertices Z such that

1. H1 ∪ H2 = G − Z,

2. H1 essentially embeds in a surface Σ with big repre-
sentativity (technically, H1 has a 0-near embedding in
Σ), and

3. there is a single face F of the embedding of H1 con-
taining the vertices of V (H1) ∩ V (H2).

We then consider the society given by H2 and the cyclic
order of the vertices of V (H1)∩V (H2) given by the boundary
of the face F (denote as Ω this cyclic order of V (H1) ∩
V (H2)). If there existed a set Z2 ⊆ V (H2) with |Z2| ≤ α

such that (H2 −Z2, Ω−Z2) admitted an α-bounded α-near
embedding of (G, Ω) in the disc, then we could “glue” it onto
the embedding of H1 in Σ and find the desired α-bounded
α-near embedding of G − (Z ∪ Z2).

We apply Theorem 3 to attempt to find such a nice em-
bedding of (H2, Ω). We can (by picking α sufficiently large),
assume that we find either a large crosscap or handle, or
a large pattern Pk. However, it is straightforward to show
that if k is large, then H1 along with the pattern Pk yields
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a large clique minor. Thus, we may assume that we always
find a large crosscap or handle. We apply Theorem 4 to the
society (H2, Ω) along with the large crosscap or handle. We
find subgraphs J1 and J2 and subset X of vertices such that
(J1, Ω) embeds in the disc plus a crosscap or handle.

Returning to our graph original graph G, we see that
G − (Z ∪ X) = H1 ∪ J1 ∪ J2 and that H1 ∪ J1 has a 0-near
embedding in the surface Σ′ obtained by adding a single
crosscap or handle to Σ. Moreover, by using the fact that
(J1, Ω) contains a large handle or crosscap, we can ensure
that this embedding of H1 ∪ J1 embeds with large repre-
sentativity (although it will be somewhat smaller than the
representativity of the embedding of H1 in Σ). Finally, there
exists a single face of the embedding in Σ′ which contains
all the vertices of V (H1 ∪ J1) ∩ V (J2) = V (J1) ∩ V (J2).

Thus, at each inductive step we grow the genus of the sur-
face maintaining large representativity. The base case in the
induction is the weak structure theorem with the large graph
essentially embedded in the sphere. The whole process must
eventually stop since there is a theorem [22] which states
that for a sufficiently large genus surface and a sufficiently
large amount of representativity, any graph embedded with
such representativity must contain Kt as a minor.

2.3 Improvements over the original
Let us clarify why our proof is much shorter than the

original proof by Robertson and Seymour.

1. We only need to introduce three parameters in our
proof (the genus of the surface into which we embed,
the representativity of the embedding, and the size of
the set of vertices to be deleted). On the other hand,
Robertson and Seymour consider seven parameters,
see Graph Minor XVI [29]. This leads to a partic-
ularly technical and sensitive induction hypothesis in
the Robertson-Seymour proof.

2. Our starting point is the “weak structure theorem” as
above, while Robertson and Seymour begins with the
grid theorem. Our initial setup immediately allows us
to focus on a single “special” face and a single “society”
because the rest of the graph is essentially embedded
into a disc. On the other hand, Robertson and Sey-
mour need to analyze how the rest of the graph at-
taches to the grid. This requires a lot of work, as in
Graph Minors XIV, XV and XVI [25, 28, 29].

3. We maintain one “special” face and one society, as
above, at each inductive step. Alternatively, Robert-
son and Seymour have to deal with many societies si-
multaneously. Thus our proof makes the genus addi-
tion step much easier. This issue is discussed in Graph
Minor XVI [29].

4. In the inductive step, we maintain a subgraph which
is essentially embedded in the surface with large rep-
resentativity. Robertson and Seymour only maintain
a subdivision of G embedded in the surface. This dif-
ference allows us to deal with the “connectivity” issue
more easily. This issue is mainly discussed in Graph
Minor XV [28].

5. In addition to a subgraph embedded in the surface,
Robertson and Seymour maintain a set of “long” jumps
attaching to distant faces of a graph in the surface

(see Graph Minor XVI [29]). However, in our case, we
simply maintain an embedding on a surface with large
representativity.

6. The biggest advantage for our proof is that we do not
have to worry about “distance” on a surface. More
precisely, Robertson and Seymour have to maintain a
subdivision embedded on a surface, but in each induc-
tive step they delete large portions of the subgraph em-
bedded in the surface. In order to maintain the “long”
jumps mentioned above in 5, they rely on a technical
distance measure for the graph embedded in the sur-
face. This issue is actually quite troublesome in the
Graph Minors Series; both Graph Minors XI and XII
[24, 26] are devoted to this distance measure. Alterna-
tively, because we do not have to maintain such “long”
jumps, we do not rely on this distance measure.

2.4 Extracting an algorithm
Our proof is constructive and can be converted into a poly-

nomial time algorithm (in fact an O(n2) time algorithm for
fixed H) to obtain the structure given in the main structure
theorem.

As subroutines, we only need the following.

1. In the arguments, we often need to find, for some two
vertices s, t and fixed constant k, either k disjoint paths
between s and t, or a vertex set of order at most k that
separates s and t.

2. We also need to find a 0-near embedding in the disc
for a given society (G, Ω).

Concerning the first point, we can use the result by Nag-
amochi and Ibaraki [13] to find one of the desired outcomes
in O(n) time. Concerning the second point, there is now
an O(n) time algorithm to find such a near embedding by
Kapadia, Li and Reed [14]. This improves the previous best
known result by Tholey [32] who gives O(mα(m, n)) time
algorithm, where the function α(m, n) is the inverse of the
Ackermann function (see Tarjan [31]).

At each step of the proof of the main structure theorem,
we may proceed by repeatedly calling the above two opera-
tions. Therefore, we obtain an O(n2) time algorithm to find
the structure ensured by the main structure theorem. For
the decomposition theorem, Theorem 1, in each iteration,
we apply the algorithm of the structure theorem and then
recurse on a smaller graph. Thus we obtain an O(n3) time
algorithm to construct the structure in Theorem 1. How we
extract the O(n3) time algorithm for the graph minor de-
composition from the algorithm for the graph minor struc-
ture theorem is treated in more detail in the next section.

3. PROOF OF THEOREM 1
In this section, we prove Theorem 1 assuming Theorem 2.

For the definition of the torso, tangle, tree decomposition,
vortices, we refer the reader to Diestel’s book [9]. We recall
that a separation of a graph G is a pair (A,B) of subsets of
vertices such that G[A] ∪ G[B] = G.

Theorem 6. For every graph R there exist integers α and
θ such that for every graph G that does not contain R as a
minor and every Z ⊆ V (G) with |Z| ≤ 3θ − 2 there is a
rooted tree decomposition {Vt | t ∈ T} of G with root r such
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that for every t ∈ V (T ), there is a surface Σt in which R

cannot be embedded, and a subset At ⊆ V (Gt) of the torso
Gt of Vt with |At| ≤ α such that Gt − At has an α-bounded
α-near embedding into Σt with the following properties:

1. There are at most α vortices.

2. All vortices have path-width at most α.

3. For every t′ ∈ V (T ) with tt′ ∈ E(T ) and t ∈ rT t′ there
is a vertex set X which is either

(a) two consecutive parts of a vortex decomposition in
Gt or

(b) a subset of V (Gt) and induces in Gt a K1, a K2

or a triangle face in Σt.

such that Vt ∩ Vt′ ⊆ X ∪ At.

4. For every t′ ∈ T with tt′ ∈ E(T ) and t′ ∈ rT t the
overlap Vt ∩ Vt′ is contained in At′ .

Furthermore Z ⊆ Ar. We say that the part Vr accommo-
dates Z.

Proof. Applying Theorem 2 with the given graph R

yields two constants α̂ and θ̂. Let θ := max(θ̂, 3α̂ + 1) and
α := 4θ − 2.

The proof proceeds by induction on |V (G)|. We may as-
sume that |Z| = 3θ − 2, since if it is smaller we may arbi-
trarily add vertices to Z. Note, we may assume that such
vertices exist, as the theorem is trivialy truel for |V (G)| < α.

Claim 1. We may assume that there is no separation
(A, B) of order at most θ such that both |Z \A| and |Z \ B|
are of size at least |A ∩ B|.

Proof. Otherwise, let ZA := (A ∩ Z) ∪ (A ∩ B). By
assumption, |A ∩ B| ≤ |Z \ A| and therefore, |ZA| ≤ |Z|.
We apply our theorem inductively to G[A] and ZA, which
yields a tree decomposition of G[A] with one part GA such
that the apex set of the embedding of its torso contains ZA.
Similarly, we apply the theorem to G[B] and ZB := (B ∩
Z)∪ (A∩B). We combine these two tree decompositions by
joining a new part Z∪(A∩B) to both GA and GB and obtain
a tree decomposition of G with the desired properties of the
theorem: The new part contains at most |Z|+|A∩B| ≤ 4θ−2
vertices, so all these can be put into the apex set of an α-
near embedding. Further, the new part contains Z. This
proves the claim.

Let T be the set of separations (A, B) of G of order less
than θ such that |Z ∩B| > |Z ∩A|. With this definition, we
make the following claim.

Claim 2. T is a tangle of G of order θ.

Proof. For every separation (A, B) of G of order less
than θ, one of the sets Z \ B and Z \ A contains at least θ

vertices, as |Z| = 3θ − 2, but not both by (1). Therefore,
property (i) of the definition of a tangle holds. We deduce
further, that for every (A, B) ∈ T , the small side A contains
less than θ vertices from Z. Hence, the union of three small
sides cannot be V (G) as it contains at most 3θ − 3 vertices
from Z, which shows property (ii) and proves the claim.

From Claim 1 and the definition of T , we conclude the
following claim.

Claim 3. |(A − B) ∩ Z| < |A ∩ B| for every (A,B) ∈ T .

Theorem 2 implies that there exists a subset Â ⊆ V (G)

with |Â| ≤ α such that there exists an α̂-bounded α̂-near
embedding of G in some surface Σ that captures T . At a
high level, our plan is now to split up G at separators con-
sisting of apex vertices, society vertices Ω(Hi) for i > α̂ and
vertices of single parts of vortex decompositions of a vortex
Hi for i ≤ α̂. We obtain a part that contains H0 and which
we know how to embed α-nearly; this part is going to be
one part of a new tree decomposition. We find tree decom-
positions for all subgraphs of G that we split off inductively
and eventually combine these tree decompositions to a new
one that satisfies our theorem.

Let us consider a small vortex (Hi, Ωi) for i ∈ {α̂ +
1, . . . , m}. Our embedding captures T , therefore the separa-

tion (V (Hi)∪ Â, V (G− (V (Hi)−V (H0)))∪ Â), whose order

is smaller than 3 + |Â| ≤ θ, lies in T . By (3), Hi contains

less than θ vertices of Z. Thus, Z′ := Ωi ∪ Â ∪ (Z ∩ V (Hi))
contains at most 3 + α̂ + θ ≤ 3θ − 1 vertices. We apply our
theorem inductively to the smaller graph G[V (Hi)∪ Â] with
Z′. Let Hi be a part of the resulting tree decomposition
(T i,Hi) that accommodates Z′. Let W = {Hα̂+1, . . . , Hm}.

For every vortex (Hi, Ωi) with Ωi = {wi
1, . . . , w

i
n(i)} for

i = 1, . . . , α̂, let us choose a decomposition (X̂i
1, . . . , X̂

i
n(i))

of depth at most α̂. We define

X
i
j :=

8

>

<

>

:

`

X̂i
1 ∩ X̂i

2

´

∪ {wi
1} for j = 1

`

X̂i
j ∩ (X̂i

j−1 ∪ X̂i
j+1)

´

∪ {wi
j} for 1 < j < n(i)

`

X̂i
n(i) ∩ X̂i

n(i)−1

´

∪ {wi
n(i)} for j = n(i)

By H−
i we denote the graph on Xi

1 ∪ . . . ∪ Xi
n(i) where ev-

ery Xi
j induces a complete graph but no further edges are

present. Now, as the depth of (Hi, Ωi) is at most α̂, every
Xi

j contains at most 2α̂+1 vertices and thus, (Xi
1, . . . , X

i
n(i))

is a decomposition of the vortex V −
i := (H−

i , Ωi) of width at
most 2α̂+1 ≤ α. Let V denote the set of these new vortices.

For every j = 1, . . . , n(i), the pair
`

X̂
i
j ∪ Â, (V (G) − (X̂i

j − X
i
j)) ∪ Â

´

is a separation of order at most |Xi
j∪Â| ≤ 2α̂+1+α̂ ≤ θ. As

before, our embedding captures T and thus, the separation
lies in T . By (3), at most θ−1 vertices from Z lie in X̂i

j . Let

Z′ := Xi
j ∪ Â ∪ (Z ∩ X̂i

j). This set contains at most 3θ − 1
vertices and, similar to before, we can apply our theorem
inductively to the smaller graph G[X̂i

j ∪ Â] with Z′. We

obtain a tree decomposition (T i
j ,Hi

j) of this graph, with one

part Hi
j accommodating Z′.

Now, with V0 := V (H0) ∪ Â, we can write

G = G[H0] ∪
`

[

W
´

∪
`

[

{G[X̂i
j ] : Vi ∈ V, 1 ≤ j ≤ n(i)}

´

.

By induction, we obtained tree decompositions for all vor-
tices in W and all the graphs G[X̂i

j ] with the required prop-
erties. We can now construct a tree decomposition of G: We
just add a new vertex v0 representing V0 to the union of all
the trees T i and T i

j and add edges from v0 to every vertex

representing an Hi or an Hi
j we found in our proof.

We still have to check that the torso of the new part V0

can be α-nearly embedded as desired. But this is easy: Let
H ′

0 be the graph resulting from H0 if we add an edge xy for
every two nonadjacent vertices x and y that lie in a common
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vortex V ∈ W. We can extend the embedding σ : G0 →֒ Σ
to an embedding σ′ : G′

0 →֒ Σ by mapping the new edges
disjointly to the discs D(V ). Then, G′ := H ′

0 ∪
S

H−
i ∪ Â

is the torso of V0 in our new tree decomposition and we
have an α-bounded α-near embedding of G′ − Â in Σ. This
completes the proof of Theorem 6.

Observe that the above proof of Theorem 6 is constructive
and consequently, it gives rise to an O(n3) time algorithm
to construct the decomposition as in Theorem 6.

To extract the algorithm, the first step is to define the
tangle T of order Θ. This can be done in O(n) time given
that |Z| ≤ 3Θ − 2 is an absolute constant and we just need
the standard max-flow, minimum-cut algorithm. Then we
apply the algorithm to give the structure in Theorem 2 with
respect to the tangle T , as in the previous section. Finally,
we recursively apply this algorithm to all the graphs in W
and all the graphs G[X̂i

j ] with the required properties. We
can put these decompositions together, as in the proof of
Theorem 6, to obtain a tree decomposition of G by adding
a new vertex v0 representing V0 := V (H0) ∪

S

H−
i ∪ Â (as

in the above proof) to the union of all the trees T i and T i
j

and add edges from v0 to every vertex representing an Hi

or an Hi
j we found in our proof.

Since we only need to apply the algorithm to construct
the structure in Theorem 2 recursively, we obtain an g(t)n3

time algorithm to construct the structure as in Theorem 6
for some function g(t), as claimed.
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