A Weaker Version of Lovász’ Path Removal Conjecture

Ken-ichi Kawarabayashi∗† Orlando Lee ‡§ Bruce Reed ¶ Paul Wollan ∥∗∗

Abstract

We prove there exists a function $f(k)$ such that for every $f(k)$-connected graph G and every edge $e \in E(G)$, there exists an induced cycle C containing e such that $G - E(C)$ is k-connected. This proves a weakening of a conjecture of Lovász due to Kriesell.

Key Words: graph connectivity, removable paths, non-separating cycles

1 Introduction

The following conjecture is due to Lovász (see [14]):

Conjecture 1.1 There exists a function $f = f(k)$ such that the following holds. For every $f(k)$-connected graph G and two vertices s and t in G, there exists a path P with endpoints s and t such that $G - V(P)$ is k-connected.

Conjecture 1.1 can alternately be phrased as following: there exists a function $f(k)$ such that for every $f(k)$-connected graph G and every edge e of G, there exists a cycle C containing e such that $G - V(C)$ is k-connected. Lovász also conjectured [9] that every $(k+3)$-connected graph contains a cycle C such that $G - V(C)$ is k-connected. This was proven by Thomassen [13].

Conjecture 1.1 is known to be true in several small cases. In the case $k = 1$, a path P connecting two vertices s and t such that $G - V(P)$ is connected is called a non-separating path. It follows from a theorem of Tutte that any 3-connected graph contains a non-separating path connecting any two vertices, and consequently, $f(1) = 3$. When $k = 2$, it was independently shown by Chen, Gould, and Yu [1] and Kriesell [6] that $f(2) = 5$. In [1], the authors also show that in a $(22k+2)$-connected graph, there exist k internally disjoint non-separating paths connecting any pair of vertices. In [5], Kawarabayashi, Lee, and Yu obtain a complete structural characterization of which 4-connected graphs do not have a path linking two given vertices whose deletion leaves the graph 2-connected.

∗Graduate School of Information Sciences(GSIS), Tohoku University, Aramaki aza Aoba 09, Aoba-ku Sendai, Miyagi 980-8579, Japan.
†Research partly supported by Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research and by Inoue Research Award for Young Scientists.
‡University of Campinas (UNICAMP), Brazil
¶Canada Research Chair in Graph Theory, McGill University, Montreal Canada and Laboratoire I3S, CNRS, Sophia-Antipolis, France
∥University of Waterloo, Waterloo, Canada
∗∗Email address: pwollan@math.uwaterloo.ca
In a variant of the problem, one can attempt to delete the edges of the path instead of deleting all the vertices. Mader proved [11] that every \(k \)-connected graph with minimum degree \(k + 2 \) contains a cycle \(C \) such that deleting the edges of \(C \) leaves the graph \(k \)-connected. Jackson independently proved the same result when \(k = 2 \) in [4]. As a corollary to a stronger result, Lemos and Oxley have shown [8] that in a 4-connected graph \(G \), for any edge \(e \) there exists a cycle \(C \) containing \(e \) such that \(G - E(C) \) is 2-connected.

Kriesell has postulated the following natural weakening of Conjecture 1.1

Conjecture 1.2 (Kriesell, [7]) There exists a function \(f(k) \) such that for every \(f(k) \)-connected graph \(G \) and any two vertices \(s \) and \(t \) of \(G \), there exists an induced path \(P \) with ends \(s \) and \(t \) such that \(G - E(P) \) is \(k \)-connected.

We answer this question in the affirmative with the following theorem.

Theorem 1.3 There exists a function \(f(k) = O(k^4) \) such that the following holds: for any two vertices \(s \) and \(t \) of an \(f(k) \)-connected graph \(G \), there exists an induced \(s - t \) path \(P \) such that \(G - E(P) \) is \(k \)-connected.

Corollary 1.4 For every \((f(k) + 1) \)-connected graph \(G \) and for every edge \(e \) of \(G \), there exists an induced cycle \(C \) containing \(e \) such that \(G - E(C) \) is \(k \)-connected.

In the proof of Theorem 1.3, we will at several points need to force the existence of highly connected subgraphs using the fact that our graph will have large minimum degree. A theorem of Mader implies the following.

Theorem 1.5 (Mader, [10]) Every graph of minimum degree \(4k \) contains a \(k \)-connected subgraph.

In addition to simply requiring a highly connected subgraph, we will require the subgraph have small boundary. The **boundary** of a subgraph \(H \) of a graph \(G \), denoted \(\partial_G(H) \), is the set of vertices in \(V(H) \) that have a neighbor in \(V(G) - V(H) \). We use the following related result of Thomassen. By strengthening the minimum degree condition in Theorem 1.5, we can find a highly connected subgraph that further has a small boundary.

Theorem 1.6 (Thomassen, [15]) Let \(k \) be any natural number, and let \(G \) be any graph of minimum degree \(> 4k^2 \). Then \(G \) contains a \(k \)-connected subgraph with more than \(4k^2 \) vertices whose boundary has at most \(2k^2 \) vertices.

Given a path \(P \) in a graph, and two vertices \(x \) and \(y \) on \(P \), we denote by \(xPy \) the subpath of \(P \) starting at vertex \(x \) and ending at \(y \). A **separation** of a graph \(G \) is a pair \((A, B) \) of subsets of vertices of \(G \) such that \(A \cup B = V(G) \), and for every edge \(e = uv \) of \(G \), either both \(u \) and \(v \) are contained in \(A \) or both are contained in \(B \). The **order** of a separation \((A, B) \) is \(|A \cap B| \). Where not otherwise stated, we follow the notation of [2].

We will need the following results on systems of disjoint paths with pre-specified endpoints.

Definition A **linkage** is a graph where every connected component is a path.

A **linkage problem** in a graph \(G \) is a set of pairs of vertices in \(G \). We will typically write the linkage problem \(\mathcal{L} \) as follows:

\[
\mathcal{L} = \{\{s_1, t_1\}, \ldots, \{s_k, t_k\}\}.
\]
A solution to the linkage problem \(L = \{ \{s_1, t_1\}, \ldots, \{s_k, t_k\} \} \) is a set of pair-wise internally disjoint paths \(P_1, \ldots, P_k \) such that the ends of \(P_i \) are \(s_i \) and \(t_i \), and furthermore, if \(x \in V(P_1) \cap V(P_j) \) for some distinct indices \(i \) and \(j \), then \(x = s_i \) or \(x = t_i \). A graph \(G \) is strongly \(k \)-linked if every linkage problem \(L = \{ \{s_1, t_1\}, \ldots, \{s_k, t_k\} \} \) consisting of \(k \) pairs in \(G \) has a solution. The graph \(G \) is \(k \)-linked if every linkage problem with \(k \) pair-wise disjoint pairs of vertices has a solution. We utilize the following theorem:

Theorem 1.7 ([12]) Every \(10k \)-connected graph is \(k \)-linked.

Any \(k \)-linked graph on at least \(2k \) vertices is strongly \(k \)-linked. Thus the following statement follows trivially from Theorem 1.7.

Corollary 1.8 Every \(10k \)-connected graph is strongly \(k \)-linked.

2 Proof of Theorem 1.3

We prove the theorem with the function \(f(k) = 1600k^4 + k + 2 \). Let \(S \) be a \(2k \)-connected subgraph of \(G \) such that \(G - E(S) \) contains an induced \(s-t \) path. To see that such a subgraph \(S \) exists, consider an \(s-t \) path \(P_0 \) of minimum length. We note that \(P_0 \) is an induced path, and, further, that \(G - E(P_0) \) has minimum degree \(f(k) - 3 > 8k \). By Theorem 1.5, \(G - E(P_0) \) contains the desired \(2k \)-connected subgraph \(S \).

Our goal in the proof of Theorem 1.3 will be to pick an \(s-t \) path \(P \) which uses no edges of \(S \) and has the following property. For every vertex \(x \) of \(G \), in the graph \(G - E(P) \) the vertex \(x \) has \(k \) internally disjoint paths to distinct vertices in \(S \). This will suffice to show that \(G - E(P) \) is \(k \)-connected. To find such a path, we pick \(P \) to maximize the number of vertices with \(k \) paths to \(S \), and subject to that, to maximize the number of vertices with \(k-1 \) paths to \(S \), and so on. This leads to the following definition. For any induced \(s-t \) path \(P \) such that \(E(P) \) is disjoint from \(E(S) \), we define the set:

\[
S_k = S_k(P) = \{ v \mid \exists k \text{ internally disjoint paths in } G - E(P) \text{ from } v \text{ to } V(S) \text{ with distinct ends in } V(S) \}.
\]

For \(i \) between 0 and \(k - 1 \) we define sets \(S_i \) where a vertex \(v \) is in \(S_i \) if \(v \) is joined to \(V(S) \) by \(i \) paths in \(G - E(P) \) disjoint except at \(v \) and not \(i + 1 \) such paths.

We choose an induced \(s-t \) path \(P \) disjoint from \(E(S) \) so as to lexicographically maximize

\[
(S_k, S_{k-1}, \ldots, S_0).
\]

It now suffices to show that for this \(P \), \(|S_k| = |V(G)| \). We let \(\text{min} = \min \{ i \mid S_i \neq \emptyset \} \). We will show that if \(\text{min} < k \), there exists an induced path \(P^* \) which avoids \(E(S) \) and satisfies the following properties:

(a) for all \(v \) in \(S_j(P), j > \text{min}, v \in S_{j^*}(P^*) \) for some \(j^* \geq j \),

(b) there exists a \(v \) in \(S_{\text{min}} \) which is in \(S_{j^*}(P^*) \) for some \(j^* > \text{min} \).
This contradicts our choice of \(P \).

To find \(P^* \), observe that there exists a separation \((A, B)\) of \(G-E(P)\) of order \(\min \) with \(V(S) \subseteq A \) and \(v \in B - A \). Assume we have chosen such a separation to minimize \(|A| \). Let \(X \) denote the set \(A \cap B \). It follows from our choice of \(\min \) that every vertex of \(B - A \) is contained in \(S_{\min} \).

Consider the subgraph of \(G \) induced by \(B - A \). We note that \(G[B-A] \) has minimum degree at least \(f(k) - k - 2 = 1600k^4 \). By Theorem 1.6, there exists a \(20k^2 \)-connected subgraph \(F \) in \(G[B-A] \) of size at least \(1600k^4 \) which has a boundary of size at most \(800k^4 \).

By our choice of \(\min \), there exist \(|X| \) disjoint paths from \(X \) to \(F \) in the graph \(G-E(P) \) restricted to the set \(B \). We choose \(|X| \) such paths internally disjoint from \(F \). Let \(X' \) be the endpoints of the paths in \(F \). Let \(L_1 \) be the linkage problem \(\{(x, y)| x, y \in X', x \neq y\} \) consisting of every pair of vertices of \(X' \).

For every vertex \(x \in X, x \in S_t \) for some value of \(t = t(x) \). There exist paths \(Q^*_1, \ldots, Q^*_{t(x)} \) in \(G-E(P) \) disjoint except for the vertex \(x \) each having one endpoint in \(S \) and the other endpoint equal to \(x \). Let \(Q \) be a path in \(G \) with endpoints \(u \) and \(v \). A vertex \(x \in V(F) \cap V(Q) \) is \(Q\text{-extremal} \) if either \(uQx \) or \(xQv \) contains no vertex of \(V(F) \) other than the vertex \(x \). We let \(Q \) be the set of paths \(\{Q^*_i | x \in X, 1 \leq i \leq t(x)\} \). Note, two distinct \(Q_1, Q_2 \in Q \) are not necessarily disjoint. A vertex \(x \in V(F) \) is \(Q\text{-extremal} \) if there exists a path \(Q \in Q \) such that \(x \) is \(Q\text{-extremal} \). Let \(Y' \) be the set of \(Q\text{-extremal} \) vertices in \(V(F) \), and let \(L_2 \) be the natural linkage problem induced by \(Q \):

\[
L_2 = \{(x, y)| x, y \in Y' \text{ and } \exists Q \in Q \text{ such that } x \text{ and } y \text{ are } Q\text{-extremal}\}
\]

Observe that while a vertex in \(X \) may have many neighbors in \(V(F) - \partial_{G[B-A]}(F) \), the only edges of \(G \) with one end in \(A - B \) and the other end in \(V(F) - \partial_{G[B-A]}(F) \) are contained in \(P \). It follows that either \(X' \) or \(Y' \) may contain vertices of \(V(F) - \partial_{G[B-A]}(F) \). See Figure 1.

![Figure 1: An example of the separation (A, B) with the subgraphs S and F and possible sets X' and Y'.](image)

Recall that the size of the boundary of \(F \) is at most \(800k^4 \) in \(G[B-A] \). It follows from the connectivity of \(G \) that there exists a matching of size three from \(V(F) - X' - Y' - \partial_{G[B-A]}(F) \) to \(A - X \) using only edges of \(P \). Let \(aa', bb' \) and \(cc' \) be three edges forming such a matching where the vertices \(a, b, \) and \(c \) lay in \(V(F) - X' - Y' - \partial_{G[B-A]}(F) \). By our choice of \((A, B)\) to minimize \(|A| \), there exist \(|X| + 1 \) disjoint paths from \(X \cup \{a'\} \) to \(V(S) \) in \(G - E(P) \) (and similarly for \(X \cup \{b'\} \) and \(X \cup \{c'\} \)).
By Theorem 1.7, the graph F is strongly $2k^2$-linked. Fix vertices s^* and s' as follows. Let s^* be a vertex in $V(F) - X' - Y'$ such that s^* has a neighbor s' on P in G and furthermore, assume that s^* and s' are chosen so that s' is as close to s on P as possible. Similarly, we define t^* and t' such that t^* is a vertex of $V(F) - X' - Y'$ with a neighbor t' as close to t as possible. The vertices s^* and t^* are well defined since a, b, and c all have a neighbor on P in G. Without loss of generality, we may assume that $b \neq s^*, t^*$. Let v be a vertex of $V(F) - X' - Y' - \{s^*, t^*\}$. Now consider the linkage problem

$$\mathcal{L} = \mathcal{L}_1 \cup \mathcal{L}_2 \cup \{\{v, x\} | x \in X'\} \cup \{\{v, b\}, \{s^*, t^*\}\}.$$

The linkage problem \mathcal{L} has at most $\left(\frac{k}{2}\right) + k(k-1) + k + 2 \leq 2k^2$ pairs, and so there exists a solution R in F. Let $R \in \mathcal{R}$ be the path with ends s^* and t^*. We now define P^* to be the shortest induced subpath of $sPs's^*Rt'Pt$. We claim that P^* is the desired path violating our choice of P. Let $S_i^* = S_i(P^*)$ for $i = 0, \ldots, k$.

To complete the proof, it now suffices to verify the following claim.

Claim 1 (S_k^*, \ldots, S_0^*) is lexicographically greater than (S_k, \ldots, S_0)

Proof. We begin with the observation that by construction and the choice of s^* and t^*, there exists a subpath \overline{R} of R with ends \overline{s} and \overline{t} such that $P^* = sPs's^*Rt'Pt$. Furthermore, it follows that $E(P[A]) \supseteq E^*(P[A])$ and $E(P^*) - E(P) \subseteq E(F) \cup \{s^*, t^*\}$. It follows that $E(P^*) \cap E(S) = \emptyset$ since the edges $s^*\overline{s}$ and $t^*\overline{t}$ each have at least one endpoint in F and F and S are disjoint.

For any vertex $u \in V(G)$ such that $u \in S_i$ for some $i > \text{min}$, it suffices now to show that u has i internally disjoint paths from u to distinct vertices in S to imply that $u \in S_j^*$ for some $j \geq i$. To see this, first observe that the vertex u must be contained in A. Assume as a case that $u \in A - X$. In the graph $G - E(P)$, there exist i internally disjoint paths N_1, \ldots, N_i each with a distinct end in S and the other endpoint equal to u. Then any path N_i with at most one vertex in X does not contain any edge of $(G - E(P))|B)$ and consequently does not use any edges of P^*. Any path N_i that does use at least two vertices of X has a first and last vertex in X. There exists a path from X to X' avoiding the edges of P^*, and consequently a path in \mathcal{R} connecting the ends in X' avoiding edges of P^*. It follows that $u \in S_j^*$ for some $j \geq i$.

We now assume $u \in X$. One path from u to S can be found as above by following the linkage from X to X' and using a path in the solution to the linkage problem \mathcal{L}_1. However, as many as i of the paths ensuring that $u \in S_i$ may have used edges contained in $B - A$. Thus the solution to the linkage problem \mathcal{L}_2 will ensure that u has i internally disjoint paths to distinct vertices in S in $G - E(P^*)$. Let Q_1^u, \ldots, Q_i^u be the internally disjoint paths linking u to distinct vertices of S contained in Q. As in the previous paragraph, any path that uses at most one vertex of $V(F)$ will still exist in $G - E(P^*)$. If Q_i^u uses at least two vertices of $V(F)$, then by the fact that \mathcal{R} contains a solution to the linkage problem \mathcal{L}_2, there exists a path of \mathcal{R} rerouting Q_i^u to avoid any edge of P^*.

We now will see that the vertex $v \in V(F)$ lies in S_j^* for some $j > \text{min}$. The vertex v has $|X|$ internally disjoint paths in F to X' that avoid $E(P^*)$ and an additional path to the vertex b. Then X' is linked to X avoiding $E(P)$, and as a consequence, avoiding $E(P^*)$. Furthermore, by construction, the edge bb' is not contained in $E(P^*)$. Finally, our choice of separation (A, B) ensures that $X \cup \{b'\}$ sends $|X| + 1$ disjoint paths to $V(S)$ avoiding edges of P^* to prove that $v \in S_j^*$ for some $j > \text{min}$. This completes the proof of the claim. \qed

This completes the proof of Theorem 1.3.
3 An Approach to Conjecture 1.1

We make the following conjecture:

Conjecture 3.1 There exists a function $f = f(k)$ such that the following holds. Let G be an $f(k)$-connected graph and let s, t and v be three distinct vertices of G. Then G contains an $s - t$ path P and a k-connected subgraph H such that $v \in V(H)$ and furthermore, H and P are disjoint.

We will see that Lovász’ conjecture in fact follows from Conjecture 3.1

Theorem 3.2 If Conjecture 3.1 is true, then Conjecture 1.1 is true.

Proof. Let $f(k)$ be a function satisfying Conjecture 3.1. We show the existence of a function $g(k)$ satisfying Conjecture 1.1, where $g(k)$ will be any function sufficiently large to make the necessary inequalities of the proof true.

Let s and t be two fixed vertices of a $g(k)$-connected graph G, and let F be a maximal k-connected subgraph that does not separate s and t. To see that such a subgraph F must exist, consider a shortest path P from s to t. Every vertex not contained in P can have at most three neighbors on P, and so the minimum degree of $G - V(P)$ must be strictly greater than $4k$. Theorem 1.5 implies that there exists a k-connected subgraph that does not separate s and t.

A block is a maximal 2-connected subgraph. Every connected graph G has a block decomposition (T, B) where T is a tree and $B = \{B_v | v \in V(T)\}$ is a collection of subsets of vertices of G indexed by the vertices of T such that the following hold:

i. for every $v \in V(T)$, $G[B_v]$ is either an edge or a block of G,

ii. for every edge uv of T, $|B_v \cap B_u| = 1$, and

iii. every edge of G is contained in B_v for some $v \in V(T)$.

Observe that for any edge $uv \in E(T)$, the vertex in $B_u \cap B_v$ is a cut vertex of the graph. See [2] for more details.

Consider a block decomposition (T, B) of the component of $G - F$ containing s and t. Assume there exists a leaf v of T such that such that $B_v - u$ does not contain either s or t (where the vertex u separates $B_v - \{u\}$ from the rest of $G - F$). Then deleting any vertex of $B_v - \{u\}$ does not separate s and t. If any such vertex x in $B_v - \{u\}$ had k neighbors in F, then $F \cup x$ would be a k-connected graph that does not separate s and t, contradicting our choice of F. It follows that $G[B_v - \{u\}]$ has minimum degree at least $g(k) - k$. We assume $g(k)$ satisfies the following inequality:

$$g(k) - k \geq 4k^2.$$

By Theorem 1.6, we conclude $G[B_v - u]$ has a k-connected subgraph H whose boundary has at most $2k^2$ vertices. It follows that there exists a matching of size at least k from $V(H) - \partial_{G[B_v]}(H)$ to $V(F)$ in G. This is a contradiction, since then $H \cup F$ is a larger k-connected subgraph that does not separate s from t.

By the same argument as above, $G - F$ has exactly one component. It follows that the block decomposition (T, B) of $G - F$ has T equal to a path. Let the blocks of the decomposition be B_0, \ldots, B_l with $B_i \cap B_{i+1} = v_i$. Then we may assume that $s \in B_0$ and $t \in B_l$. Moreover, for all $i = 0, \ldots, l - 1$, it follows that $v_i \neq v_{i+1}$, and $s \neq v_0$ and $t \neq v_{l-1}$.
Now assume there exists a block B_i which is non-trivial, i.e., not a single edge. Let $s' = s$ if $i = 0$, and $s' = v_{i-1}$ otherwise. Similarly, let $t' = t$ if $i = l$ and $t' = v_i$ otherwise. Observe that any vertex v of $B_i - \{s', t'\}$ does not separate s' from t', and so, as above, v cannot have more than k neighbors in F, lest we contradict our choice of F. It follows that $G[B_i - \{s', t'\}]$ has minimum degree at least $g(k) - k - 1$. We assume that
\[g(k) - k - 1 > 4f(k+1)^2. \]

Then $G[B_i - \{s', t'\}]$ contains an $f(k+1)$-connected subgraph F' with boundary at most $2f(k+1)^2$. Moreover, by the connectivity of G, there exist $f(k+1)$ vertices $u_1, \ldots, u_{f(k+1)} \in V(F') - \partial G[B_i - \{s', t'\}](F')$ such that each has a distinct neighbor in F (in the graph G).

Attempt to find a path from s' to t' in $G[B_i - V(F')]$. If such a path exists, then F' does not separate s' from t' in $G[B_i]$, and the subgraph induced by $V(F \cup F')$ contradicts our choice of F to be as large as possible. It follows that F' does separate s from t in $G - F$. Let \overline{P} be a path in $G[B_i]$ with ends s' and t'. Let \overline{v} be the vertex of $V(\overline{P}) \cap V(F')$ closest to s' on \overline{P}. Similarly, let \overline{t} be the vertex of $V(\overline{P}) \cap V(F')$ closest to t' on \overline{P}. We define a new graph \overline{F} with vertex set $V(\overline{F})$ equal to $V(F') \cup \overline{v}$ where \overline{v} is a new vertex representing the subgraph F. The edge set of \overline{F} is given by $E(\overline{F}) = E(F') \cup \{\overline{v}u_i|i = 1, \ldots, f(k+1)\}$. Then \overline{F} is an $(f(k+1))$-connected graph, so by our assumption that f is a function satisfying Conjecture 3.1, there exists a $(k+1)$-connected subgraph H of \overline{F} containing the vertex \overline{v}, and moreover, $F' - H$ contains a path from \overline{s} to \overline{t}. By construction, $H - \overline{v}$ is a k-connected subgraph of $G[B_i]$ that does not separate s from t, and moreover, there exists a matching of size k from $H - \overline{v}$ into the vertices of F. It follows that $G[V(F) \cup V(H) - \{\overline{v}\}]$ is a subgraph violating our choice of F to be a maximum k-connected subgraph not separating s from t. This contradicts our assumption that the block decomposition of $G - F$ contained a non-trivial block. It follows that $G - F$ is an induced $s - t$ path, completing the proof.

Conjecture 3.1 is closely related to the following strengthening of Conjecture 1.1 due to Thomassen.

Conjecture 3.3 (Thomassen, [15]) For every $l, t \in \mathbb{N}$ there exists $k = k(l, t) \in \mathbb{N}$ such that for all k-connected graphs G and $X \subseteq V(G)$ with $|X| \leq t$, the vertex set of G can be partitioned into non-empty sets S and T such that $X \subseteq S$, each vertex in S has at least l neighbors in T and both $G[S]$ and $G[T]$ are l-connected subgraphs.

As the conjecture originally appeared, t was assumed to be equal to l. We have introduced the additional parameter to discuss partial progress on the conjecture.

Observation 3.4 If $\forall l \geq 0, 0 \leq t \leq 2$ there exists a positive integer $k = k(l, t)$ satisfying Conjecture 3.3, then Conjecture 1.1 is true.

Proof. Let l be any positive integer, $k = k(l, 2)$ be as in Conjecture 3.3, and let G be a k-connected graph. Then there exists a partition (A, B) of the vertices of G such that $s, t \in A$, $G[A]$ and $G[B]$ are l-connected graphs, and, furthermore, every vertex of A has at least l neighbors in B. Then if P is a path in $G[A]$ connecting s and t, $G - V(P)$ is an l-connected graph. Thus $f(l) = k(l, 2)$ is a function satisfying Conjecture 1.1.

Kühn and Osthus [3] have proven Conjecture 3.3 is true when the integer t is restricted to 0. A consequence of Theorem 3.2 is the following corollary.
Corollary 3.5 If $\forall l \geq 0, 0 \leq t \leq 1$ there exists a positive integer $k = k(l, t)$ satisfying Conjecture 3.3, then Conjecture 1.1 is true.

Proof. Let l be a positive integer and let $k = k(l + 2, 1)$ be the value given by Conjecture 3.3. Then let G be a k-connected graph, and let $v, s,$ and t be given as in Conjecture 3.1. Let (A, B) be a partition of $V(G)$ such that $G[A]$ and $G[B]$ are $(l+2)$-connected, and furthermore, that $v \in A$. Then $G[A - \{s, t\}]$ is an l-connected subgraph containing v that does not separate s and t, as desired. □

References