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My idea of an agreeable person... is a person who agrees with me.
—Benjamin Disraeli [8]

1. Introduction

When is agreement possible? An important aspect of group decision-making is the question
of how a group makes a choice when individual preferences may differ. Clearly, when making
a single group choice, people cannot all have their “ideal” preferences, i.e, the options that
they most desire, if those ideal preferences are different. However, for the sake of agreement,
people may be willing to accept as a group choice an option that is merely “close” to their
ideal preferences.

Voting is a situation in which people may behave in this way. The usual starting model
is a one-dimensional political spectrum, with conservative positions on the right and liberal
positions on the left, as in Figure 1. We call each position on the spectrum a platform that a
candidate or voter may choose to adopt. While a voter may represent her ideal platform by
some point x on this line, she might be willing to vote for a candidate who is positioned at
some point “close enough” to x, i.e., in an interval about x.
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Figure 1. A one-dimensional political spectrum, with a single voter’s interval
of approved platforms.

In this article, we ask the following: given such preferences on a political spectrum, when
can we guarantee that some fraction (say, a majority) of the population will agree on some
candidate? By “agree”, we mean in the sense of approval voting, in which voters declare which
candidates they find acceptable.

Approval voting has not yet been adopted for political elections in the United States. How-
ever, many scientific and mathematical societies, such as the Mathematical Association of
America and the American Mathematical Society, use approval voting for their elections. Ad-
ditionally, countries other than the United States have used approval voting or an equivalent
system; for details, see Brams and Fishburn [2] who discuss the advantages of approval voting.

Understanding which candidates can get voter approval can be helpful when there are a large
number of candidates. An extreme example is the 2003 California gubernatorial recall election,
which had 135 candidates in the mix [6]. We might imagine these candidates positioned at
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135 points on the line in Figure 1, which we think of as a subset of R. If each California
voter approves of candidates “close enough” to her ideal platform, we may ask under what
conditions there is a candidate that wins the approval of a majority of the voters.

In this setting, we may assume that each voter’s set of approved platforms (her approval set)
is a closed interval in R, and that there is a set of candidates who take up positions at various
points along this political spectrum. We shall call this spectrum with a collection of candidates
and voters, together with voters’ approval sets, a linear society (a more precise definition will
be given soon). We shall say that the linear society is super-agreeable if for every pair of voters
there is some candidate that they would both approve, i.e., each pair of approval sets contains
a candidate in their intersection. For linear societies this “local” condition guarantees a strong
“global” property, namely, that there is a candidate that every voter approves! As we shall
see in Theorem 5, this can be viewed as a consequence of Helly’s theorem about intersections
of convex sets.

But perhaps this is too strong a conclusion. Is there a weaker local condition that would
guarantee that only a majority (or some other fraction) of the voters would approve a particular
candidate? For instance, we relax the condition above and call a linear society agreeable if
among every three voters, some pair of voters approve the same candidate. Then it is not hard
to show:

Theorem 1. In an agreeable linear society, there is a candidate who has the approval of at
least half the voters.

More generally, call a linear society (k,m)-agreeable if it has at least m voters, and among
every m voters, some subset of k voters approve the same candidate. Then our main theorem
is a generalization of the previous result:

Theorem 2 (The Agreeable Linear Society Theorem). Let 2 ≤ k ≤ m. In a (k,m)-agreeable
linear society, there is a candidate who has the approval of at least (k−1)/(m−1) of the voters.

We prove a slightly more general result in Theorem 8 and also briefly study societies whose
approval sets are convex subsets of Rd.

As an example, consider a city with fourteen restaurants along its main boulevard:

A B C D E F G H I J K L M N

and suppose every resident dines only at the five restaurants closest to his/her house (a set of
consecutive restaurants, e.g., DEFGH). A consequence of Theorem 1 is that there must be
a restaurant that is patronized by at least half the residents. Why? The pigeonhole principle
guarantees that among every 3 residents, each choosing 5 of 14 restaurants, there must be a
restaurant approved by at least 2 of them; hence this linear society is agreeable and Theorem
1 applies. For an example of Theorem 2, see Figure 3, which shows a (2, 4)-agreeable linear
society, and indeed there are candidates that receive at least 1/3 of the votes (in this case
d7/3e = 3).

We shall begin with some definitions, and explain connections to a classical convexity the-
orems, graph colorings, and maximal cliques in graphs. Then we prove Theorem 2, discuss
extensions to higher-dimensional spectra, and conclude with some questions for further study.

2. Definitions

In this section, we fix terminology and explain the basic concepts upon which our results
rely. Let us suppose that the set of all possible preferences is modeled by a set X, called the
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spectrum. Each element of the spectrum is a platform. Assume that there is a finite set V of
voters, and each voter v has an approval set Av of platforms.

We define a society S to be a triple (X,V,A) consisting of a spectrum X, a set of voters V ,
and a collection A of approval sets for all the voters. Of particular interest to us will be the
case of a linear society, in which X is a closed subset of R and approval sets in A are of the
form X ∩ I where I is either empty or a closed bounded interval in R. In general, however, X
could be any set and approval sets could be any class of subsets of X. In Figure 2 we illustrate
a linear society, where for ease of display we have separated the approval sets vertically so that
they can be distinguished.
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Figure 2. A linear society with infinite spectrum: each interval (shown here
displaced above the spectrum) corresponds to the approval set of a voter. The
shaded region indicates platforms with agreement number 4. This is a (2, 3)-
agreeable society.

Our motivation for considering intervals as approval sets arises from imagining that voters
have an “ideal” platform along a linear scale (similar to Coombs’ J-scale [7]), and that voters
are willing to approve “nearby” platforms, yielding approval sets that are connected intervals.
Unlike the Coombs scaling theory, however, we are not concerned with preferential order of
platforms; all platforms within a voter’s approval set have equivalent status as “approved” by
that voter. We also note that while we model the spectrum as a linear scale, none of our results
about linear societies depends on whether the scale is actually ordinal or cardinal.

We have seen that politics provides natural examples of linear societies. For a different
example, X could represent a temperature scale, V a set of people that live in a house, and
each Av is a range of temperatures that person v finds comfortable. Then one may ask: at
what temperature should the thermostat be set so as to satisfy the most number of people?
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Figure 3. A linear society with a spectrum of two candidates (at platforms
marked by carats): take the approval sets of the society of Figure 2 and intersect
with these candidates. It is a (2, 4)-agreeable linear society.

Two special cases of linear societies are worth mentioning. When X = R we should think
of X as an infinite spectrum of platforms that potential candidates might adopt. However, in
practice there are normally only finitely many candidates. We model that situation by letting
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X be the set of platforms adopted by actual candidates. Thus one could think of X as either
the set of all platforms, or the set of (platforms adopted by) candidates. See Figures 3 and 4.

Let 1 ≤ k ≤ m be integers. Call a society (k,m)-agreeable if it has at least m voters, and
for any subset of m voters, there is at least one platform that at least k of them can agree
upon, i.e., there is a point common to at least k of the voters’ approval sets. Thus to be
(2, 3)-agreeable is the same as to be agreeable, and to be (2, 2)-agreeable is the same as to be
super-agreeable, as defined earlier.

One may check that the society of Figure 2 is (2, 3)-agreeable. It is not (3, 4)-agreeable,
however, because among voters 1, 2, 4, 7 no three of them share a common platform. The same
society, after restricting the spectrum to a set of candidates, is the linear society shown in
Figure 3. It is not (2, 3)-agreeable, because among voters 2, 4, 7 there is no pair that can agree
on a candidate (in fact, voter 7 does not approve any candidate). However, one may verify
that this linear society is (2, 4)-agreeable.

For a society S, the agreement number of a platform, a(p), is the number of voters in S who
approve of platform p. The agreement number a(S) of a society S is the maximum agreement
number over all platforms in the spectrum, i.e.,

a(S) = max
p∈X

a(p).

The agreement proportion of S is simply the agreement number of S divided by the number
of voters of S. This concept is useful when we are interested in percentages of the population
rather than the number of voters. The society of Figure 2 has agreement number 4, which can
be seen where the shaded rectangle covers the set that has maximum agreement number.

3. Helly’s Theorem and Super-Agreeable Societies

Let us say that a society is Rd-convex if the spectrum is Rd and each approval set is a
closed convex subset of Rd. Note that an R1-convex society is a linear society with spectrum
R. An Rd-convex society can arise when considering a multi-dimensional spectrum, such as
when evaluating political platforms over several axes (e.g., conservative vs. liberal, pacifist
vs. militant, interventionist vs. isolationist). Or, the spectrum might be arrayed over more
personal dimensions: the dating website eHarmony claims to use up to 29 of them [9]. In such
situations, the convexity of approval sets might, for instance, follow from an independence-of-
axes assumption and convexity of approval sets along each axis.

To find the agreement proportion of an Rd-convex society, we turn to work concerning
intersections of convex sets. The most well known result in this area is Helly’s theorem. This
theorem was proven by Helly in 1913, but the result was not published until 1921, by Radon
[17].

Theorem 3 (Helly). Given n convex sets in Rd where n > d, if every d+ 1 of them intersect
at a common point, then they all intersect at a common point.

Helly’s theorem has a nice interpretation for Rd-convex societies:

Corollary 4. For every d ≥ 1, a (d + 1, d + 1)-agreeable Rd-convex society must contain at
least one platform that is approved by all voters.

Notice that this theorem touts the existence of a common platform that lies in the inter-
section of all approval sets in a society. But with the introduction of candidates, there is no
guarantee that there is a candidate in that common intersection. However, we can make such



VOTING IN AGREEABLE SOCIETIES 5

a statement when d = 1 since the definition of a linear society includes the possibility that the
spectrum is the collection of platforms adopted by a finite set of candidates.

Theorem 5 (The Super-Agreeable Linear Society Theorem). A super-agreeable linear society
must contain at least one platform that is approved by all voters.

We provide a simple proof of this theorem, since the result will be needed later. When the
spectrum is all of R, this theorem is just Helly’s theorem for d = 1; a proof of Helly’s theorem
for general d may be found in [15].

Proof. Let X ⊆ R denote the spectrum (recall that this could be a finite set of candidates or
the entire real line). Since each voter v agrees on at least one platform with every other voter,
we see that the approval sets Av must be non-empty and contain a platform. Let Lv = minAv,
Rv = maxAv, and let x = maxv{Lv} and y = minv{Rv}. The first two minima/maxima exist
because each Av is compact; the last two exist because the number of voters is finite.

^^ ^ ^
yx

Figure 4. A super-agreeable linear society of 6 voters and 4 candidates, with
agreement number 6.

We claim that x ≤ y. Why? Since every pair of approval sets pairwise intersect in some
platform, we see that Li ≤ Rj for every pair of voters i, j. In particular, let i be the voter whose
Li is maximal and let j be the voter whose Rj is minimal. Hence x ≤ y and every approval
set contains all platforms of X that are in the non-empty interval [x, y], and in particular, the
platform x. �

The idea of this proof can be easily extended to furnish a proof of Theorem 1.

Proof. (Theorem 1) Using the same notations as in the prior proof, if x ≤ y then that proof
shows that every approval set contains the platform x. Otherwise x > y implies Li > Rj so
that Aj and Ai do not contain a common platform.

We claim that for any other voter v, the approval set Av contains either platform x or y
(or both). After all, the society is agreeable so among the voters i, j, v some pair of Ai, Aj , Av
must contain a common platform; by the remarks above it must be that Av intersects one of
Ai or Aj . If Av does not contain x = Li then since Lv ≤ Li (by definition of x), we must have
that Rv < Li and Av ∩Ai does not contain a platform. Then Av ∩Aj must contain a platform;
hence Lv ≤ Rj . Since Rj ≤ Rv (by definition of y), the platform y = Rj must be in Av.

Thus every approval set contains either x or y, and by the pigeonhole principle one of them
must be contained in at least half the approval sets. �

Proving the more general Theorem 2 will take a little more work.
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4. The Agreement Graph of Linear Societies is Perfect

To understand (k,m)-agreeability, it will be helpful to use a graph to represent the relation
of intersecting approval sets. Recall that a graph G consists of a finite set V (G) of vertices
and a set E(G) of 2-element subsets of V (G), called edges. If e = {u, v} is an edge, then we
say that u, v are the ends of e, and that u and v are adjacent in G. We use uv as shorthand
notation for the edge e.

Given a society S, we construct the agreement graph G of S by letting the vertices V (G)
be the voters of S and the edges E(G) be all pairs of voters u, v whose approval sets intersect
each other. Thus u and v are connected by an edge if there is a platform that both u, v
would approve. Note that the agreement graph of society with agreement number equal to
the number of voters is a complete graph (but the converse is false in higher dimensions, as
we discuss later). Also note that a vertex v is isolated if Av is empty or disjoint from other
approval sets.

65
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Figure 5. The agreement graph for the society in Figure 2. Note that voters
4, 5, 6, 7 form a maximal clique that corresponds to the maximal agreement
number in Figure 2.

The clique number of G, written ω(G), is the greatest integer q such that G has a set of q
pairwise adjacent vertices, called a clique of size q. By restricting our attention to members
of a clique, and applying the Super-Agreeable Linear Society Theorem, we see that there is a
platform that has the approval of every member of a clique, hence:

Fact 1. For the agreement graph of a linear society, the clique number of the graph is the
agreement number of the society.

This fact does not necessarily hold if the society is not linear. For instance, it is easy
to construct an R2-convex society with three voters such that every two voters agree on a
platform, but all three of them do not. It does, however hold in Rd for box societies, to be
discussed in Section 6.

Now, to get a handle on the clique number, we shall make a connection between the clique
number and colorings of the agreement graph. The chromatic number of G, written χ(G), is
the minimum number of colors necessary to color the vertices of G such that no two adjacent
vertices have the same color. Thus two voters may have the same color as long as they do not
agree on a platform. Note that in all cases, χ(G) ≥ ω(G).

A graph G is called an interval graph if every vertex x represents a closed interval Ix ⊆ R
and xy ∈ E(G) if and only if Ix ∩ Iy 6= ∅. We have

Fact 2. The agreement graph of a linear society is an interval graph.

To see that Fact 2 holds let the linear society be (X,V,A), and let the voter approval sets
be Av = X ∩ Iv, where Iv is a closed bounded interval or empty. We may assume that each Iv
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is a minimal closed interval satisfying Av = X ∩ Iv; then the intervals {Iv : v ∈ V } provide an
interval representation of the agreement graph, as desired.

An induced subgraph of a graph G is a graph H such that V (H) ⊆ V (G) and the edges of
H are the edges of G that have both ends in V (H). If every induced subgraph H of a graph
G satisfies χ(H) = ω(H), then G is called a perfect graph, e.g., see [18]. The following is a
standard fact [20] about interval graphs:

Theorem 6. Interval graphs are perfect.

Proof. Let G be an interval graph, and for v ∈ V (G), let Iv be the interval representing the
vertex v. Since every induced subgraph of an interval graph is an interval graph, it suffices to
show that χ(G) = ω, where ω = ω(G). We proceed by induction on |V (G)|. The assertion
holds for the null graph, and so we may assume that |V (G)| ≥ 1, and that the statement holds
for all smaller graphs. Let us select a vertex v ∈ V (G) such that the right end of Iv is as
small as possible. It follows that N , the set of neighbors of v in V (G), are pairwise adjacent
because their intervals must all contain the right end of Iv, and hence |N | ≤ ω− 1. See Figure
6. By induction, the graph G\v obtained from G by deleting v can be colored using ω colors,
and since v has at most ω − 1 neighbors, this coloring can be extended to a coloring of G, as
desired. �

vI

Iw

Figure 6. If Iv, Iw intersect and the right end of Iv is smaller than the right
end of Iw, then Iw must contain the right end of Iv.

The perfect graph property will allow us, in the next section, to make a crucial connection
between the (k,m)-agreeability condition and the agreement number of the society. Given its
importance in our setting, it is worth making a few comments about how perfect graphs appear
in other contexts in mathematics, theoretical computer science, and operations research. The
concept was introduced by Berge [1] in 1961, who was motivated by a question in communi-
cation theory, specifically, the determination of the Shannon capacity of a graph [19]. Chvátal
later discovered that a certain class of linear programs always have an integral solution if and
only if the corresponding matrix arises from a perfect graph in a specified way [5, 18, 3]. As
pointed out in [18], algorithms to solve semi-definite programs grew out of the theory of perfect
graphs. It has been proven recently [4] that a graph is perfect if and only if it has no induced
subgraph isomorphic to a cycle of odd length at least five, or a complement of such a cycle.

5. (k,m)-Agreeable Linear Societies

We now use the connection between perfect graphs, the clique number, and the chromatic
number to obtain a lower bound for the agreement number of a (k,m)-agreeable linear society
(Theorem 8). We first need a lemma that says that in the corresponding agreement graph, the
(k,m)-agreeable condition prevents any coloring of the graph from having too many vertices
of the same color. Thus, there must be many colors and, since the graph is perfect, the clique
number must be large as well.
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Lemma 7. Given integers m ≥ k ≥ 2, let positive integers q, ρ be defined by the division with
remainder: m − 1 = (k − 1)q + ρ, where 0 ≤ ρ ≤ k − 2. Let G be a graph on n ≥ m vertices
with chromatic number χ such that every subset of V (G) of size m includes a clique of size k.
Then n ≤ χq + ρ, or χ ≥ (n− ρ)/q.

Proof. Let the graph be colored using the colors 1, 2, . . . , χ, and for i = 1, 2, . . . , χ let Ci be
the set of vertices of G colored i. We may assume, by permuting the colors, that |C1| ≥ |C2| ≥
· · · ≥ |Cχ|. Since C1 ∪ C2 ∪ · · · ∪ Ck−1 is colored using k − 1 colors, it includes no clique of
size k, and hence, |C1 ∪ C2 ∪ · · · ∪ Ck−1| ≤ m − 1. It follows that |Ck−1| ≤ q, for otherwise
|C1 ∪ C2 ∪ · · · ∪ Ck−1| ≥ (k − 1)(q + 1) ≥ (k − 1)q + ρ + 1 = m, a contradiction. Thus each
|Ci| ≤ q for i ≥ k and

n =
k−1∑
i=1

|Ci|+
χ∑
i=k

|Ci| ≤ m− 1 + (χ− k + 1)q = (k − 1)q + ρ+ (χ− k + 1)q = χq + ρ,

as desired. �

Theorem 8. Let 2 ≤ k ≤ m. If G is the agreement graph of a (k,m)-agreeable linear society
and q, ρ are defined by the division with remainder: m− 1 = (k − 1)q + ρ, ρ ≤ k − 2, then the
clique number satisfies:

ω(G) ≥ d(n− ρ)/qe,

and this bound is best possible. It follows that this is also a lower bound on the agreement
number, and hence every linear (k,m)-agreeable society has agreement proportion at least (k−
1)/(m− 1).

Proof. By Fact 2 and Theorem 6 the graph G is perfect. Thus the chromatic number of G is
equal to ω(G), and hence ω(G) ≥ d(n− ρ)/qe by Lemma 7, as desired.

The second assertion follows from Fact 1 and noting that (n − ρ)(m − 1) = n(k − 1)q +
nρ − ρ(m − 1) = n(k − 1)q + ρ(n −m + 1) ≥ n(k − 1)q, from which we see that (n − ρ)/q ≥
n(k − 1)/(m− 1).

Let us observe that the bound d(n − ρ)/qe in Theorem 8 is best possible. Indeed, let
I1, I2, . . . , Iq be disjoint intervals, for i = q + 1, q + 2, . . . , n − ρ let Ii = Ii−q, and let
In−ρ+1, In−ρ+2, . . . , In be pairwise disjoint and disjoint from all the previous intervals, e.g.,
see Figure 7. Then the society with approval sets I1, I2, . . . , In is (k,m)-agreeable and its
agreement graph has clique number d(n− ρ)/qe. �

Figure 7. A linear (4, 15)-society with n = 21 voters. Here q = 4, ρ = 2, so
the clique number is at least d(n− ρ)/qe = 5.

The Agreeable Linear Society Theorem (Theorem 2) now follows as a corollary of Theorem
8.
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6. Rd-convex and d-box Societies

In this section we prove a higher dimensional analogue of Theorem 8 by giving a lower bound
on the agreement proportion of a (k,m)-agreeable Rd-convex society. We need a different
method than our method for d = 1, because for d ≥ 2, neither Fact 1 nor Fact 2 holds.

Also, we remark that, unlike linear societies, our results in this section about the agreement
proportion for platforms will not necessarily hold when restricting the spectrum to a finite set
of candidates in Rd.

We shall use the following generalization of Helly’s theorem, due to Kalai [13].

Theorem 9 (The Fractional Helly’s Theorem). Let d ≥ 1 and n ≥ d + 1 be integers, let
α ∈ [0, 1] be a real number, and let β = 1 − (1 − α)1/(d+1). Let F1, F2, . . . , Fn be convex sets
in Rd and assume that for at least α

(
n
d+1

)
of the (d + 1)-element index sets I ⊆ {1, 2, . . . , n}

we have
⋂
i∈I Fi 6= ∅. Then there exists a point in Rd contained in at least βn of the sets

F1, F2, . . . , Fn.

The following is the promised analogue of Theorem 8.

Theorem 10. Let d ≥ 1, k ≥ 2 and m ≥ k be integers. Then every (k,m)-agreeable Rd-convex

society has agreement proportion at least 1−
(

1−
(
k
d+1

)/(
m
d+1

))1/(d+1)
.

Proof. Let S be a (k,m)-agreeable Rd-convex society, and let A1, A2, . . . , An be its voter ap-
proval sets. Let us call a set I ⊆ {1, 2, . . . , n} good if |I| = d+1 and

⋂
i∈I Ai 6= ∅. By Theorem 9

it suffices to show that there are at least
(
k
d+1

)(
n
d+1

)/(
m
d+1

)
good sets. We will do this by count-

ing in two different ways the number N of all pairs (I, J), where I ⊆ J ⊆ {1, 2, . . . , n}, I is
good and |J | = m. Let g be the number of good sets. Since every good set is of size d + 1
and extends to an m-element subset of {1, 2, . . . , n} in

(
n−d−1
m−d−1

)
ways, we have N = g

(
n−d−1
m−d−1

)
.

On the other hand, every m-element set J ⊆ {1, 2, . . . , n} includes at least one k-element set
K with

⋂
i∈K Ai 6= ∅ (because S is (k,m)-agreeable), and K in turn includes

(
k
d+1

)
good sets.

Thus N ≥
(
k
d+1

)(
n
m

)
, and hence g ≥

(
k
d+1

)(
n
d+1

)/(
m
d+1

)
, as desired. �

For d = 1, Theorem 10 gives a worse bound than Theorem 8, and hence for d ≥ 2, the
bound is most likely not best possible. However, a possible improvement must use a different
method, because the bound in Theorem 9 is best possible.

A box in Rd is the Cartesian product of d closed intervals, and we say that a society is
a d-box society if each of its approval sets is a box in Rd. By projection onto each axis, it
follows from Theorem 5 that d-box societies satisfy the conclusion of Fact 1 (namely, that the
clique number equals the agreement number), and hence their agreement graphs capture all
the essential information about the society. Unfortunately, agreement graphs of d-box societies
are, in general, not perfect. For instance, there is a 2-box society (Figure 8) whose agreement
graph is the cycle on five vertices, hence its chromatic number is 3 but its clique number is 2.

For k ≤ m ≤ 2k− 2, the following theorem and corollary will resolve the agreement propor-
tion problem for all (k,m)-agreeable societies satisfying the conclusion of Fact 1, and hence
for all (k,m)-agreeable d-box societies where d ≥ 1.

Theorem 11. Let m, k ≥ 2 be integers with k ≤ m ≤ 2k − 2, and let G be a graph on
n ≥ m vertices such that every subset of V (G) of size m includes a clique of size k. Then
ω(G) ≥ n−m+ k.
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Figure 8. A 2-box society whose agreement graph is a 5-cycle.

Before we embark on a proof let us make a few comments. First of all, the bound n−m+k is
best possible, as shown by the graph consisting of a clique of size n−m+k and m−k isolated
vertices. Second, the conclusion ω(G) ≥ n −m + k implies that every subset of V (G) of size
m includes a clique of size k, and so the two statements are equivalent under the hypothesis
that k ≤ m ≤ 2k − 2. Finally, this hypothesis is necessary, because if m ≥ 2k − 1, then for
n ≥ 2(m−k+ 1), the disjoint union of cliques of sizes bn/2c and dn/2e satisfies the hypothesis
of Theorem 11, but not its conclusion.

A vertex cover of a graph G is a set Z ⊆ V (G) such that every edge of G has at least one
end in Z. We say a set S ⊆ V (G) is stable if no edge of G has both ends in S. We deduce
Theorem 11 from the following lemma.

Lemma 12. Let G be a graph with minimum vertex cover of size z such that G\v has a vertex
cover of size at most z − 1 for all v ∈ V (G). Then |V (G)| ≤ 2z.

Proof. Let Z be a vertex cover of G of size z. For every v ∈ V (G)−Z let Zv be a vertex cover
in G\v of size z − 1, and let Xv = Z − Zv. Then Xv is a stable set. For X ⊆ Z let N(X)
denote the set of neighbors of X outside Z. We have v ∈ N(Xv) and N(Xv)− {v} ⊆ Zv − Z,
and so

|Xv| = |Z − Zv| = |Z| − |Z ∩ Zv| = |Zv|+ 1− |Z ∩ Zv| = |Zv − Z|+ 1 ≥ |N(Xv)|.
On the other hand, if X ⊆ Z is stable, then |N(X)| ≥ |X|, for otherwise (Z −X)∪N(X) is a
vertex cover in G of size at most z − 1, a contradiction. We have

(1) |Z| ≥ |
⋃
Xv| ≥ |

⋃
N(Xv)| ≥ |V (G)| − |Z|,

where both unions are over all v ∈ V (G)−Z, and hence |V (G)| ≤ 2z, as required. To see that
the second inequality holds let u, v ∈ V (G)− Z. Then

|Xu ∪Xv| = |Xu|+ |Xv| − |Xu ∩Xv| ≥ |N(Xu)|+ |N(Xv)| − |N(Xu ∩Xv)|
≥ |N(Xu)|+ |N(Xv)| − |N(Xu) ∩N(Xv)| = |N(Xu) ∪N(Xv)|,

and, in general, the second inequality of (1) follows by induction on |V (G)− Z|. �

Proof of Theorem 11. We proceed by induction on n. If n = m, then the conclusion certainly
holds, and so we may assume that n ≥ m + 1 and that the theorem holds for graphs on
fewer than n vertices. We may assume that m > k, for otherwise the hypothesis implies
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that G is the complete graph. We may also assume that G has two nonadjacent vertices,
say x and y, for otherwise the conclusion holds. Then in G, every clique contains at most
one of x, y, so in the graph G\{x, y} every set of vertices of size m − 2 includes a clique
of size k − 1. Since k − 1 ≤ m − 2 ≤ 2(k − 2) − 2 we deduce by induction on n that
ω(G) ≥ ω(G\{x, y}) ≥ n− 2− (m− 2) + k − 1 = n−m+ k − 1. We may assume in the last
statement that equality holds throughout, because otherwise G satisfies the conclusion of the
theorem. Let Ḡ denote the complement of G; that is, the graph with vertex set V (G) and edge
set consisting of precisely those pairs of distinct vertices of G that are not adjacent in G. Let
us notice that a set Q is a clique in G if and only if V (G)−Q is a vertex cover in Ḡ. Thus the
size of a minimum vertex cover in Ḡ is m− k+ 1. Since 2(m− k+ 1) ≤ m ≤ n, by Lemma 12,
the graph Ḡ has an induced subgraph H on exactly m vertices with no vertex cover of size
m − k or smaller. By hypothesis, the graph H̄ has a clique Q of size k, but V (H) − Q is a
vertex cover in H of size m− k, a contradiction. �

Theorem 13. Let d ≥ 1 and m, k ≥ 2 be integers with k ≤ m ≤ 2k− 2, and let S be a (k,m)-
agreeable d-box society with n voters. Then the agreement number of S is at least n−m+ k,
and this bound is best possible.

Proof. The agreement graph G of S satisfies the hypothesis of Theorem 11, and hence it has a
clique of size at least n−m+ k by that theorem. Since d-box societies satisfy the conclusion
of Fact 1, the first assertion follows. The bound is best possible, because the graph consisting
of a clique of size n−m+ k and m− k isolated vertices is an interval graph. �

7. Discussion

As we have seen, set intersection theorems can provide a useful framework to model and
understand the relationships between sets of preferences in voting, and this context leads to
new mathematical questions. We suggest several directions which the reader may wish to
explore.

Recent results in discrete geometry have social interpretations. The piercing number [11]
of approval sets can be interpreted as the minimum number of platforms that are necessary
such that everyone has some platform of which he or she approves. Set intersection theorems
on other spaces (such as trees and cycles) are derived in [16] as an extension of both Helly’s
theorem and the KKM lemma [12]; as an application the authors show that in a super-agreeable
society with a circular political spectrum, there must be a platform that has the approval of a
strict majority of voters (in contrast with Theorem 5). Chris Hardin [10] has recently provided
a generalization to (k,m)-agreeable societies with a circular political spectrum.

What results can be obtained for other spectra? The most natural problem seems to be to
determine the agreement proportion for Rd-convex and d-box (k,m)-agreeable societies. The
smallest case where we do not know the answer is d = 2, k = 2, and m = 3. Rajneesh Hegde
(private communication) found an example of a (2, 3)-agreeable 2-box society with agreement
proportion 3/8. There may very well be a nice formula, because for every fixed integer d the
agreement number of a d-box society can be computed in polynomial time. This is because
the clique number of the corresponding agreement graph (also known as a graph of boxicity
at most d) can be determined by an easy polynomial-time algorithm. On the other hand, for
every d ≥ 2 it is NP-hard to decide whether an input graph has boxicity at most d [14, 21].
(For d = 1 this is the same as testing whether a graph is an interval graph, and that can be
done efficiently.)
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Passing from results about platforms in societies to results about a finite set of candidates
appears to be tricky in dimensions greater than 1. Are there techniques or additional hypothe-
ses that would give useful results about the existence of candidates who have strong approval
in societies with multi-dimensional spectra?

We may also question our assumptions. While convexity seems to be a rational assumption
for approval sets in the linear case, in multiple dimensions additional considerations may
become important. One might also explore the possibility of disconnected approval sets: what
is the agreement proportion of a (k,m)-agreeable society in which every approval set has at
most two components?

One might also consider varying levels of agreement. For instance, in a d-box society, two
voters might not agree on every axis, so their approval sets do not intersect, but it might be
the case that many of the projections of their approval sets do. In this case, one may wish to
consider an agreement graph with weighted edges.

Finally, we might wonder about the agreement parameters k and m for various real-world
issues. For instance, a society considering outlawing murder would probably be much more
agreeable than that same society considering tax reform. Currently, we can empirically measure
these parameters only by surveying large numbers of people about their preferences. It is
interesting to speculate about methods for estimating suitable k and m from limited data.

This article grew out of the observation that Helly’s theorem, a classical result in convex ge-
ometry, has an interesting voting interpretation. This led to the development of mathematical
questions and theorems whose interpretations yield desirable conclusions in the voting context,
e.g., Theorems 2, 8, 10, 13. It is nice to see that when classical theorems have interesting social
interpretations, the social context can also motivate the study of new mathematical questions.
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